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SUMMARY 

Five methods of predicting the incompressible, two-dimensional 

turbulent boundary layer have been applied to flow conditions considered 

to occur over the suction surface of turbo machine blades and the measure 

of agreement between the separation criteria and boundary layer charac- 

teristics assessed. The methods considered were those due to Buri, 

Truckenbrodt, Stratford, Maskell and Spence. 

All of the criteria could be brought into tolerable agreement pro- 

vided that a value of -0.04 was used for Buri's criteria, and that for 

Truckenbrodt and Spence's methods the position of separation was determined 

by the condition that local skin friction coefficient is zero. It was 

additionally necessary in the methods of hiaskell, Truckenbrodt and Spence 

for the calculation of the shape parameter to be started with a value of 

1.4. 

All of the criteria except Spence's were sensitive to Reynolds num- 

ber and showed that an increase in Reynolds number delays separation, 

Stratford's method was extremely easy to apply, was the simplest of 

the five and predicted the lowest pressure rise to separation. 

To assist in the design of blade profiles, envelopes of suction 

surface velocity distribution have been constructed to give separation at 

the trailing edge; these are considered to be conservatively based. 
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Introduction 

The design of a turbine blade profile has conventionally followed a 
arbitrary pattern whereby certain geometrical parameters such as 

trailing edge thicla?ess, maximum thickness/chord ratio and leading edge 
radius, have been selected in the light of earlier elcperience* The sec- 
tion profile has then been constructed, either by using a number of circu- 
lar arcs or by laying out an arbitrary thickness distribution along a sim- 
ple camber line (usually parabolic). The position of adjacent blade sec- 
tions is chosen to conform to some simple aerodynamic loading criterion 
such as that of Zweifel', the passage geometry at the outlet being adjus- 
ted to satisfy the g 3 outlet requirements by for instance the rules of 
Ainley and Mathieson 9 o At the jnlet the,blade geometry is chosen to 
satisfy an incidence requirement O 

In the case of compressors it is usual to use standard aerofoil 
sections on circular or parabolic arc camber lines, the amount of camber 
being determined by the air deflection and by current incidence and devia- 
tion rules3. The pitch/chord ratio is chosen to satisfy a loading crite- 
rion (e,go, that of Howel13) for the required deflection. 

It is clear, however, that these methods are not necessarily ideal 
aa they possess no means for differentiating between the effects of many 
possible variations in blade shape* In practice, empirical restriction3 
havg been placed on such features as the form of the blade channel shape, 
and, in the case of turbines, blade back curvature, but design rules of 
this type cannot command,a very high degree of confidence in their 
application, 

In many instances, it has 'been possible to obtain a good turbine 
efficiency using such very elementary design rules, due to the predomi- 
nantly accelerating nature of the flow in a reaction blade design. There 
are, however, regions, such as rotor blade roots, where considerable areas 
of diffusing flow occur and where past empirical design practices may not 
have avoided separation of the boundary layer and thei-efore resulting in 
less than optimum efficiency. 

It Seems possible that a more fundamental approach to blade profile 
design might enable the aerodynamic loading of compressor blade sections 
to be increased above conventional values without incurring losses due to 
separation of the boundary layer, Also it would provide the distribution 
of heat transfer over the blade surfaces which is particularly important 
in the case of high temperature turbines, 

There is also a requirement to minimise the number of blades in a 
turbo machine, to reduce blade cooling requirements in a hot turbine, to 
reduce engine coats and to optimise efficiency, 

During recent years, the quest for higher efficiency and for more 
economical use of blading has encouraged an increasing amount of interest 
in the problem of blade profile design. This means that a much more pre- 
cise assessment of permissible aerodynamic blade loading is required and 
this is only attainable by detailed consideration of the flow conditions 
over the blade surface, As a first step towards this, various methods 

to surface pressure distribution have been and 
z; ,re,~~~i~~v",;~;~dt!?~~, 7, Honever, the question then arises as to what 
is the optimum pressure distribution which should be aimed at in design, 
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For the present it will be assumed that attention is restrioted to 
blade rows in which the exit Mach number is low enough for the peak sur- 
face velocity on the suction surface of the blade to be below a Mach num- 
ber of 1.0. With the peak velocity restricted, any attempt to increase 
aerodynamic loading may require that the diffusion gradient near the 
trailing edge on the suction surface should increase, a condition which 
may cause separation of the boundary layer and increased loss. 

It is commonly assumed that optimum two-dimensional performance 
will correspond to a blade for which th boundary layer is just stable, 
lee., near to separation, 8 and Stratford has demonstrated a diffusing flow 
in which the turbulent boundary layer is critical at all points, In a 
turbo machine however, the precise flow conditions at all blade sections 
can only be defined approximately and it is thought that a safer basis for 
blade design would be to ensure that if separation is encountered it will 
be progressive from the trailing edge, 

Both Swainstong and Allan 10 have given consideration to the use of 
pressure gradient as a design limitation, following the reasoning that 
optimum performance is likely to be achieved when the gradient is just 
insufficient to cause separation of the boundary layer. This approach is 
of course highly sensitive to the state assumed for the boundary layer, in 
particular the position of transition, and for this Swainston and Allan 
assumed an incompressible, two-dimensional fully turbulent boundary layer 
with the aim of ensuring that design is conservatively based. Allan also 
considered the case of a mixed laminar turbulent boundary layer. 

There remains, however, the problem of predicting separation of the 
turbulent boundary layer and for this a number of empirical methodT,aJiS 
available. The method used by Swainston was that of Truckenbrodt 9 
which has a very complex derivation and involves calculating the variation 
of the shape parameter, H, (ratio of displacement thickness to momentum 
thickness) separation occurring when H = 1.8 to 2.4. Using a value of 
H= 1.8, Swainston deduced the envelope of pressure distribution having a 
constant pressure over the forward portion of the blade and a linear pres- 
aure gradient over the rear portion for separation to occur at the trail- 
ing edge, the Reynolds number based on blade surface length and outlet 
velocity Be being 3.5 x IO'. Allan made use of a simpler analysis due to 
Burii1,13 and deduced the envelope of velocity distributions having a 
linear velocity gradient, instead of a linear pressure gradient, for a 
Reynolds number of 2 x IO'. 

It was thought desirable that the various quite distinct methods of 
predicting the behaviour of the incompressible, two-dimensional turbulent 
boundary layer should be examined with a view to assessing the measure of 
agreement between the various criteria for separation and boundary layer 
characteristics, and this Memorandum presents a comparison of five methods. 

Also considered is the application of turbulent boundary layer 
theory in assessing the pressure distributions over the auction surfaces 
of turbo machine blades which would give separation at the trailing edges, 

The paper may be read without reference to the Appendix, which 
contains a detailed summary of the five methods investigated. 
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2.70 Flow models 

The flow within a turbo machine is complex in nature and at the 
present time the characteristics of the precise nature of the flow over 
the surfaces of the blades is a matter for speculation, However, to pro- 
vide a common basis for analysis three f1ov.r models, whosesurface velocity 
distributions could be considered to give a simplified representation of 
distributions associated with the suction surfaces of turbo machine blades, 
were selected. The models are sho<Jn diagrammatically in Figure 1. 

2.1 Surface velocity distributions 

To compute th, 0 incompressible boundary layer characteristics and 
position of separation the velocit,y distribution at the outer edge of the 
boundary layer is required, Therefore, simple velocity distributions, in 
the sense that the computations were made easier as vii11 become evident on 
reading Section 3,0, nere chosen. 

The distributions are shown non-dimensiona1l-y in Figure l(a) as 
velocity ratio V plotted against distance x where V is the ratio of velo- 
city-at outer edge of boundary layer to the velocity at the trailing edge 
and x is the ratio of surface distance, measured from the leading edge 
stagnation point, to total surface length. For all three distributions 
it was assumed that the velocity rose from zero at the leading edge stag- 
nation point to a definite value over an infinitely small distance. The 
distributions are referred to as type A, B and C, 

Tme A - the velocity decreases linearly with surface length from 
V = V, at the leading edge to V = 1.0 at the trailing edge. 

Q-peB- the velocity is constant, v = To, over the first 60 per 
cent of the blade surface followed by a linear decrease to 
trailing edge. 

TQpe C - the velocity increases_linearly over the first 60 per-cent 
of blade surface from V = 0.5 at the leading edge to V = 

TO at the 60 per cent station, follolfed by a linear 
decrease to the trailing edge., 

2.2 State of boundary layer 

In order to _oredict the behaviour of the turbulent boundary layer 
the position of transition must be known. 

The flow in the boundary layer as it develops from the leading edge 
stagnation point is initially laminar. The laminar boundary layer is 
very sensitive to disturbances in the presence of a positive pressure gra- 
dient iOeo, pressure increases in the direction of flo;i, and will readily 
separate or become turbulent, 

It is frequently assumed that design will be conservatively based 
if the boundary layer is taken as being fully turbulent (momentum thick- 
ness zero at leading edge). However, J, H. Prestonlb has shown that for 
a circular pipe and a flat plate the minimum ;ieynolds number, based on 
momentum thickness 8, for turbulent flow is Ito = 320 and suggests that in 
the case of flow with a favourable pressure gradient the minimum value 
will decrease and for flow v:ith an adverse gradient trill increase. 
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In view of this it was assumed in the present analysis that the 
boundary layer was fully turbulent, having a momentum Reynolds number 
Be of 500 (Figure l(b)) at the leading edge, This approach although not 
strictly correct should help to ensure that design is conservatively based, 
since a laminar boundary layer grows at a slower rate than a turbulent 
layer, Thus, if in practice a length of laminar layer occurs and is fol- 
lowed by transition to iurbulent flow, it is believed that the momentum 
thickness at the position of,the start of the turbulent layer would be 
less than if the flow had been fully turbulent. 

‘2-o 3 Reynolds number 

The present methods of analysis for the turbulent boundary layer 
are based on data from experiments conducted at Reynolds numbers which 
were very much higher than is associated with the flow within a turbo 
machine. In the present study it eras assumed that these methods could be 
applied to flows where the Reynolds number, Be, is low and representative 
of turbo machines0 The Revnolds number, based on outlet velocity and 
blade surface length, range" 
2 x IO5 to 1 x 10 , the aim 
not only on the position of 
betcfeen the various methods 

examined for all three flow models was Re = 
being to assess the effect of Reynolds number 
separation but also the measure of agreement 
of analysis, . I 

3.0 Methods of analysis ---_..__- --_ 

There are in existence several semi-empirical methods of predicting 
the characteristics of the incowp~ossible, tt-Jolcij.,e,ls.i.onal turbulent bound- 
ary and the methods considered TJere thos 
Truokenbrodt"j12, Stratford'7, Maskell 18 

due to B~rill9~3, . 
and Spencelpj 

3.1 Buri 

For floby along a flat plate in the a3sence of a pressure gradient 
the 1/7th po;Jer law for the velocity profile in a turbulent boundary layer 
may be considered an approximate empirical relation, To specify the 
velocity profile in the presence of.a pressure gradient Buri chose, in 
analogy to IL Pohlhausen's approximate method for laminar boundary layers, 

a form parameter I? = $ I&j 4 dV dx and assumed that the shearing stress at the 

wall a, and the shape parameter H are functions of I' alone. 

Thus, =w 
7 

Q" = .fi(F) . 

andH = displacement thickness 6" 
momentum thickness =-F = f2 03 

Experimental data were used to cotiirm the analogy, and the results were 
moderately satisfactory. 

The position of separation involves the calculation of I' over the 
surface and using the momentum integral equation Buri was able to shorn 
that 

$ (BR&) = A-E . 
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where A and B are empirical constants. . . 

A unique critical value of I' is then assigned to the point of 
separation ijhich corresponds to the condition of local skin friction 

=w , 
coefficient Cf = +- = 0. 

2pva 
According to the curve Buri drew through the 

experimental points the value of i'critical is -0.06. 

The main advantage of this method is that it is fairly straight- 
forward to compute and does not involve further arbitrary assumptions 
regarding the value of the shape parameter at transition which can grossly 
affect the conclusions in some other methods. However, this method 
involves a knowledge of the velocity gradient, g, which may prove to be 
difficult to assess from measured pressure distributions. 

Both the empirical relationship and rcritical were derived from 
very limited early experiments of Nikaradse and Burl *II J3, *The experi- 
ments of Nikaradse nere for flow in converging and diverging channels hav- 
ing flat walls and of rectangular cross section. Buri's experiments were 
for flow in converging channels and of circular cross section. In the 
case with an adverse pressure gradient (divergent channel) the boundary 
layer was very thick and extended as far as the centre of the channel, the 
Reynolds number based on momentum thickness Q ranging from 3000 to 9000, 
For the flow with a constant and favourable pressure gradient (convergent) 
the range of Be was 500 to 3000,, 

Hovrarth'lC has applied Buri's criterion using a value of I'critical = 
-O,O6, to a measured pressure distribution over a circular cylinder at a 
Reynolds number based on diameter of 2.12 x IO'. In vien of the assump- 
tions in the calculation (i.e., position of transition, conditions at 
transition), and the experimental difficulty in locating the separation 
point the result may be considered satisfactory, 

It is north mentioning here that Howell 15 has made use of Buri's 
parameter in analysing compressor cascade resultso By assuming the 
velocity distribution in the boundary layer on a cascade blade is linear 
at separation Hovel1 found fairly good correlation between diffuser and 
cascade test results. 

It was found necessary, in the present analysis, to adopt a more 
conservative value of rcritiOal for types A and C flow models than had 
been suggested previously in order to yield results which compare favour- 
ably with predictions by more recent methods. The validity of such pro- 
cedure is obviously open to suspicion. On the other hand, the original 
experiments defining rcritical (with adverse pressure gradient) involved 
boundary layers extending as far as the centre of the channel, This could 
have produced secondary flows and thus destroyed the two-dimensionality 
of the flow assumed in von K.&&n's classical derivation of the momentum 
equation rihich in conjunction with the measured velocity profiles, Buri 
used to calculate the tirall shear stress 71;50 

302 Truckenbrodt 

This method has a very much more complex derivation than that pro- 
posed by Buri, 
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Location of the position of separation involves the calculation of 
momentum thickness 8 and shape parameter HO Unlike the other investi-. 
gators who used the momentum integral equation for 8, Truckenbrodt used 
the energy integral equation, For calculating H both the momentum and 
energy integral equations were used0 

. 
The calculation hinges upon semi-empirical relationships between 

W energy dissipation in the boundary layer D and Reynolds num- 
ber based on momentum thickness X0 

D 0.56 x 10'~ 

pv"= -se" 

(ii) wall, shear stress l;w, shape parameter H and Rs 

TW 
Cf = 

0,246 
-= 
+.M 0.676H 00266 

IO % 

(iii) a unique relationship between H and a parameter z 

if=, 
1.269H _ o,g7g ; where H = energy thickness -7 momentum thickness 

The momentum thickness is given by 

$ (BR;) = A - EX' 

where I' eR: dV = - - and the constants Aand B depend on the empirical V dx . . 

relationship for the energy dissipation, In arriving at this equa,tion 
it was assumed that the shape parameter has little effect on the growth 
of the momentum thickness and was taken as being constant and equal to 
1 .I+. 

Using the above relationships and the momentum and energy integral 
equations it can be shown that 
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Truckenbrodt succeeded in transforming this equation by introducing 
a shape factor L, which is related to the shape parameter H (see nota- 
tion), so that it could be integrated and thus obtained an equation for 
the variation of shape parameter0 

The final separation criterion is to ascribe a critical value to He 
Unfortunately this is not known with any certainty but difficulty can be 
avoided by calculating the variation of local skin friction coefficient Cf 
and applying the condition Cf = 
(Section 3.4). 

0 at separation as in Maskell's method 

The advantages of this method are firstly that the calculation of 
shape parameter H is not grossly affected by the value of H at transition 
and secondly that no derivatives of the velocity distribution with respect 
to distance along surface are needed, in contrast to the Buri, Maskell and 
Stratford methods, The calculation, however, is long and laborious when 
carried out by hand using an electrical desk machine, particularly if com- 
mencing from a measured pressure distribution, 

The equation for the energy dissipation (Rotta) has a very complex 
derivation; for details see References 12 and 20, 

The relationship for the shear stress 7;vf was obtained by Ludweig 
and Tillmana for flow under the influence of both adverse and favourable 
pressure gradients by means of a simple instrument developed by Ludweig2Z0 
This instrument enables the wall shearing stress to be determined by a heat 
transfer measurement, The experimental apparatus consisted of a channel 
of rectangular cross section, one c~all being used as the flat test plate 
on which the boundary layer measurements were performed, and the other wall 
adjustable to give the desired pressure distribution. The instrument was 
calibrated by setting the apparatus for flow with uniform static pressure, 
the calibration sheering stress being determined by the Schultz-Grunon 
friction law for plate flow 

%f = 334 
(log:o;)1.83e 

This law, nhich is in close agreement with others for plate flow, was 
chosen because it was obtained from measurements in the same experimental 
configuration, Four different test series were carried out, constant 
pressure, moderate pressure rise, strong pressure rise and pressure drop, 
the range of Reynolds number RC being IO' to 4 x IO'. The formula was 
also checked for disturbance in the boundary layer by carrying out two 
tests at constant pressurez- 

(i> with a turbulence grid consisting of metal strips upstream 
of the measuring section to increase the free stream turbu- 
lence 

(ii) with a continuous square section strip placed just downstream 
of the leading edge of the test plate, crosswise to the 
direction of flow. 

The relationship between H and ?i was determined by Weighardt23 from A 

the velocity profile law the numerical constants being 
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adjusted to give agreement with experiment, These experiments were for 
flow with constant, favourable and adverse pressure rises at high values 
of Re and the experimental configuration eras similar to that of Lud1iei.g 
and Tillman, * 

There appears to be only one independent experimental pressure 
distribution to which this method has been applied, this being for the 
flow over the suction surface of an N.A.C.A. isolated aerofoil'1~12~~ on 
which separation of the turbulent boundary layer occurred0 The test was 
carried out in a low turbulence two-dimensional wind tunnel, the pressure . 
distribution being similar in shape to type A flow model of the present 
analysis, at a Reynolds number based on the blade chord of 2.64 x ?C? o 
The agreement between the experimental and calculated boundary layer 
momentum thickness and shape parameter was very good, separation occurr- 
ing when H = 2,2, 

3.3 Stratford 

Stratford's criterion for separation of the turbulent boundary 
layer results from an approximate solution to the equations of motion and 
requires a single empirical factor0 

The method assumes that the boundary layer in a pressure rise may 
be divided into two distinct regions, namely the inner and outer regions0 

In the inner region, the inertia forces are small so that the velo- 
city profile is distorted by the pressure gradient until the latter is 
largely balanced by the transverse gradient of' shear stress. 

In the outer region the pressure rise just causes a lowering of the 
dynamic head.profile, and the losses due to the shear stress are almost 
the same as for the flow along a flat plate* 

. A parameter B is incorporated in the first term of a series expan- 
sion representing the whole inner layer profile obtained by mixing length 
theory, with the higher terms omitted; B is assumed to represent the 
effect-on.the.separation criteria of the higher terms, It is also used 
to represent any effects which the pressure rise might have on the mixing 
length. - 

The final-equation contains a parameter In' which is the flat plate 
comparison profile at the position of separation, the relevant Reynolds 
number R, being that based on the peak velocity and the distance to the 
point of separation. 
Klebanoff26 8 

Stratford found using the data of Schubauer and 
a d the results of his ovm experiment with'continuously zero 

skin friction that n = logiORs but suggests that the criterion is not 
sensitive to the value of n, 

The criterion, which is obtained as a simple formula applying 
directly to the separation point, was developed for pressure distributions 
in which a sharp pressure rise starts abruptly after constant pressure for 
a distance xoo The distance x is measured from a pseudo origin which is 
the point where the turbulent boundary layer would have zero thickness, 

After simplification the criterion, 
order of 106, 

at a Reynolds number of the 
is given by a simple formula 
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where 

However, as in the case of Buri, the method involves the calculation of a 
derivative $$ - which may not be easily or accurately obtained for some 
experimental distributions. 

The parameter B was obtained from an experiment described in 
Reference 8. In this experiment the turbulent flow was maintained just 
at the separation condition (71J = 0) throughout the pressure rise and it 
was found that B was independent of Cp and had a value of 0.66, Tie 
condition r~\~ = 0 is added because Stratford found that analysis of further 
experiments shoned that B varied somewhat with the value of dap immedi- 
ately prior to separation; p is the static pressure. dxa 

Reference 24 (von Doenhoff and Tetervin) contains data for three 
experiments on E.A.C.A. isolated aerofoils tested in a low turbulence, 
two-dimensional wind tunnel at a Reynolds number based on blade chord of 
the order of 2 x IO6 m The pressure distributions Rere of the same form 
as the type A flon model used in the present analysis. One of these 
three tests was that used as a test case by Truckenbrodt which, it will be 
recalled, showed good agreement between the experimental and calculate 
separation point. A fourth test was that of Schubauer and Klebanoff2 % , 
conducted in the same sirind tunnel, in which the flow passed over an aero- 
foil-like section at an angle of attack of O". The pressure distribution 
over approximately the first 60 per cent of the surface was favourable, 
and was followed by a pressure rise leading to separation; the Reynolds 
number based on surface length has the extremely high value of 2.8 x IO'. 

Stratford points out that the pressure distributions allowed some 
range of interpretation as regards 9 

dx and the effect on the theoretical 
prediction of the position of separation could be as much as 25 per cent, 
However, it vas found that the criterion, using B = 0.66, resulted in the 
calculated separation points being upstream of those experimentally obser- 
ved for all test cases0 From a close examination of the results Stratford 
found that the error in B increased as dap 

d3 dX2 
increased, ranging from zero 

when -d$ maximum negative to 20 per cent when large and positive and sug- 
gested a modification that would halve the error:- 

B = 0.66; when $$ < 0 

2 
B = 0*73; rrhen$-$) 0 
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The advantage of Stratford's method is that it is extremely simple to 
apply since it does not involve graphical integration as do the other 
methods or a step-by-step solution for the shape parameter as does 
Maskell's method. In fact it was found, using an electrical desk machine 
that whereas the methods of Maskell, Truckenbrodt and Spence took the 
author at least half a day to apply and Buri about one hour, Stratford's 
method took only half an hour. This, of course, does not apply neces- 
sarily to all types of flovi since for the models used in the present analy- 
sis the boundary layer was assumed to be turbulent over the entire sur- 

faoe, Horrever. the method demands the calculation of a derivative 
which may not be easily obtained for some experimental pressure 

distributions. Also if one is interested in other boundary layer 
characteristics, such as local skin friction coefficient, then an alter- 
native method would have to be used. 

It was found that of the methods considered in this Memorandum 
Stratford's criterion predicted the lamest pressure rise to separation; 

dCp- 
dx was known exactly in the present analysis, A possible reason for this 

is that the factor B was determined from test distributions at Reynolds 
number Be ranging from 2 x IO6 to 2 x IO7 whereas for the flow models the 
Reynolds number was very much loner and it may be that B varies somewhat 
when Be < IO'. 

3.4 Maskell 

Maskell's method is based upon a large amount of experimental data 
not only for flat plate and channel flow but also for flow over isolated 
aerofoils. 

The position of separation involves the calculation of the momentum 
thickness and shape parameter, the equations for which have been made more 
general than before by making them fit flat plate data very closely and by 
the use of some limited data for favourable pressure gradients* 

The equation for the momentum thickness was derived from the momen- 
tum integral equation, in a manner similar to that of Buri, making use of 
the Ludweig and Tillman relationship for skin friction:- 

& (6R;) = A - BI' 

eRi dV where I' = - - Vdx 

and A, B and n are empirical constants, n being determined to make the 
solution correct for zero pressure gradient, 

The approach used to find an equation for the shape parameter H 
was that of selecting the probable parameters affecting the variation of 
H, and using experimental data to find an equation connecting them, This 
approach, which has been used by other investigators24, was well suited to 
the nature of the available data. The form of the equation is: 



- 14 - 

for zero and favourable pressure gradients 

Ht f(%) 

for unfavourable pressure gradient 

mdH 
eRa dx = %(I';H) 

eR: qH where I'* = - e dV 
V o- dx 

and m and q are empirical constants, The form of the function G(I':H) was 
determined by plotting experimental values of BBC m g (which dx were themselves 

determined by differentiating curves of H to obtain dx against i'" for dK) 

particular values of H. Maskell found that the points could be approxi- 
mated by two straight lines and plotted the slopes, intercepts on the axis 
I'* = 0, and intersections against H and found that 

G.(F;H) = @(O,H) + r(H)l?* for I'* > I'; 

= s(H) + t(H)I'" for I'* < rf 

where r, s and t are linear functions of H and for H < 1.4 the function 
Q(O,H) satisfies the flat plate equation H = f(RC)O 

The position of separation is dttermined by the condition that the 
local skin friction coefficient Cf = Z 

+pTra 
= 0, the distribution of Cf being 

calculated using the Ludweig and Tillman lava, described in Section 3.2 and 
which is a function of 0 and H, This law cannot, in fact, give Cf = 0 
explicitly and so the procedure adopted is to extrapolate to zero the curve 
of Cf against surface length x by assuming that once the rapid fall in Cf 

has started the gradient dCf dx does not decrease in magnitude. 

If transition to turbulent flow occurs in an adverse pressure gradi- 
ent a value has to be chosen for the shape parameter H at transition, Ht, 
and it was found that the degree to which the growth of H and therefore 
position of separation were affected by Ht depended on the Reynolds number. 

The calculation of momentum thickness involves no more computation 
than other methods. However, the calculation of shape parameter in an 
adverse pressure gradient is a step-by-step process which is both long and 
laborious, the interval between the points dictating the accuracy0 Once 
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again the method depends on the calculation of a velocity gradient, and 
when experimentally determined pressure distributions are employed it 
becomes susceptible to the same sources of error as the methods of Buri 
and Stratford, 

The empirical relationships for momentum thickness and shape para- 
meter were derived from experiments conducted at a Reynolds number of the 
order 2 x IO'. Four of these experiments were in fact used by Stratford 
and one by Truckenbrodt as test cases. 

Unfortunately all of the available experimental data was used in 
deriving the empirical relations 30 that no independent comparisons with 
experiment are presented, However, the comparisons with the data show 
that the boundary layer characteristics and position of separation can be 
predicted with reasonable accuracy for practical purposes, 

The result of applying this criterion to the flow models of the 
present analysis was that the pressure rise to separation was much higher 
than that according to Stratford's criterion. This was surprising in 
view of the number of common test cases for which these two methods have 
been demonstrated to be in agreement with experiment. However, it must 
be remembered that the velocity distributions for all of these cases were 
similar to those of the type A flow model only, except one which was simi- 
lar to that of type C, and 'the Reynolds numbers were very much higher than 
the range considered in the present study. 

3.5 Spence 

This method involves the calculation of the momentum thickness 0 
and shape parameter H, 

The equation for momentum thickness was derived from the momentum 
integral equation aa in the methods of Buri and iViaskel1, the difference in 
the solution being the assumption of the 1/5th power law for the skin 
friction coefficient, 

In determining an equation for the variation of shape parameter, 
Spence made use of the momentum and energy equations aa did Truckenbrodt, 
Using theseequations it can be shown that 

ndH 
eRe dx = Q(H)I' - e(H) 

ORi dV .where I' = - - - vdx 

In arriving at this expression assumptions were made regarding 

(0 distribution of shear stress within the boundary layer 

(ii) velocity profile in a variable pressure 

(iii) wall skin friction coefficient, 
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The above equation is of the same form as that used by Truckenbrodt 
and Maskell, the solution of which varies in the choice made for functions 
Q(H) and $(H). Spence chose relationships such that the equation could 
be integrated directly and so avoided the calculation, as did Truckenbrodt, 

dV of the velocity gradient duo a 
To ensure that good results are given for a flat plate with zero 

pressure gradient, i,e., I = 0, the function q(H) was determined from the 
momentum equation assuming 

(i> one-fifth power law for the wall skin friction coefficient 
c 
f 

= 0.0176 
1 

Re" 
(ii) Cole's relationship for the shape parameter 

uT where E; = - f: v log, RC + constant 

C2? C I, are constants/and U, is the friction velocity. 

For the function G(H) a quadratic was chosen. 

For the case of a thick boundary layer and using a value of Ho = 
Id+ where V = V,, Spence shows this to be in good agreement with the func- 
tions used by Maskell. 

The final separation criterion is to ascribe a critical value to H, 
which as Spence points out, is not known with any certainty. To overcome 
this the position of separation can be determined by the condition Cf = 0, 
the distribution of Cf being again calculated using the Ludneig and 
Tillman law. 

There appears to be only one case for which this method has been 
demonstrated to be in agreement with e 
over an isolated aerofoil-like section* "s 

eriment and that is for the flow 

10'. 
at a Reynolds number of 2.8 x 

It is in fact one of the distributions that was used by Stratford 
and Maskell as a test case0 The pressure distribution was favourable 
over the first 60 per cent of the surface followed by an adverse pressure' 
rise leading to separation, transition to turbulent flow occurring near the 
leading edge. The comparison between the calculated and experimental 
distributions of momentum thickness and shape parameter was good, separa- 
tion occurring when H = 2.6. In the calculation of H a value of lo4 was 
assumed at the position of the peak velocity. 

The advantage of this method over those of Maskell and Truckenbrodt, 
which also involve the calculation of H, is that the distribution of H over 
the surface is more rapidly calculated. Another advantage over Maskell's 
method, which is however shared by Truckenbrodt's method, is that the solu- 
tion does not involve the calculation of the first derivative of velocity 

dV with respect to surface distance -0 dx 
The result of applying this method to the flon models was that the 

velocity gradient to separation was grossly affected by the value assumed 
for H at transition whereas Truckenbrodt's method is not; a change from 
I,3 to 1.4 grossly affects the conclusionso Also the growth of shape 
parameter was very little affected by a change in Reynolds number, Re 
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* . 
resulting in the pressure rise to separation 
other methods-showing that en increase in.Re . 

4.0 Results of comparison 
1 -:. 

1 1 '4.1 * A 'Momentum thickness, l 

being constant with Re,.the 
‘delays separation. 

,I * 

,: .* 
-All of the'methods.e&cept Stratford's,involve the calculation.of 

the:Lmomontum thickness, the equations for which 'are all of the same form. . 1 . .I ,: I . 
. . . . ’ 8: 

.* .J” . ,- ._ 

k 
+6-- ,a 

g = 1 

I 

Tc d'; 
Ta: ikb 

s 

? * . - 
1 ‘. 

+ constant .,,.(I) 

Xt- a) 
1 

l+b 
e'v 

a 
where constant = 

t j 
at transition and A, a, b and c are empirical 

constantp. The...abl below.gives the values of the constants a&cording. 
to the various.methods and Figure 2 show the variation-of momentum thick- 
ness for the type A flow model at a Reynolds number of 2 x, 105, and a velo- 
city gradient.,of. --Oe5; _ a . - . 

; .'I *- - I . . 
. - ._ 1. 1. . . 

. . .. ' . 6 ' :.. ..A ,.. ..I . " ;. . . ,.,.. ,. . . ,' :.. . " : " ,...- "_ : -.. . . ".. -. _ - .;; . I 
1 . a : . 

.,, ._. b p1 c ; . A*‘. ’ ; .. : 
.d . 

II. ..v 1,* . .: ./ . . : *. -. . . “. .. I... . : : . . . . . . . . . . . ” . . . . . , 

;: -Buri . ii 3a4 a': 0.25 . ’ 4.0’ i 0.016 i, . 

'I Truckenbrodt i 3.0 .’ 0.1667' ; 3@333 i 0.0076~ ‘il. 
:: . ,:* . : .’ . 

’ _ " Maskell L 0.2155-i 4.2 - 0.01173 . ’ ’ r . i . 
; 3.632: 

.i 

.'- Spence.! 
I 

. 11 j 3.5 _I 0.20 i Lt.0 ; 0.0106 I;.. 
. . - 

_/ -.’ . . . . ,T.. . .’ . . . . . . ‘; . . . ~. . . . . ..I. ..: ..” :‘..., I . I . 

It may be seen that three of the methods show good agreement but Ir ' 
Truckenbrodt's gives somewhat smaller values of 0' especially towards the ' 
trailing edge.. This measure .of agreement was found for all Reynolds . . . 
numbers investigated (i,e,,.Re = 2 x IO' to 1,x lO?).and also for types 
B and C flow models. ‘ 

402 . 
t . . 

Shape'parameter,' skin friction coefficient and position 
. of separation I. , . 

. . . , 6. . . . 
The meihods.of. Truckenbrodt, Maskell and Spence also involve the 

calculation of the shape parameter (ratio of displacement thic‘kness to 
momentum thickness) and in.order to solve these equations,a:knoxledge is 
required of the initials (transition) shape parameter. .For types B and C 
f1a-J models transition occurs.in a constant pressure and favourable pres- 
sure gradient respectively and for such flow conditions Maskell's method 
uniquely determines the shape parameter as a function of the momentum 
Reynolds number. However, for type A flow model transition occurs in an 
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adverse pressure gradient and so a value for the transition shape para- 
meter, Ht, has to be assumed in this method. To solve the equations of 
Truckenbrodt and Spence a value for Ht has to be assumed for all flow con- 
ditions. 

The local coefficient of skin friction is particularly important 
for two reasons. Firstly it is a measure of the velocity gradient at the 
surface and therefore, the stability of the boundary layer, and secondly 
to investigate blade temperature distributions which may be required in 
the stress analysis of turbine blades the distribution of heat transfer 
coefficient is required which, using Reynolds analogy, is related to the 
skin friction coefficient. According to Ludweig and Tillman the skin 
friction coefficient is given by 

z 
Cf .= ,T--$ = 0.246 e 

40581H -o*aaa 
% . ..*(2) 

On examining this equation it may be seen that if the initial value of H 
affects the distribution of shape parameter it will also influence the 
local value of Cf and hence the position of separation (given by Cf = 0) 
and local heat transfer coefficient. In view of this results are presen- 
ted (Figures 3 to 9) showing the distributions of shape parameter and skin 
friction coefficient for a range of Ht = 
2 x IO' and I x IO'. 

I,3 to 1.7 at Reynolds number of 
It is seen that the velocity gradient is varied as 

well as the Reynolds number and the reason for this is that it is consi- 
dered desirable to assess the effect of Ht on the position of separation, 
Therefore, the gradients were selected such that separation occurs at the 
trailing edge for Ht = 1.4 which is the commonly assumed value. 

Figures 3, 4 and 5 show the distributions according to 
Truckenbrodt's method of analysis for types A, B and C flow models res- 
pectively. The shape parameter (and therefore the displacement thickness) 
and skin friction coefficient are not grossly affected by the value of Ht, 
only in a region close to the transition point are the differences in H 
and Cf significant, particularly when transition occurs in constant pres- 
sure or pressure rise regions at low Reynolds number. 

The characteristics H and Cf using Spence's method are shown in 
Figures 5, 7 and 8. It was found that the calculation of H was very lit- 
tle affected by a change in Reynolds number or in ether words to a change 
in the distribution of momentum thickness and so the shape parameter is 
shown for the low Reynolds number only, For types A and B flow models, 
Figures 6 and 7 respectively, the distribution of H and Cf are grossly 
affected by the value of Ht in particular the range of 1.3 to 1*4, over 
the entire surface for both Reynolds number. In applying this method to 
type C model, Figure 8, it was found that the shape parameter dropped off 
rapidly to a value of approximately 1.2 at the start of the pressure rise 
and thereafter remained approximately constant, This resulted in very 
high values for Cf and thus indicated no separation point. By assuming a 
value for H of 1.4 at the start of the pressure and continuing the computa- 
tion of H in the normal way beyond this point the method predicted separa- 
tion. However, as in the case of A and B flow models the pressure rise to 
separation is especially sensitive to the initial value of H. 
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As mentioned earlier Maskell's method required a knowledge of the 
transition shape parameter for type A flow model only and Figure 9 shows 
the variation of H and Cf for three values of Ht. At the low Reynolds 
number of 2 x IO5 the characteristics H and Cf are grossly affected by all 
values of Ht whereas for the higher Reynolds number of I x IO' the change 
of H and Cf between Ht = I.4 and I.7 is relatively much smaller, 

The equations for the shape parameter, H, are of the form 

= fl (H)r + fi (H) . ..Spence and &IaEkell .0.(3a) 

= fl‘(H)p + f,(H,Ro).,. Buckenbrodt . ..(3b) 

where I' = 8 
n+l (TRe)n o a 

7 a;; 

The table below gives the form of the functions f,(H), f,(H) and fc(H,B) 
and the values of the exponent n 
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It is worth mentioning here that Truckenbrodt was able to integrate 
the above equation for H by introducing a shape factor, which is related 
to the shape passeter (see Appendix), and thus avoided the calculation of 

the derivative 2 o Spence also integrated the differential equation for 

H, 

In the present study the integrated equations were used. Figure 10 
shows a plot of the above functions for a range of H = 1.3 to 1.7. The 
value of Truckenbrodt's function fo(H,Re), is shovdn for Ro = 1509 500 and 
6000 these values being found in the present study for the type C model 
just downstream of transition, at the leading edge for all three flow 
modals and the maximum value respectively0 It is to be noted that in 
Uaskell' s method the above equation fcr H only holds for flow with pres- 
sure rise. For the other flow conditions, i.e., constant pressure and 
pressure drop, the shape parameter is a function of the momentum Reynolds 
number. 

Considering Spence's function f,(H) it ma.y be seen that its value 
is very small and negative and remains approximately constant with H. 
The reason for this is that Spence made use of the one-fifth power late for 
skin friction to deduce the form of f,(H) and this law shows that the skin 
friction is independent of H, Therefore, as a first approximation, 
Spence's equation shows that for flow with pressure rise and pressure drop 
H is given by the first term of Equation (ja). 

The value of f,(H) changes rapidly with H and as a result the calculation 
of H was grossly affected by the initial value of shape paremeter (Ht) for 
the above flow conditions, Also on examining the above approximate equa- 
tion it may be seen that for a given velocity distribution the calculation 
of H is not affected by a change in Reynolds number, Re, as was found in 
the present study. 

The value of Naskell's function f,(H) and Truckenbrodt's function 
f,(H,Re) varies rapidly with H and as a result the distribution of H is 
sensitive to a change in Reynolds number as will be seen later. 
Truckenbrodt's function varies from positive when H < 1.4 to negative and 
large when H = 1.7 resulting in the distribution of H not being grossly 
affected by a change in the value of Ht' Kaskell's function for large l? 
is small, negative and approximately constant and equal to the value of 
Spence's when H < 1 o4 and for H > 1.4 drops off rapidly to large and nega- 
tive values when H = 1.70 Therefore, it is to be expected that the cal- 
culation of H for cases where I? is large will be particularly sensitive to 
values of Ht in the range 1.3 to 1.4. However, for small r the function 
varies rapidly for all values of H and so it is not obvious that the 
growth of H will be independent of the initial value for this case0 

As mentioned earlier Spence's method when applied to type C flea 
model did not predict a rapid rise in the region of pressure rise. For 
this model the first term of Equation (3a) was large and negative over the 
first part of the surface due to the velocity, V, being small and a posi- 
tive velocity gradient in this region, Therefore, H dropped rapidly to a 
value of approximately 1.2 at the start of the pressure rise (x = 0.6) and 
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for this value of H the function f,(H) is very small resulting in a const- 
ant value for H of approximately 1.2 in the region of pressure rise, 
However, Truckenbrodt's method also showed a drop in H to 1.2 just down- 
stream of the transition point at the low Reynolds number but downstream 
of this region the calculation showed a rise in H to 1.4 at the start of 
pressure rise and in the region of pressure rise H rose rapidly (Figure 5). 
The reason for this was that in the region where H = 102, the momentum 
Reynolds number was small (Re = 150) resulting in the second term 
(Equation 3b) being sufficiently large and positive in comparison to the 
first term for the calculation to give positive 
rise in the shape parameter* 

2 and, consequently, a 

In the case of constant pressure H is given by, according to the 
methods of Spence and Truckenbrodt 

..'.(5b) 

It is easily seen from the plot of f,(H) and fc(H,&)'why the former of 
these methods is very sensitive to the value of Ht for such flow condi- 
tions and the latter approximately independent of Ht. 

It is not cbvioua from plct of the functions f,(H), fs (H) and 
fc(H,Q) that the above three methods will be in agreement regarding the 
calculation of H for any particular value of Ht. The generally accepted 
value for the transition shape parameter for flow at high Reynolds number 
is I *4, which is the flat plate or constant pressure value for H, although 
there is experimental evidence24 that Ht can be as high as 1.8 in SOme 

* cases. A comparison of the distributions of H and Cf using the methods 
of Truckenbrodt, Maskell and Spence, is shown in Figures II, 12 and 13 fcr 
types A, B and C flow models respectively at a Reynolds number, Re, of 
2 x IO' and 106 and a value of 1.4 for HtO The velocity gradient S is 
-0.5, -0.75 and -I,0 for A, B and C models respectively. 

Truckenbrodt's criterion for separation is that the shape parameter 
H, takes the value of 1.8 to 2.4 and it may be seen that this results in a 
wide range for the position of separation, Maskell's criterion is that 
the skin friction coefficient, Cf, is zero at separation and in view of 
the good measure of agreement Maskell foun?, between experimental and 
theoretical positions of separation it was decided to adopt this criterion 
for comparing the above three methods. 

Considering type A flow model, Figure II, it may be seen that at 
Re = 2 x IO' the methods of Truckenbrodt and Spence are in reasonable 
agreement regarding H but Maskell's deviates greatly from these methods 
giving very much lower values over the last 40 per cent of the surface, 
As regards the distribution of Cf significant differences occur over-the 
last part of the surface and the position of separation varies from x = 
O,& according to Spence to L = 1.0 according to Maskell. However, at 
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the Reynolds number of -lethe methods of Maskell and Truckenbrodt are in 
good agreement but Spence deviates greatly from these methods, predicting 
the same values for H as at the lower Reynolds number for the reason men- 
tioned earlier. 

Turning to type B flow model, Figure 12, at the high Reynolds num- 
ber all three methods are in tolerable agreement regarding both H and Cf 
but at the lower Reynolds number whereas Maskell and Spence are in good 
agreement Truckenbrodt shows very much higher values of H and consequently 
lower values for Cf in the region of pressure rise, 

For type C model, Figure 13, all three methods are in tolerable 
agreement in the region of 

P 
ressure rise, 

pressure drop (2 
However, in the region of 

= 0 to 0~6 there are significant differences in the dis- 
tribution of H and Cf at Re = 2 x 105. Truckenbrodt's method shows very 
low values of H in this region compared to Maskeli's and the reason for 
this is that the value of Truckenbrodt's function fs(H,Re) is strongly 
dependent on the momentum Reynolds number, Re, which drops rapidly from 
500 at the leading edge to 150 at Z = 0.2. 

Various methods for relating blade shape to surface velocity dis- 
tribution are clprently being examined and the question arises as to what 
is the optimum velocity gradient which should be aimed at in design. 
Figure 14 shows, for the flow models considered in this study, the varia- 
tion of adverse velocity gradient, p with Reynolds number, Re, for sepa- 
ration at the trailing edge (j; = l.Oj using, the criterion Cf = 0 and a 
value of Ht = I ,4, in the above three methods. Also shown are the gradi- 
ents using the separation criterion of Buri and Stratford, Buri's cri- 

terion for separation is that a parameter I' 
eR@s dv 

= - - = -0.06 at separa- V dx 
tion but in view of the limited experimental data from which this value 
was derived the velocity gradients were also calculated for I' = -0-04. 

Stratford's criterion predicted the lowest pressure rise to separa- 
tion for all flow models except type A at high Reynolds number. However, 
it must be pointed out that the pressure rise to separation according to 
Stratford is likely to be from 0 to 10 per cent too low since asp is small 
and negative, dxa 

Spence's method showed that the critical velocity gradient was 
independent of Reynolds number and had the same value for types B and C 
flow models for the reasons mentioned earlier. However, the other methodc 
of analysis showed that the effect of increasing Reynolds number is'to 
delay separation, 

4.3 Application to turbomachinery design 

The Mach number over the suction surface of a blade may be as high 
as unity and so the applicatio of incompressible boundary layer theory is 
questionable. Van Driest11t2g has shown that for flat plate flow i.e., 
zero pressure gradient, the effect of Mach number on the local coefficient 
of skin friction is small up to M = 1.0 and can be neglected, the ratio 
'fM= 1 - being O,Y3, but there appears to be no evidence available for flow C fM= 0 
under the influence of pressure rise. 
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Without reliable experimental measurements of the boundary layer 
development and separation relating to flows typical of those within turbo 
machinery it is not possible to comment confidently on the particular vali- 
dity of any of the methods considered in this Memorandum in such an appli- 
cations In a typical turbo machine both Reynolds number and turbulence 
differ substantially from those appertaining to experimental data on which 
each of the five methods has been based, and against which each has been 
tested in varying degree,, 

Under these circumstances preference leans naturally to the use, as 
a guide, of the method which is simplest to compute or which yields the 
most conservative solution, particularly in the lower range of Reynolds 
number. Stratford's method would seem to combine both these attributes 
commendably, so far as provision of a convenient criterion for separation 
is concerned. 

However, if the boundary layer characteristics such as displacement 
thickness and skin friction coefficient are required then it is suggested 
that 'Pruckenbrodt's method be used since it does not involve the calcula- 
tion of local velocity gradients g as does Maskell's and is not so sensi- 
tive to the shape parameter at transition as the methods of Maskell and 
Spence. 

From the results shown in Figure 14 it was considered possible to 
construct two envelopes of velocity distributions for separation at the 
trailing edge 

(a> distributions of type B having a constant velocity over the 
forward portion of the blade followed by a linear decrease 
to trailing edge and, 

(b) distributions of type C having a favourable velocity gradient 
over the forward portion followed by a linear decrease to the 
trailing edge, ~ 

Figures 15 and 16 show the critical envelopes for types B and C according 
to Stratford's criterion and it is suggested that until definite eqeri- 
mental data become available for the flow conditions over the surfaces of 
turbo machine blades the envelopes for a Reynolds number of 2 x IO" should 
be used as a limiting criterion in design. 

500 Conclusions 

Five methods of predicting the behaviour of the incompressible, 
two-dimensional turbulent boundary layer have been applied to three basic 
types of velocity distribution, selected to represent the family of dis- 
tributions associated with turbo machine blades, and the measure of agree- 
ment between the separation criteria and boundary layer characteristics 
assessed, The methods considered were those due to Buri, Truckenbrodt, 
Stratford, Maskell and Spence, 

The velocity distributions that were analysed were type A - linear 
decrease of velocity from leading t\> trailing edges of the blade, type B - 
constant velocity over the first 60 per cent of the blade surface followed 
by a linear decrease to the trailing edge and type C - linear increase of 
velocity over the first 60 per cent of the surface followed by a linear 
decrease to trailing edge. 
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The precise flow conditions over the surfaces of a blade in a turbo 
machine is a matter for speculation, but for the present study it was 
assumed that the boundary layer flow was fully turbulent with a momentum 
Reynolds number of RC = 500 at the leading edge. 

The methods of Truckenbrodt, Maskell and Spence provide the growth 
of the shape parameter and to solve these equations an assumption has to 
be made with regard to the transition (i,eo, initial) value Hte Spence's 
method was extremely sensitive to the value of HtO Sven a small change 
from I,3 to 1.4 grossly affects the distribution of H and, therefore, the 
position of separation, Truckenbrodt's method was very little affected 
by Hte Maskell's method only reqtiires the initial value of H when transi- 
tion occurs in an adverse pressure gradient and it was found that the 
extent to which the growth of H and pressure rise to separation were 
affected by Ht depended on the Reynolds number. 

The equations for the momentum thickness were of the same form and 
all of the methods were in good agreement except Truckenbrodt which showed 
smaller values. 

Spenoe's method showed that the pressure rise to separation was 
independent of Reynolds number whereas the other methods showed that the 
effect of increasing Reynolds number is to delay separation. 

All the methods could be brought into tolerable agreement regarding 
the position of separation provided that 

(0 
(ii) 

(iii) 

(iv> 

Buri's criterion was taken as I'critical = -0.04. 

In applying Spence's metho,d the calculaticn of shape para- 
meter started at the position of maximum velocity, if transi- 
tion occurred upstream of this point. 

For the methods of Truckenbrodt and Spence the Ludweig and 
Tillman law was used to calculate the variation of local skin 
friction coefficient Cf and the position of separation was 
given by the condition Cf = 0 and not by a predetermined 
value of shape parameter H. Since this law cannot yield 
explicitly Cf = 0, the point of separation was obtained by 
linear extrapolation from the steepest negative gradient of 
the Cf curve0 

For the methods of Truckenbrodt, Maskell and Spence the vari- 
ation of shape parameter was calculated using an initial 
value of H = 1.4e 

On reviewing the methods, al.1 of nhich derive from experimental con- 
ditions somewhat removed from the environment within a turbo machine, 
Stratford's was simplest to apply, predicted the lowest pressure rise to 
separation, and is therefore preferred as a conservative design criterion., 

On this basis envelopes of critical suction surface velocity dis- 
tributions (i,e., distributions which yield 
trailing edge) were constructed which, 

separation conditions at the 
it is believed, are conservatively 

based and might be used as a limiting criterion for turbo machine blade 
design, 
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If the boundary layer characteristics such as displacement thick- 
ness and skin friction coefficient are required then it is suggested that 
the method of Truckenbrodt be used as it does not involve the calculation 
of local velocity gradients 2 and is not grossly affected by the value 
of the Shape parameter at transition. 
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NOTATION 

D 

H 

ii 

L 

M 

Re 

Re 

R 

U 

energy which is converted into heat in the laminar boundary layer 

boundary layer shape parameter 
displacement thickness = momentum thickness 

parameter = energy thickness 
momentum thickness which is related to H 

parameter which is related to H by 

L = 
s &r where gp I* 1.73 

Mach number 

Reynolds number based on velocity at outer edge of boundary 
layer and momentum thickness 

V0 =- v 

Reynolds number based on velocity at trailing edge and blade sur- 
face length 

v2e 
=- 

V 

Reynolds number based on maximum surface velocity and surface 
distanoe 

velocity within the boundary layer 

I 

z 
UT . friction velocity = JZ 

\ p 

V velocity at outer edge of boundaxy layer 

ii ratio of velocity at outer edge of boundary layer to velocity at . 
trailing edge 

ji. an equivalent distance defined by Equation (21) 

K ratio of distance measured along blade surface (from leading edge 
stagnation point) to'total blade surface length 

CP incompressible pressure coefficient = 1 -($ k 1 -g-j 

T 
Cf local coefficient of skin friction = 2X- 

&pv2 



e 

P 

t 
, 

X 

Y 

P 

6 

8 

e' 

s* 

tP* 

P 

V 

%W 

I? 

r* 

ri 

blade surface length 
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static pressure 

energy of the turbu+ent motion per unit time for a turbulent bound- 
ary layer 

distance measured along surface of blade from leading edge stagna- 
tion point 

distance normal to surface of blade 

velocity gradient = - 

boundary layer thickness 

momentum thickness of boundary layer 

ratio of momentum thicla?ess to blade surface length 

displacement thickness .of boundary layer 

energy thickness of boundary layer 

density 

kinematic viscosity 

shearing stresses at the blade surface 

parameter = V 8 dx S kn dV 

parameter = ii e 0 mH kn dV 8 z 

parameter defined by Equation (36~) in Appendix 

Subscripts 

t conditions at the transition point 

0 maximum conditions and position of maximum conditions 

a conditions at the trailing edge of the blade 
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APPENDIX1 

The prediction of the characteristics of the turbulent boundary layer 

This Appendix presents a summary of the five methods used to pre- 
dict the behaviour of the incompressible, two-dimensional turbulent bound- 
ary layer. 

The working equations have been made non-dimensional by dividing 
the velocity at the outer edge of the boundary layer V by the velocity at 
the trailing edge V a and the distance measured along the blade surface x, 
from the leading edge stagnation point, by the surface length e.- 

Buri method 

In a manner analogous to K, Pohlhausen's approximate method for the 
laminar boundary layer, Buri i1913 chose a parameter I' for predicting the. 
behaviour of the turbulent boundary layer. It is assumed that the shear- 
ing stresses at the wall 7;w and the shape parameter H are function p alone. 

Thus 

where 

or in non-dimensional 

1 

RO = %i dV F and I' = -- Vdx 

.0..(l) 

. ...(2) 

terms 5 1 
5; - - 

r = r d? Bv Be4 d;; 
v 

Nikuradse and Buri II,13 have carried out a series of experiments on the 
flow in convergent and divergent channels and using these results Buri was 
able to show that the above assumptions are reasonable. 

Using Equations (I) and (2) and the momentum equation for steady 
motion we get 
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hence 

-& (eR$ = o...(4) 

Buri found that the right hand side of Equation (4), which on the above 
assum:3tions is a function of T only, was, approximately, a linear function 
A - BI'. Equation then becomes 

$ ('3Ri) + B 
eR; dv 
-- = A V dx 

This is a linear equation of the first order for BR: whose integral is 

V'%R~ = A[ VBdx + constant 

Xt 

or in non-dimensional terms 

s 1 
zs 

ev I 
1 = --ii ii A 

Rez 
2 t 

. ..0(5> 

where the constant is evaluated from the momentum thickness at the transi- 
tion point, 

The values of A and B from Nikuradse's measurements which were for 
decelerated flow, are A = 0,0175 and B = 4.15; the values from Buri's, 
which were for accelerated flop: were A = Oe01475 and B = 3.940 TO 
include both cases Schlichting 11 suggests that A = 0.016 and B = 4.0. 
This value of B implies that H is constant and equal to lo4 in 
Equation (4). 

Separation of the boundary layer occurs when the local coefficient 
of skin friction is zero, ioeo, when S = 0. The curve that Buri drew 
through the experimental points gave a value of I'critical = -0.060, 

From Equations (3) and (5) we get, substituting the values for A 
and B 

r = 
dv 
z 

= -0006 at 

It is interesting to note that if separation occurs for any fixed value of 
1 -', then for a fully turbulent boundary layer, i.e,, momentum thickness 
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8 =OatG = 0, the condition of separation is independent of Reynolds 
number Rez if the velocity distribution does not vary with Ree o 

Truckenbrodt method 

E. Truckenbrodt11T12 made use of the momentum and energy integral 
equations for predicting the position of separation of the turbulent 
boundary layer, 

The equation for the variation of momentum thickness was obtained 
from the energy equation which may be written in the form 

Id 
72.2 

6 

I=-$ i T'$dx = 2D+t 
--r 

*o..(7) 
d 

The quantity on the right hand side of Equation (7) represents the dimen- 
sionless work done by the shearing stresses 'G. In the caze of the lami- 
nar boundary layer the work done by the shearing stresses is equal to the 
energy which is converted into heat D (dissipation). For the turbulent 
boundary layer there is a further contribution to the work done which is 
the energy of the turbulent motion per unit time, t. This is usually 
small compared to D and may be neglected. 

Truckenbrodt shows, using the results of Rotta, 21 that D - can be 

expressed, approximately, 
PV3 

as a function of Reynolds number R.c only, 

Thus 

D 0.56 x 10-a 
pv3= 1 o...(8) 

Ri 

Assuming that all velocity profiles form a one-parametex family then 
Weighardt24 shows, using the velocity law (u/V) = (~/6)~ 

a = H 1,269 H 
- 0.379 odY> 

where g = !$? and the numerical constants were adjusted to give agreement 

with experiment, 

Combining Equations (8) and (7) 

where n = 6 

assuming E is constant and equal to a mean value then we get 
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or 

3. i 

ii de eRi dV 
Rez+3 v dx = 

1.12 x lO-a -- 
ii 

1 
& $ (*$) + 3 !$ g = 

( ). 
le.12 x 10-a * _ 

H 

or 
1. 

& (en!) + (3 + %, v-F& = 
ORi dV 1.12 x 10-a n+l 

ii 
o- n 

This is a linear equation of first order for 6i$ whose integral is 

2 3+3 
X 

3 ,+ a 

OR; .vT. = 1.12 x iO-a n+l o- 
s 

VT dx+ 
Ti n 

Xt 

constant 

Truckenbrodt assumed a mean value of g = 1.72, which corresponds to H 2 
l,L+ giving, putting n = 6 

10 i 
X 

6 V3 R; = C 
‘2 

V3 dx + constant 

where the constant is evaluated from the momentum thickness at the transi- 
tion point and C = 0.0076, or in non-dimensional terms the momentum thick- 
ness is given by 

6 

v dL + I:onstant 

The equation for the shape parameter H was obtained from the momentum and 
energy integral equations. 

The momentum equation may be written in the form 
7; 

g+(H+2)$g = 4 
PV 

. . . ..(I?) 
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Replacing 6** in the energy Equation (7) by fi0 and from this equation 
subtracting Equation (II) multiplied by B we obtain, multiplying through 

1 
by R; 

i - 
.eRfJ dH 

8Z = r#)r + f,(E) .oe.(12) 

where 

fl(@ = (H - I)& f,(g) 

i 

eRi dV and I' = vz 

The shearing stresses at the wall zw, using the results of Ludweig and 
Tillman22, can be expressed as a function of Re and H. 

Thus 
z 

W 

pva= 

o.,23 ,0-0.d78H Re-O.=e 
a-(13) 

Truckenbrodt transformed Equation (12) into such a form that it could be 
integrated, by introducing a shape factor L. This factor is related to 
the shape parameter H thus 

L(B) = 
s 

aFi 
f,= L(H) 

E&l 

where the lower limit of integration was chosen to make L = 0 correspond 
to the case of zero pressure gradient, ioer, flow over a flat plate, giv- 
ing Hp = 1.73 and H = 1.4. 

Introducing this relationship into Equation (12) we get 

1: 
ORe dL edx = r - K(L) 

where i<(L) = 
f2 03 -- = 

flm 
K(g) 

The function K(L) can be represented with a satisfactory degree of 
accuracy by the linear relation 

. . ..(14) 

K(L) = a(L - b) .,..(15) 
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The numerical values are 

a = 0.0304 and b = 0,07 log,,Ro - 0.23 

Combining Equations (14) and (15) we obtain a linear differential equation 
for L which Truckenbrodt integrated giving 

where 
000076 

b = 0.07 loglo (Re 7 e') - O,23 

and 

It is to be noted that the new variable S occurs in the equation for momen- 
tum thichess (10). 

According to work of Ludweig and Tillman the shear stress at the 
wall IYW decreases as the shape parameter increases but never vanishes com- 
pletely. Truckenbrodt assumes that separation occurs Flhen H = 1.8 to 2.4 
which corresponds to L = -0,13 to -O,l8, 

Stratford method 

The separation criterion due to Stratford'7 results from an appro- 
ximate solution to the equations of motion, The method assumes that the 
turbulent boundary layer in a pressure rise may be divided into two dis- 
tinct regions, namely the inner and outer regions. 

In the inner region, the inertia forces are small so that the velo- 
city profile is distorted by the pressure gradient until the latter is 
largely balanced by the transverse gradient of shear stress. 

In the outer region the pressure rise just causes a lowering of the 
dynamic head profile, and the losses due to the shear stresses are almost 
the same as for the flow along a flat plate. 

The criterion is developed initially for pressure distributions in 
vJhich a sharp pressure rise starts abruptly at the position x = x0 after 
constant pressure for a distance xoo 
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A parameter B is incorporated in the first term of a series expan- 
sion representing the lyhole inner layer profile, obtained by mixing length 
theory, and the higher terms omitted; the factor B was assumed to repre- 
sent the effect on the separation criterion of the higher terms, It is 
also used to represent any effects which the pressure rise might have on 
the mixing length, The velocity profile has therefore been over ideali- 
zed as regards to shape and good agreement with experimental profiles 
would not be expected, 

The oriterion for separation is, applying directly to the separa- 
tion point 

cpJh- a) ( X dCp Yi 
dx ) = 

I 3' x 0.41 B (n - 2 )&(n-a) R6 
7 1 

(n + l)z(n+L) (n + 2)1 
. . ..(17) 

n+2 For Cp < n 

where the Reynolds number X is bas'ed on the local value of distance x and 
the peak velocity V,. n+2 The limitation Cp Q n+l results from the join 
of the inner layer with the outer layer reaching the edge of the boundary 
layer when using the idealized velocity profiles. 

Stratford simplifies Equation (17) by replacing the quantity 

cn + , j&+1) ln + 2+ 

cn _ ,)tb-a > 

l(n-a) by 10.7 x (2.0)4 
when 6 Q n s 8. 

which is within 1 per cent of the former quantity 

This results in. 

1 

= le06 B (10-6R)10 . . ..(18) 

The quantity 'II' is the flat plate (zero pressure gradient) comparison 
profile at the point x = xs where suffix a denotes separation 

xa ' the relevant Reynolds number being R, = --$ D Stratford found from 

experimental data that a good approximation is 
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The parameter B was found from an experiment by Stratford, In this experi- 
ment the flow was maintained just at the separation condition throughout 
the pressure rise and it was found that B was independent of Cp and has 
the value 

B = 0.66 

However, in this experiment the value of dap 
dxa 

immediately prior to separa- 

tion had its greatest possible negative value and B will vary somewhat with 

d2p 
dxa ' 

To determine the effect of $$ Stratford applied the criterion to 
four experiments in which separation of the turbulent boundary layer was 
observed and found that, using a value of B = 0.66, the 
separation was always too low, A clcse examination of 
that the discrepancy in B increased with an increase in 

0 per cent when da 3 was maximum negative to 20 per cent 

large and positive. 

pressure rise to 
the results showed 
d2p _ varying from 
dx2 2 
when dp was dxa 

In view of the insufficient data Stratford suggests that a crude 
modification that would halve the error would be to take 

B = 0.66 when 2 < 0 

da B = 0.73 when ---$a 0 
1. _ 

.o..(lY) 

Combining Equations (18) and (IY), using a value for n of 6, the criterion 
for separation is, at Reynolds numbers of the order of IO6 

r ?; 
dCp cp x dx 

.( P 
= 0,3s (IO-* do 

or in non-dimensional terms 

I 
0.39 (10m6 Re ~o~>'o ..0.(20) 

when $$ 3 0 and Cp C Lc l 

7' 
the coefficient 0.39 is replaced by 0,35 when 

dap (0. 
dx" 

The pressure coefficient for incompressible flow is given by 
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It will be recalled that this criterion was developed for pressure distri- 
butions having an initial region of' constant pressure folloxed by a sharp 
pressure rise, the distance x being measured from a point where the tur- 
bulent boundary layer would have zero momentum thickness. 

If transition occurs in the re 
value of x to be used in Equation 

ion of constant pressure then the 
(20 has to be 

2 = (X-q+q 0 0 0 0 (21) 

where the distances 2 and j; are the distances from the point of zero 
momentum thickness (pseudo origin) and the actual leading edge respect- 
ively. The value of ?t is determined by the condition that the boundary 
layer thickness for a fully turbulent boundary layer at &-, is equal to 
that at Zt for the laminar boundary layer. 

where 

This results in 

Rt = 

8, = 
,,,.(22) 

For pressure distributions having an initial region of favourable pressure 
gradient the distribution has to be converted to an equivalent one having 
an initial region of constant pressure with a mainstream velocity equal to 
the value at the transition point or the point of maximum velocity nhich- 
ever is later. 

The gronth of a turbulent boundary layer is given by, in non- 
dimensional terms I .- 

c St 1 
1+b 

J 7' dz + constant I 

zt 

> ..&3) 

The parameters a, b etc, according to various workers vary a little but 
representative values are a = a, I7 b =-r;, c = 4, A = 0.016, The constant 

is evaluated from the momentum thickness of the laminar boundary at 
transition and is given, in non-dimensional terms, by 

where 

l+b 
constant C = Pt vtal A % 2 

0.470 et = - r r s ii6 Rc o 
v5 & 

w&4) 

c-(25) 
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From Equations (2.2)) (23)) (24) and (25) we get . 

. . ..(26) 

where suffix-o now refers to conditions at the position of peak velocity 
or at transition whichever is later and from (21) 

x = (ii - X0) + I, . . ..(27) 

Equation (26) can be re-arranged to give 

This equation differs from Stratford's slightly in which the exponents 4 
and -6 are 3 and $ respectively. The reason for this is that.the para- 
meters m, n etc. in Equation (23) have been chosen as the mean values 
according to various workers, which Stratford agrees is a better approxi- 
mation. 

Maskell method 

Maskell' 8 made use of the Lud\;eig-Tillman skin friction law for 
predicting the position of separation of the turbulent boundary layer. 
This involves calculating the distribution of the shape parameter H and the 
momentum thickness 0, the equations for which have been made more general 
than before by making them fit flat plate data very closely and'by the use 
cf some limited data for favourable gradients. 

The equation for the variation of momentum thickness \?as derived 
from the momentum equation, in a manner similar to Buri, and making use rf 
the Ludweig-Tillman law. 

The momentum equation may be written 

0 0 0 ‘ (29) 



- J+l - 

The Ludweig-Tillman law gives 

Cf = G(H)Rin . . ..(30) 

where 
G(H) = aemmH 

Combining Equations (29) and (30) we get 

eR: dV Rtf. g + (H + 2) 7 z = G(H). 

Re-arranging ae get 

where eRe” dV r = -yf-Y& 

Xaskcll found that using experimental data the right hand side of 
Equation (31) may be represented by a linear function of I', reducing the 
equation to the form 

& @Ii;;) = A - El’ o-(32) 

It can be seen that Equations (31) and (32) can only agree exactly for 
r = 0 ioeo, constant pressure, if 11 is constant in plate flow. Ludweig 
and Tillman found that the shape parameter H nas a function of Q and so 
Equation (32) is necessarily in error for constant pressure. 

To overcome this Maskell makes the substitution 

OR: dV 
I’ = -I 

V dx 

into the momentum Equation (29). This results in . 



Maskell determined the value of q such that when I' = 0, g = constant and 
using experimental data found that the right hand side of Equation (33) 
could be represented by 

d@R; > 
dx = e - fI' where e = 0.01173, f = 4.2 

Or 6R: dV -I$ (OR:) + f v z = e v,here q = 0.2155 

The value of f 
Equation (33). 

= 4*2 implies that H is constant and equal to 1.635 in 

whose integral is 
This is a linear equation of the first order for eg 

fJRz Vf = e Vf dx + constant 

In non-dimensional terms, the momentum thickness is given by 

r 7 1 -I_ 
ii I. 2155 

e’ = 1 
,45- 

I 

’ fj402~ + constant 0.01173 
0.2155 

V Re / 
zt _ 

i 

. . ..(j4-) 

where the constant is evaluated from the momentum thickness of the laminar 
boundary layer at transition, 

The approach used in finding an equation for the shape parameter H 
was that of selecting the probable parameters affecting the variation of H. 
Experimental results \iere then used to confirm that this choice of para- 
meters was reasonable and to find an equation connecting them, The main 
reason for adoptin, v this approach was because the available data was best 
suited to it. 

For constant pressure and favourable pressure gradient, the vari- 
ation of the shape parameter is given by 
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For unfavourable pressure gradient iaeo, pressure rises in the direction 
of flow, it is given by a step-by-step solution of 

,ieacia ,ooaes 
8 V 

0.268 &y 
Re - 
. dx: 

where 

@(r”,H) = O(O,H) + r(H)l?* 'nhen.I'* > P i 

and 

- r(H) = 0.32 - 0.3H 

s(H) = 0915 (1.2 - H) 

t(H) 

r4 
1 

= @(l?*,H) 

= s(H) + t(H)I'* when I?* c I? 1 

= 0.15 (1 - 2H) 

...a(36a) 

.oc.(36b) 

sH - 9(O,H) = s(H) - @(O,H) 8 = 
r(H) - t(H) 0.17 . . ..(36c) 

The function Q(O,H) is given by 

Q(O,H) = 10-0'678H (0.01485 - 0,01399H) for H < I.4 

..ob(37a) 

O(O,H) = 0.0796 - O,O54H, for H > 1.6 ..0*(37b) 

For the range 1,4 < H < 1.6 Q(O,H) is defined numerically to give a smooth ' 
transition from Equations (37a) to (37b) and the values are given below. 
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1.4 

I 042 

~44 

1.46 

I .l+3 

@,H) ’ 

-0,000533 ; 

-0,000645 i 

-0.00086 ; 

-0.00120 i 

-0,00170 

H 
-. 

1.50 

1.52 

1.54 

lo56 

1.58 

1.60 
. . . 

-0.00232 i 

-0~00302 1 

-0.00381 :: 

-0.00470 j 

-0.00571 ’ 

-0eOO68 i 
:: ,. ,“. - .,’ .- .-:.- -. 

The solution for the shape parameter H proceeds from the value of H 
at transition, Maskell proposed a tentative procedure for predicting the 
value of Ht' Briefly the procedure is 

(i> H = f(RC) 
for Ret > 2500 and for all pressure gradients. 

(ii) H = f(Q) 
for all Qt and zero and favourable pressure gradients. 

(iii) H is defined by an approximate envelope.for Qt < 2500 and 
unfavourable pressure gradient. 

In (i) and (ii) H is given by Equation (35). 

The local coefficient of skin friction Cf is given by the Ludweig 
and Tillman law, in non-dimensional terms 

cf 
= 0,246 e-105S1H (5 v Re)-ooas8 

= 0,246 jO-0’676H (8 v Re)-00a68 ,...(38) 

The position of separation is determined by the condition Cf = 0. Since 
the Ludweig-Tillman law cannot in fact give Cf = 0 the computation of Cf 
is terminated after a rapid decrease in Cf has started, the position of 
separation being determined by linear extrapolation from the steepest nega- 
tive gradient of the curve of Cf against surface length 2. 

Spencc method 

Spence 19 increased the usefulness of methods like those of 
Truckenbrodt and Maskell by developing a method whereby the shape para- 
meter H may be more rapidly calculated. 

For the variation of momentum thickness Spence made use of 
Equation (31) in Maskell's method. The assumption made was that in 
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determining 0 there 
on the shape parame 

is no advantage in allowing for the dependence of Cf 
ter and so the one-fifth power law for skin friction 

was assumed, iOeo, 

1 

Cf = 0.0176 R; .eo.(39> 

Combining Equations (31) and (39) we- get 

where 

2.2 The effect of H on the term H + - , 2 is small and taking H = constant = 
1.5 then D 

& (OR!) = oeo106 + .!+I' 

This equation can be integrated to give 

X 
1 . 

0R;V" = 0.0106 V4 dx + constant 

In non-dimensional terms, the momentum thickness is given by 

s 
2 6 

6 = & + constant 

I 

*...(40> 
fF- 

where the constant is evaluated from the momentum thickness for the lami- 
nar boundary layer at the transition point, 

Using the energy and momentum integral equations Spence shows, 
assuming 

(i) power law for the velocity profile 
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(ii) relationship for the shear stress distribution in the turbu- 
lent boundary layer 

(iii) the local skin friction coefficient is 

Cf = G(H)Rin 

that 

where 
0Ri dV r = --- 

V dx 

To ensure that good results are given for a 
gradient Spence determined the form-of $(H) 

flat plate with zero pressure 
assuming the one-fifth power 

law for skin friction and Cole's relationship for the shape parameter. 
Using these assumptions and the momentum equation for steady motion then 
it can be shown that 

t’(H) = -0.00307 (H - I)" . . ..(42) 

To enable the calculation of H to be rapid the form of the functipn Q(H) 
was chosen such that Equation (4.1) could be integrated directly to give 
the shape parameter H, For this purpose a quadratic was chosen 

@CH) = 9.524 (H - 1.21) (H - 1) .' .-(43) 

For the case when 0$ is large iaeo, 
right hand side of (41) 

the boundary layer is thick, the 
is dominated by the first term. 

small compared to @(H)I' then 
Assuming $(H) is 

dH 
dx= -fg@(H) 

thus 

Combining Equations (43) and (44) then Spence shows that for Ho = ? .4 the 
function @e(H) is in reasonable agreement with the functions used by 
Maskell. 
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Substituting Equations (L&Z) and (43) into Equation (41) and inte- 
grating we get 

X \ 
Va 4.762 - & constant - 0.00307 q s 

i) BR06 

where the constant is evaluated from the shape parameter for the turbulent 
boundary layer at transition, 

In non-dimensional terms the shape parameter is given by 

Hz I + 40762 - 1 
va 

.00307 

E -6 v 
- 

6 1 

-s 0 Re' 

where 

Spence points out that the value of H at separation seems always to be 
between 2 and 3 and suggests that the range 2.4 to 2.6 be taken. 
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and Spence for the calculation of the shape parameter to be started wlth a 
value or l*I.. 

All of the crlterla except Spencecs were sensltlve to Reynolds 
number and showed that an Increase In Reynolds number delays separation. 

Stratfordts method ViBs extremely e-sy to apply, was the 
simplest of the floe and predicted the lovlest pressure rlse to SeparatlOn. 

To ass 1st In the design ot blade prof lles, envelopes of 
suction surface Velocity dlstrlbutlon have been constructed to give . 
separation at the tralllng edge; these are considered to be 
conservatively based. 

and Spence ior the calculation of the shape parameter to be started with a 
value of l-4. 

All of the crlterla except Spencefs were sensitive to Reynolds 
number and showed that an Increase In Reynolds number delays aeperatlon. 

Stratiordfs method yas extremely easy to apply, was the 
slmplest or the rive and predicted the lowest pressure rise to separation. 

and Spence ror the calculation of the shape parameter to be started with a 
value 0r 1’4. 

All of the crlterla except Spencefs were senslt lve to Reynolds 
number and showed that an Increase in Reynolds number delays separation. 

Stratrord~s method was extremely easy to apply, was the 
slmplest or the rive and predicted the lowest pressure rise to separation. 

To asslst In the design of blade prorlles, envelopes of 
suction surface velocity dlstrlbutlon have been constructed to give . 

separation at the trailing edge; these are considered to be 
consmat lvely based. 

To ssslst in the design of blade proriles, envelopes of 
suction surface velocity dlstrlbutfon have been COI’IStNCted to give 
separation at the tralllng edge; these are cons ldered to be 
conservatively based. 





C.P. No. 868 

0 Crown copyright 1966 

Printed and published by 
HER MAJESTY’S STATIONERY OFFICE 

To be purchased from 
49 High Holborn, London w.c.1 
423 Oxford Street, London w.1 
13~ Castle Street, Edinburgh 2 

109 St. Mary Street, Cardiff 
Brazennose Street, Manchester 2 

50 Fairfax Street, Bristol 1 
35 Smallbrook, Ringway, Birmingham 5 

80 Chichester Street, Belfast 1 
or through any bookseller 

Printed in England 

C.P. No. 86f 
S.O. Code No. 23-9016-6 


