C.P. No. 856

ROYAL AIRCRAFT MABLPHMENT BEDEORD.

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

A Technique for the
Wind Tunnel Simulation of Store Release at High Speeds
by
L. J. Beecham

A IECinugue for med wind tunnel simulaition of STORE PELEASE AT HIGH SPEEDS

by
I. J. Beecham

SUMMARY

A controlled-fall technique for the wind tunnel simulation of the release of a store from an aircraft at high flight speeds is presented. It is shown that the trajectory and incidence of the store may be simulated during the release phase for transonic and supersonic free stream speeds by use of on-line incremental digital computation in conjunction with balance measurements. The technique allows in principle full three-dimensional froedom on the motions of both store and airoraft at launch.
CONTENIS
Page
1 INIRODUCTION 3
2 GENERAL METHOD 4
3 NOMENCLATURE AND NOTATION 5
4 MOTION OF STORE AID AIRCRAFT FOLLOWING RELEASE 6
4.1 Store (or aircraft) in aerodynamic isolation 6
4.2 Relative motion botween store and airorat't 8
5 NODEL SETTITNG 11
6 SIMULATOR DESIGN 12
6.1 Droblem simplification 13
6.2 Elimination of zero and redundant terms 13
6.3 Matrix multiplier modules $1 / 4$
7 CONCLUSIONS 15
SYMBOLS 16
REFTRENCES 17
DET:CHIBLE ABSTRICT CARDS
ILIUSTRATIONS
Fif.
System flow diagran 1
Store (or aircraft) motion relative to earth 2
Velocity normalisation 3
Motion of store relative to aircraft flight path 4
Extraction of Euler angles defining store orientation to tunnel 5

1 INTRODUCTITON

In the dynamic simulation of the releasc of a store from an aircraft it is necessary that the corroct relationship between the aerodynamic, gravitational and inertial forces, be preserved in magnitude and direction at oorresponding points on the trajectory.

If the simulation is by means of a free-fail in a wind tunnel then a number of constraints are immediately imposed. Firstly the wind tunnel axis is fixed, usually horizontally, rolative to the earth so that the release condition corresponds to straight, level, and usually unaccelerated flight of the parent aircraft. Secondly it follows that since the gravitational acceleration is the same at both model and full scale the other linear accelerations in the relative notion between the store and airoraft must also be preserved. Hence, since there is a change of scale, the relative velocity (store to airoraft) at corresponding points on the full scale and simulated trajcctories cannot be the same. If r_{L}, r_{V}, r_{T} represent the model-to-full soale ratios of length, separation velocity and time respectively, it follows that $r_{V}=r_{L}^{\frac{1}{2}}=r_{T}$.

Again, the angular volocity ratio, r_{S}, must be made equal to $r_{I}^{-\frac{1}{2}}$ since $r_{S} r_{V}$ has the dimensions of lincar acceleration and is to be preserved. The corresponding ratio of anglo turned through ($\equiv r_{S} r_{T}$) is then unity so that the correct attitude of model is maintaincd along the trajectory. No distinction is necessary here between wind and earth axes since, as already mentioned, only straight and level flight at release is simulated.

At this point, since the relative velooity between store and airoraft is necessarily incorrectly simulated, it becomes nocessary to decide on the parameter to which this velocity should be matched. Iwo methods are mainly used.

The first scales the free stream velocity in the same ratio as that of the relative velocity. This has the advantage of correctly matching the store trajectory with respect to a particle travelling with the free stream, i.e. $r_{V_{\infty}}=r_{V}=r_{L}^{\frac{1}{2}}$. The reduced frequency ratio, $r_{\bar{\omega}}\left(\equiv \frac{r_{S} r_{L}}{r_{V_{\infty}}}\right)$ is then unity, so that the aerodynamic loads due to angular velocity derivatives are correctly represented providing thesc do not depend on free stream Mach No. Similarly the aerodynamic loads arjsing from the incidence of tho store (which is correctly simulated along the trajectory) are correct, providing they are not Mach No. dependent. This proviso necessarily confines the method to simulation at low aircraft speeds where the aerodynamic loads are nearly enough proportional to ρv_{∞}^{2}. In dynamioally soaling the aerodynamic and gravity force wo may then write:-

$$
\frac{r_{\rho} r_{V}^{2} r_{L}}{r_{\delta} r_{L}^{2}}=1 \text { i.e. } \quad r_{\rho}=r_{\delta}\left(\text { since } r_{V_{\infty}}^{2}=r_{L}\right)
$$

where suffioes ρ and δ refer to the air and store densities respectively. Thus, for a given ambient air density in the tunnel; the model density is constant, independent of scale.

The necessary reduction of free stream velocity for smaller scale models is the shortcoming of this technique, for it call be used only where compressibility is not important, and for this reason is inapplicable to the simulation of release at transonic speed.s.

In the second method the Mach No. of the free stream flow is preserved and for the present purposes we may take this to mean $r_{V} \div 1$ nearly enough. In this case the reduced frequency parameter ratio $\left(\equiv \frac{r_{S} r_{L}}{r_{V}}\right)=r_{L}^{\frac{1}{2}}$ and is thus incorrectly represented, so that the aerodynamic loads due to angular velocity are not correctly simulated. Furthermore, preserving aerodynamic and gravitational similarity with $r_{V}=1$ gives $\frac{r_{\rho}}{r_{\delta}}=r_{L}$. The model density has therefore to be increased as the scale is reduced, thereby imposing a lower limit on the scale. possible with available materials.

Both "free-fall" techniques, therefore, have deficiencies which in various respects make the simulations unropresentative due to the preservation of the linear acceleration scale. In cases where the store is ejeoted from the aircraft with an initial velocity which is high compared with that which it would achieve under gravity whilst close to the airoraft, the acceleration soale need not be preserved and more freedom with the scaling is possible.

This note considers another method of simulation using a captive model. If the store model were supported independently of the aircraft such that its motion could be suitably prescribed and controlled, then the effective gravitational acceleration could be varied, and the limitations of the frec-fall technique overcome. The equipment described in Ref. 1 offers a possible facility for achieving this control.

There may well be difficulties to overcome in implementing such a scheme, notably in supporting the store at transonic speeds such that aerodynamic interference from the support may be ignored. This note is based on the premise that these are not insurmountable.

2 GENERAL METHOD
The problem is essentially that of determining the relative linear and angular motions between the several axes systems in which the forces and
moments are specified. The gravity force, for example, is constant in a system of earth axes, whereas the aerodynamic loads are dependent upon the orientations of the body axes to the flight path, and are different for airoraft and store aftor release.

To detormino the relative motion between store and aircrart following release we have to refor the displacements, etc, to one common set of axes, taking due account of the angular velocities between the various sets. For convenience the parent aircraft model would most probably be fixed in the wind tunncl, so that the common set has been chosen as those of the aircraft flight path. Since this is fixed in tunnel axes, the relative displacements and volocities, eto, can then be provided with respeot to the tunnel structure.

The acrodynamic loads are most conveniently measured on balances moving with the models, and are honce referred to as body-fixed axes systems. We have, thereforc, fivo sets of axcs (two body-fixed, two flight path-fixed, and one earth system). The store trajcotory is then dofined by the rolative disposition of the two wind axes systems, and the incidences of the aircraft and store by the dispositions of the respective body and wind axes.

3 NOMENCLATURE AND NOTATION

Beceuse of the soveral axes systems involved, care is needed in spocifying the vectorial quantitios to indicatc:-
(i) which system is boing rogarded as the reference,
(ii) in which system the component vectors are defined.
(i) and (ii) are indepondent. For example, the translational velocity of a systom A moving with rospect to a system B will bo designated $v A$, and this quantity is invariant with (ii). The components may thus be expressed in a third system, C, which may be changed without affecting $v^{A B}$; for this reason the component axes system is denoted by a suffix, viz. $v_{C}^{A B}$.

Tha chango from C to a new systom, D, is cffected uy a transformation matrix, T, with suffixes such that:-

$$
\begin{equation*}
\frac{A B}{v_{D}}=T_{D C} \cdot v_{C}^{A B} \tag{1}
\end{equation*}
$$

The transformation matrix is 3×3 and orthogonal, so that the inverse, T_{CD}, is produced by interchanging rows and columns. It has the property that the product of any row (or column) with itsclf is unity, and, with any other, is zero. The elements are the direction cosines of the angles between the axes in the C and D systems and are arranged such that the terms in cach row are all associated with an axis in the leading suffix system. Likewise the terms in the columns are associated with an axis in the trailing suffix system.

Herein the body-fixed, earth and flight path axes of the store are denoted by B, E and F respeotively, and with primes for the corresponding system for the aircraft (the earth system is, of course, common to both store and aircraft). Thus $v_{B E}^{B E}$ would denote the resolution of the translational velocity of the store relative to the earth into components along the body axes of the aircraft.

Use is made of the property of orthogonal matrices whereby the product of a matrix and the differential of its.inverse is a skew-syminetric matrix, the elements of which correspond to those of the relative angular velocity between the axes systems, i.e.

$$
\mathrm{T}_{\mathrm{BE}} \dot{\mathrm{~T}}_{\mathrm{EB}}\left(\equiv-\dot{\mathrm{T}}_{\mathrm{BE}}, \mathrm{~T}_{\mathrm{EB}}\right)=\left[\begin{array}{rrr}
0 & -r & q \\
r & 0 & -\mathrm{p} \\
-q & p & 0
\end{array}\right]
$$

in comparison with

$$
s_{B}^{B E}=\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]
$$

wherc s ($=$ spin) denotes the angular velocity vector. It should be remembered that matrix multiplication is non-commutative.

4 MOTTON OF STORE AND ATRCRATP FOLLOTING RELFASE

4.1 Storc (or aircrart) in acrodynanic isolation

For convenience, elthough it is not essontial, we take the store mass, m, and inertia, I_{B}, as constant, and wo have, using tho foregoing notation,

Foroe equation:

i.e.

$$
T_{E B} F_{B}+m_{E}=m \frac{d}{d t}\left(T_{E B} v_{B}^{B E}\right)
$$

i.e.

$$
\begin{equation*}
\frac{\mathrm{F}_{\mathrm{B}}}{\mathrm{~m}}+\mathrm{T}_{\mathrm{BE}} \mathrm{E}_{\mathrm{E}}=\dot{\mathrm{v}}_{\mathrm{B}}+\mathrm{T}_{\mathrm{BE}} \dot{\mathrm{~T}}_{\mathrm{BB}} \mathrm{v}_{\mathrm{B}} \tag{3}
\end{equation*}
$$

Moment equation:

$$
\underset{\text { (aerodynamic) }}{M_{E}}=\dot{h}_{E}
$$

i.e.

$$
T_{E B} M_{E}=\frac{d}{d t}\left(T_{E B} I_{B} s_{B}^{B E}\right)
$$

i.e.

$$
\begin{equation*}
M_{B}=I_{B} \stackrel{s}{B}_{B E}^{B E}+T_{\mathrm{BE}} \dot{T}_{\mathrm{IEB}} I_{\mathrm{B}} s_{\mathrm{B}}^{\mathrm{BE}} \tag{4}
\end{equation*}
$$

where $h=$ angular momentum
$I=$ moment of inertia.
Equations (3) and (4) are the Euler equations of motion, and the technique given in Ref. 1 solves these simultaneously to give $v_{B}^{B E}, s_{B}^{B E}$ and $T_{B E}$.

The above equations with suitable primes give asimilar pair for the aircraft.

In the above the terms F_{B}, M_{B} represent the total aerodynamic loads (in components along the body axes) and contain contributions from the several souroes from which momentum is addod to the traversed air, viz. through the linear and angular velocities of the body and flight path axes relative to the earth (wind is neglected here). Because $v^{B E} \equiv v^{F E}$, and $s^{F E}=s^{B E}-s^{B F}$ this may be expressed as

$$
\begin{aligned}
\mathrm{F}_{\mathrm{B}}\left(\text { or } \mathrm{M}_{\mathrm{B}}\right) & =\mathrm{F}_{1}\left(\mathrm{v}_{\mathrm{B}}^{\mathrm{BE}}\right)+\mathrm{F}_{2}\left(\mathrm{~s}_{\mathrm{B}}^{\mathrm{BE}}\right)+\mathrm{F}_{3}\left(\mathrm{~s}_{\mathrm{B}}^{\mathrm{BF}}\right) \\
& =\mathrm{F}_{1}\left(\mathrm{v}_{\mathrm{B}}^{\mathrm{BE}}\right)+\mathrm{F}_{2}\left(\mathrm{~s}_{\mathrm{B}}^{\mathrm{BE}}\right)+\mathrm{F}_{4}\left(\mathrm{v}_{\mathrm{B}}^{\mathrm{BE}}, \dot{\mathrm{v}}_{\mathrm{B}}^{\mathrm{BE}}\right)
\end{aligned}
$$

since $s_{B}^{B F}$ has the same elements as $T_{B F} \dot{T}_{F B}$, viz. products of the components of $v_{B}^{B F}$ and $\hat{v}_{B}^{B F}$.

The first term, F_{1}, is usually the major term and is that due to the instanteneous orientation of the body to the airstream; this is provided directly by the measured loads on the static wind tunnel model. The remainder are "damping" terms which may usually be taken as proportional to the angular velocities involved, e.g.

$$
F_{2}\left(s_{B}^{B E}\right)=\left[\begin{array}{ccc}
L_{p} & 0 & 0 \\
0 & M_{q} & 0 \\
0 & 0 & N_{r}
\end{array}\right]\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]
$$

Since $s_{B}{ }_{B}, v_{B}^{B E}$ and $\dot{v}_{B}^{B E}$ are all obtained from the solution of equations (3) and (4) these damping terms may in principle be included as considered necessary providing the proportionality is known; they are usually omitted from the force equation but retained for the moment equation. Fig. 2 shows schematically the solution of (3) and (4) and includes for illustration the damping term due to $s_{B} \mathrm{BE}$.

4.2 Relative motion between store and aircraft

After release the flight paths of aircraft and store are quite distinot and the separation velocity between the $F^{\prime \prime}$ and F systems of axes defines the trajectory of the store relative to the aircraft. Because during the short release phase the aircraft incidence may be considered nearly enough constant (6.1) it is mechanically convenient to identify the tunnel free stream velocity vector with the reverse of that of the aircraft along its flight path, and to resolve other parameters of the motion into axes along and normal to it. Thus from values of $v_{B}{ }^{B E}, S_{E} B_{E}$ and $T_{B E}$, and $V_{B^{\prime}}^{B^{\prime} E}, S_{B^{\prime}}^{\prime \prime E}$ and $T_{B^{\prime}}$, obtained in section 4.2 we require to determine the quantities $T_{B F}$ and $V_{F^{\prime}} \mathrm{Br}^{\prime}\left(\equiv \mathrm{VF}_{\mathrm{F}}{ }^{\prime}\right)$; these will define the incidence and trajectory of the store with respect to the flight path of the aircraf't and the setting of the store model in a wind turnel simulation.

A difficulty arises here because only the x-axis of the airoraft flight path ($x_{F^{\prime}}$) is defined; the velocity components of the aircraft $V_{F^{\prime}}{ }^{\prime} E$ are by definition zero along the y and z axes which therefore have to bo arbitrarily defined. Again from mechanical considerations it is convenient to confine the total incidence of the aircraft to the tunnel vertical plane, so that if we choose the \mathbb{F}^{\prime}, axis to be positive vertically downwards,

$$
\mathrm{T}_{\mathrm{B}^{\prime} \mathrm{F}^{\prime}}=\left[\begin{array}{ccc}
\vec{u}^{\prime} & 0 & 0 \\
\overrightarrow{\mathrm{v}}^{\prime} & \cdot & \cdot \\
\overline{\mathrm{w}}^{\prime} & \cdot & \cdot
\end{array}\right]
$$

where $\bar{u}=u^{\prime} \div V^{\prime}$, eto

$$
\begin{aligned}
V^{\prime} & =\left[u^{\prime 2}+v^{2}+\dot{w}^{2}\right]^{\frac{1}{2}} \\
& \equiv\left|v^{\prime} E\right|
\end{aligned}
$$

From the orthogonal properties of $T_{B} F^{\prime}$, it follows that all the other clements swe now known, viz.

Since $T_{B E}, T_{B^{\prime} E}$ are also known we nay now specify

$$
\begin{aligned}
T_{B F^{\prime}} & \equiv T_{B E} T_{E B^{\prime}} T_{B^{\prime} F^{\prime}} \\
& =\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
\end{aligned}
$$

say, whore each clement is known.
In a rolease simulation, the store, to generate the representative aerodynamic loads, must be at the "corroct" incidence, and here we encounter a difficulty which is common to all simulations except where the velocity of separation is matched to that of the free stroam (1), viz. that the incidenoe cannot be simultancously corrcet with respect to both store and aircraft flight paths.

The difference is duc to the divergence angle between the flight paths, and at high flight speeds it is small. For example, under gravity only, the store will fall about 6 ft beiore the divergence angle amounts to 1° at $\mathrm{M}=1$; for an cjection velocity of $30 \mathrm{ft} / \mathrm{sec}$ the angle is 1.8° at the same separation distance. The period of particular interest in the release simulation is. whilst the separation distance is small enough for the store to be influenced by the non-uniform flow ficld around the aircraf't. Herein it has been assumed that the incidence of the store to its own flight path is of greater significance, so that the orientation of the store and body axes will be slightly incorrect. In practice the importance or otherwise of this could be checked by a repeat run programmed at a different time scale, or by runs comparing the effects when controlling the store motion by $T_{B F}$, instead of $T_{B F}$.

Because, from the above, the simulation would not be accurate for large divergence anglos it has been regarded here as justifjable to use small angle approximations in determining the flight path separation as determined by $T_{F F}$: Up to launch the flight paths are necessarily coincident. The airoraft flight path ares have already beer derined with respect to tho wind tuncl and it is convenient to define the store flight path axes as being reached from those of the aircraft by two rotations only, Δ_{1} and Δ_{2} about the z_{F}, and y_{F}, axes respectively. The small angle approximation makes the order of rotation immaterial, so that

$$
\mathrm{T}_{P F^{\prime}}=\left[\begin{array}{ccc}
1 & \Delta_{1} & -\Delta_{2} \tag{7}\\
-\Delta_{1} & 1 & 0 \\
\Delta_{2} & 0 & 1
\end{array}\right]+O\left(\Delta^{2}\right)
$$

But we also have the identity

$$
\begin{align*}
\mathrm{T}_{\mathrm{FF}^{\prime}} & =\mathrm{T}_{\mathrm{FB}} \mathrm{~T}_{\mathrm{BF}}{ }^{\prime} \\
& =\left[\begin{array}{ccc}
\bar{u} & \overline{\mathrm{v}} & \overline{\mathrm{~F}} \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \tag{8}
\end{align*}
$$

The top row in equation (7) oan be equated direotly with the known elements in equation (8), viz.

$$
\begin{align*}
\Delta_{1} & =\overline{\mathrm{u}} a_{12}+\overline{\mathrm{v}} a_{22}+\bar{w} a_{32} \\
-\Delta_{2} & =\overline{\mathrm{u}} a_{13}+\overline{\mathrm{v}} a_{23}+\bar{w} a_{33} \tag{9}
\end{align*}
$$

By virtue of the show-symmetry resulting from the small angle approximation $T_{\text {FF' }}$ is fully defined. Furthermore the process may be inverted to provide the * terms in equation (8) and hence the anglc between the store and airoraft incidence planes, viz.

$$
\begin{align*}
T_{B F} & =T_{B F^{\prime}} T_{F^{\prime} F} \\
& =\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right] \text { say } \tag{10}
\end{align*}
$$

It should be noted that the small angle limitations apply only to the deviations of the flight paths - no limitations have been placed on the incidence of the store at release or subsequently.

The orientation of the store to the tunnel has now been defined, and it remains to determino the trajectory, i.e. the separation distance. The soparation velocity matrix is

$$
\begin{align*}
& V_{F^{\prime}}^{F F^{\prime}}\left(\equiv V_{F^{\prime}}^{B B^{\prime}}\right)=T_{F^{\prime} F} V_{F}^{F E}-\frac{V_{F}^{\prime} E}{F^{\prime}} \tag{11}\\
& =\left[\begin{array}{ccc}
1 & -\Delta_{1} & \Delta_{2} \\
\Delta_{1} & 1 & 0 \\
-\Delta_{2} & 0 & 1
\end{array}\right]\left[\begin{array}{l}
V \\
0 \\
0
\end{array}\right]-\left[\begin{array}{l}
V \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{cc}
V & -V^{i} \\
\Delta_{1} & V \\
-\Delta_{2} & V
\end{array}\right] . \tag{12}
\end{align*}
$$

Henco by integration wo may obtain the displacement components $\mathrm{x}_{\mathrm{F}^{\prime}}^{\mathrm{F}}$, of the store relative to the tunnel.

5 MODEL SETTING

The required linear displaccments of the store rclative to the wind tunncl are given explicitly by the components of $X_{F} \mathrm{~F}^{\prime}$ above.

The information necessary to determino the angular disposition is contained in equation (7). Tho final (B) position may be reached from the original (F) position by threc rotations successively about the surrent body axes, and the form of the $A_{i j}$ elements will depend upon the order in which these rotations are applied. In a particular design of support mechanism being considered it has been found convenient to apply the rotation first about the
y-axis (i.e. in the vertical plane), then about the new z-axis, and finally about the final x-axis, so that

$$
T_{B F} \equiv\left[\begin{array}{ccc}
A_{11} & A_{12} & A_{13} \tag{13}\\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{3} & s_{3} \\
0 & -s_{3} & c_{3}
\end{array}\right]\left[\begin{array}{ccc}
c_{2} & s_{2} & 0 \\
-s_{2} & c_{2} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c_{1} & 0 & -s_{1} \\
0 & 1 & 0 \\
s_{1} & 0 & c_{1}
\end{array}\right]
$$

where $c_{i}=\cos \theta_{i}$

$$
s_{i}=\sin \theta_{i}
$$

$i=1,2,3$ denote the aingular rotations in the order taken.
Ihe three required angular rotations $\theta_{1,2}$ and 3 , may be conveniently extracted from a consideration of the terms $A_{12}\left(=s_{2}\right), A_{13}\left(=-c_{2} s_{1}\right)$, and $A_{32}\left(=-c_{2} s_{3}\right)$ only; Fig. 5 shows a possible analogue servo method for performing tinis.

The three linear and three angular deflcctions, which fully define the orientation of the store to the aircraft and to the wind veotor at each instant, would probably be achieved in practice by position servos in the model support system.

6 STMULATOR DESICN

A network is shown schematically in ligs. 1 to 4 suitable for the solution of the gencralised, three-iimensional releasc problom. In this form, and in torms of existing components it would represcnt a sizcable installation. As an cxample, a full, 3×3 matrix multiplication, using digital integrators as the incremental digital computirg clenents, could require up to 63 integrators, i.c. more than tho cepacity of one CORSAIR unit.

In this section consicieration is given to the possibility of streamlining the technique by:-
(i) justifiable simplification of the problem,
(ii) short cuts through the matrix algebra utilising zeros and redundancies,
(iii) possible provision of incremental matrix multipliers and redistributors.

6.1 Problem simplirioation

A number of simplifications may be justifiably applied in praotioal cases without prejudicing the uscfulness of the method. Firstly it will probably be permissible to ignore the change of incidence of the eircraft during the period for which the store is still in close proximity. For typical store/aircrart mass ratios of $5-10 \%$, computations have shown that the change in $\mathrm{v}^{\mathrm{B}} \mathrm{E}$ has negligible influence on the incidenoe of the aircraft, so that the latter may not need separate actuation during a release simulation. However it is still necessary to compute $\mathrm{v}^{\mathrm{B}^{I E}}$ bccause the components, although small compared with free stream vclocity, can provide a large contribution to the separation velocity between store and aircraft. The acceleration producing separation after rolease under gravity is increased initially by that of the aircraft, trimmed for the pre-relcase load, relative to the earth, and its subsequent change evon during the short time of interest has been found to be significant.

Thus, although the aircraft model may be kept at a fixed incidenoe in the tunnel, the offect of its motion (relative to carth-fixed axes) will have to be taken into account in simulating the store trajectory. The same observation applics to the angular velocity, $s^{B^{\prime} E}$. If, hovever, the aerodynamic influence of the store back on to the aircraft may be neglected, the oharge in
$v^{B^{\prime} E}$ and $s^{B^{\prime} E}$ following the sudden change in mass and inertia on•release may be simulated scparately, and the correction continuously applied to the store trajectory during the actual relcase simulation. This effects a considerable saving in the simulator capacity required.

Practical releasc manoeuvres, may have one or more components of $s_{B} B^{\prime}$ ' zero, with a possible attendant simplification of $T_{B^{\prime}} E^{\prime}, T_{B^{\prime} F^{\prime}}$ eto. Again, the rolease of ovor-slung stores may well be confined to manocuvres where the aircraft jis turning in a vertical plane, if at all. The above limitations apply to the aircraft conditions at release, but, even so, do not degenerate to straight and level launoh. No conditions have been imposed upon the store velocitics $s^{B E}$ and $v^{B E}$ after launch, so that release in an aerodynamically nonsymmetrical environment, such as underwing or skew stowage may be simulated.

Inertial symmetry of the store about its longitudinal axis would also simplify the problem.

6.2 Elimination of zero and redundant torms

Many terms in the velooity and transformation matrioes are zero and others are redundant through orthogonality. If, as in Ref.1, only the relevant terms from the matrix multiplications are evaluated this reduoes the number of integrators required. The following givos an indication of the probable capacity roquired for various problems - presont capacity ${ }^{1}$ is 150.

1. Symmetrical flight in the vertical plane prior to release $\left(p=r=0\right.$, so that $\left.\frac{B^{\prime} E}{B^{\prime}} \equiv\left[\begin{array}{c}0 \\ q^{\prime} \\ 0\end{array}\right]\right)$. Store mounted in aircraf't symmetry plane, so that post-release behaviour of both store and aircraft is two-dimensional.
2. As for (1) prior to release, but with the store wing mounted (or otherwise aerodynamically asymmetric). Tollowing release both store and aircraft are free to move three-dimonsionally.
(i) inertially symmetric store $(B=C) \quad 138$
(ii) inertially asymmetric store $\quad 140$
3. No restriction on aircrart motion at release asynmetric store. 196

In 1 to 3 above the acrodynamic influence, of the store on the airoraft motion after release is neglected, enabling the latter to be pre-computed; the aircraft incidence is regarded as constant during release (6.1).

Without these simplifications the airciaft and store loads would have to be measured simultaneousli, and the capacity required for case 3 above would then be approximately 350 integrators.

It is clear from the allove that although the present simulator capacity will enable some cases to be investigated, full exploitation of the technique roquires additional CORSATR units. This contingency was foreseen, and the prescnt system has been dosigned to permit interconnection with additional CORSAIR units as required.

However, there is another possible line of development which might profitably be explorod, and this is discussed in the next section.

6.3 Matrix multiplior modules

Prom Pigs.2, 3, 4 it will bo seen that genuine integration forms a small part of this simulation. In common with many other kínematic problems, the requirement is mainly one of axes transomations involving matrix multiplications, and this raises the question as to whether in the long term it would be feasible to produce 3×3 digital matidx modules to be used with, or instead of, integrators. This would increase very considerably the compactness and scope of the incremental digital computer, which ill the present DDA form is somowhat clumsy for operations other than addition and integration, and would provide a unit of very high inherent accuracy. So far only preliminary consideration has been given to the practicability of such a unit, but from the limited expertise available within the department, the production of digital channels capable of accepting incremontal imputs from two 3×3 matrices and giving the product as an incrementel output appears quite feasible.

Because of the orthogonal pronerties of the transformation matrix (i.e. the sum oi the product of any row (or column) with itself is unity, and, with any other, zero), it is not neoessary to specify all of the nine elements to define the matrix uniquely. If this unifioation could be achieved automatioally by digital servo logic the generation of components such as $T_{B^{\prime}} \mathrm{F}^{\prime}$ for example, would be greatly simplified.

The redistribution units are required to alter the sequence in which the matrix inputs are accopted. If the matrix multiplier operates sequentially and contains its own storage unjts the redistribution unit need be no more than a plug-board for programming the multiplier.

The availability of suoh digital matrix multipliers would enable the present tochnique, applied to isclatod aircraft or missilcs and reprosented effectively by Figs. 2 and 3 to be extended without any increasc in complexity. For example, the body axcs used need not be confined to the principle. The use of any others would morely require the replacement of the zeros in $I_{B}^{-1} \equiv\left[\begin{array}{ccc}1 / A & 0 & 0 \\ 0 & 1 / B & 0 \\ 0 & 0 & 1 / C\end{array}\right]$ by torins involving products of inertia. In a similar way cross damping terms such as N_{p}, etc may be included in K_{B} if required, viz.

$$
\left[\begin{array}{ccc}
L_{p} & L_{q} & L_{r} \\
M_{p} & M_{q} & M_{r} \\
N_{p} & N_{q} & N_{r}
\end{array}\right]
$$

Possiblc applications in allicd fields include other kinematic simulations such as guidance and homing, wind tunnel corrections in conventional force and moment tests, and theorctical stability computations, and clearly such units would have an applioation whercver aocurate axes transformation is necossary.

7 CONCLUSTONS

1. Free-fall simulation techniques are limited to straight-and-level releases at low spocds because of the constraints introduced by the fixed gravitational acceleration. The technique described here, using a aptive model on a suitably motivated support overcomes these limitations and permits simulation of the motion of store and aircraft immediately following relcase
(i) at transonic and supersonic speeds,
(ii) during aircraft manocuvres,
(iii) from an asymmetric acrodynamic environment (c.g. under-wing, or skew, storage).
2. The capacity of the present simulator is adequate for some problems, but a full exploitation of the method would require supplementary CORSAIR units.
3. It is suggested that the development of an incremental digital matrix multiplier, preferably with self-orthogonalising properties, to operato with a CORSAIR DDA system would increase considerably the scope of such a systom, and would have applications other than that proposed here.

ACITOMITDGBMENT

The author is indebted to R.N. Merson of Space Dept for suggesting the notation used herein.

SYMBOIS

$a_{i j}, \Lambda_{i j} \quad$ matrix elements
A, B, C principle moments of inertia
F aerodynamic force
F_{1}, F_{2}, F_{3} contributing terms in F from lincar and angular velocities
M aerodynamic moment
L, M, N components of in about body axes
M_{q} etc $\quad \frac{\partial M}{\partial q}$ etc
p, q, r components of the angular velocjey of a body relative to earth (s ${ }^{\mathrm{BE}}$) resolved about axes in the body
ratio model/full scalc of physical quantity defined by suffix
angular velocity vector
transiormation matrix
translational velocity veotor
components of translational velocity or body relative to earth $\left(v^{\mathrm{BE}}\right)$ resolvod along axes in the body

V velocity along fight yath $=\left(u^{2}+v^{2}+w^{2}\right)^{\frac{1}{2}}$
$\Delta_{1,2} \quad$ flight path deviation angles

SYMBOIS (Continued)

$\theta_{1,2}, 3$. Buler angles dofining store orientation to the wind tunnel
λ incidence plaze angle
σ incidenco angle
Suffixes

B, (${ }^{1}$)	components along body axes in store (aircraft)
E	components along earth axes
P, (${ }^{\prime}$)	components along storc (aircraft) flicht path axes
L	leneth
3	angular velocity
T	time
V	vclocity
V_{∞}	free streara volocity
δ	store density
p	air density
$\bar{\omega}$	reduced froquency
Superscripts	
-	nommalised with respect to V
$1 \times$	refers to aircraft
-1	inverso matrix

\qquad
RERERETCE
No. Author Sitle, etc.
1 Beecham, I.J., Proposals for an integrated wind tunnel flight dymamic Waltcrs, WoL., simulator systam. Partridge, D.li. K.R.C. C.F. No. 789

FIG.I SYSTEM FLOW DIAGRAM

KEY
X 3×3 MATRIX MULTIPLICATION
IS INTEGRATION
(R) REDISTRIBUTION WITHIN MATRIX
$[5$ SUMMATION
(8) SCALAR MULTIPLIER (FIG.3.)

FIG.2. STORE(OR AIRCRAFT) MOTION RELATIVE TO EARTH.

fig. 3. VELOCITY NORMALISATION.

fig.4. MOTION OF STORE RELATIVE TO AIRCRAFT FLIGHT PATH.

Fig.5. EXTRACTION OF EULER ANGLES DEFINING store orientation to tunnel.
533.6.071 :
533.695 .9 $533.6 .011 .35 / 5$
a technique for the wind tunvel smulation of store release at high spedd. Beecham, L.J. May 1964.

A controlled-fall technique for the wind tumnel simulation of the release of a store tram an alrcraft at high flight speeds is presented. It is shown that the trajectory and incidence of the store may be simulated during the release phase for transonic and supersonic free stream speeds by use of on-line incremental digital computation in conjunction with balance measurements. The technique allows in principle full three-dimensional freedom on the motions of both store and alrcraft at launch.
A.R.C. C.P. 1 NO. 856
533.6.071 : 533.695 .9 533.6.011.35/5

A.R.C. C.P.	50.856
	$533.6 .071:$
	$533.695 .9:$
	$533.6 .011 .35 / 5$

A TECHNIQUE FOR THE WIND TUNNEL SIMULATION OF STORE REZEASE AT HIGH SPEEDS. Beecham, L.J. May 1964.

A controlled-iall tecmique for the wind tunnel simulation of the release of a store from an alrcraft at high ilight speeds is presented. It is shown that the trajectory and incidence of the store may be simulated during the release phase for transonic and supersonic free stream speeds by use of on-line incremental digital computation in conjunction with balance measurements. The technique allows in principle full three-dimensional freedom on the motions of both store and alrcraft at launch.
A.R.C. C.P. No. 856
533.6.071:
533.695 .9 : $533.6 .011 .35 / 5$

A TECHNIQUE FOR THE WIND TUNNEL SIMULATION OF STORE RELEASE AT HIGH SPEEDS. Beecham, L.J. May 1964.

A controlled-fall technique for the wind tunnel simulation of the release of a store from an alrcraft at high flight speeds is presented. It is shown that the trajectory and incidence of the store may be simulated during the release phase for transonic and supersonic free stream speeds by use of on-line incremental digital computation in conjunction with balance measurements. The technique allows in principle full three-dimensional ireedom on the motions of both store and aircraft at launch.

C.P. No. 856

© Crown Copyright 1966

Published by
Her Majesty's Stationery Office
To be purchased from
49 High Holborn, London w.c. 1
423 Oxford Street, London w. 1
13a Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
Brazennose Street, Manchester 2
50 Fairfax Street, Bristol 1
35 Smallbrook, Ringway, Birmingham 5 80 Chichester Street, Belfast 1 or through any bookseller

C.P. No. 856

