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SUMMARY 

This note presents an approximate procedure for the theoretical 
calculation of the aerodynamic characteristics of an infinite cascade of 
arbitrary aerofoils. The effects of subcritical compressibility and 
viscosity are included and some experimental comparisons are presented. 

The procedure has been programmed in Alphacode for use on DEUCE. 
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I. Introduction 

The design of axial flow turbmachinery is at present carried out 
with the use of semi-empirical design curves, such as those published by 
N.G.T.E., and in many cases these are satisfactory. However, it is becoming 
more and more desirable to limit the weight of such machinery whilst 
retaining the performance and this can be done using high stagger blading not 
covered by existing charts. 

In devising a procedure to calculate blade characteristics, by what 
is termed the direct method, a three-dimensional viscous calculation is not yet 
possible, and, in any case, would be extremely complex. 

If it is assumed that useful results can be obtained by 
two-dimensional calculations at, say, the mean blade height, a procedure can 
be devised using existing appraimate cascade theories. 

This note outlines such a method and enables a designer to look at 
extremes of stagger and solidity not normally covered by existing charts as 
well as the more normal values of these quantities. It should be noted that 
the methods used are only approximate but should, at least, give correct 
trends. 

2* Outline of Theory 

The method requires a knowledge of the blade section; stagger and 
spacing together with the inflow conditions, in order to estimate the effects 
of compressibility and viscosity on the blade (i.e., outflow conditions, 
losses, operating range, Mach number characteristics etcO). 

The procedure consists of the extension of an inviscid incanpressible 
solutioni to subcritical viscous flow. The effect of compressibility on the 
incompressible potential solution is obtained by an extension to cascade flow 
of the well known Prandtl-Glauert transformation for isolated aerofoils2. 
Boundary-layer development on the blades is 

t 
alculated by standard methods 3,495 

using Mager's compressibility transformation . The effect of the boundary 
layer on the potential flow is taken frm Ref. 7. 

2.1 Schlichting's incompressible potential solutio$ 

This is a singularity method whereby the flow through an infinite 
cascade is represented by the superimposition of: 

I. A translational flow representing the throughflow. 

2. A continuous source distribution representing the 
thickness distribution. 

3. A continuous vortex distribution representing the camber 
distribution and lift. 

The calculation procedure is simplified by placing the source and 
vortex distributions on the chordline, rather than on the mean camber line. 
The method is thereby restricted to small values of maximum camber height and 
maximum thickness (say 10%). This is ample for most compressor cascades but 
not for strongly cambered turbine cascades. 

Given/ 
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Given the stagger angle A* 
inlet angle aTd 

(Fig. I), blade solidity c*/s*, air 
and the blade profile one can calculate the pressure 

distribution around the contour, the air outlet angle azld the blade lift 
coefficient %d and other inviscid parameters of lesser interest. 

Sohlichting's method has been programmed in DEUCE a-code at the 
Mechanical Engineering Laboratory Whetstone and is summarised in Refs. 8, 9 
and 10. 

Schlichting's theory contains further simplifying assumptions whioh 
restriot the type of blade profile which can be accurately calculated. The 
blade must have a ousped trailing edge to avoid a T.E. singularity and have 
distributions of thickness and camber which can be represented by 3 term 
trigonometric series. The method of Ref. 8 contains a smoothing process 
whereby a given profile is approximated by a ‘3 term' profile for which an 
accurate solution is obtained and differences between the profiles are 
concentrated near the trailing edge. It is not thought that these 
restrictions are serious. 

Schlichting's method has also been programmed for representation by 
a 15 term trigonometric series'9 but the computation time is excessive for the 
added accuracy. 

Fig. 2 shows scme comparisons of experimental and theoretical 
pressure distributions taken from Ref. 7. High-stagger high-solidity 
compressor casoades have been selected as these are of ourrent interest. 
Agreement is seen to be satisfactory provided that: 

I. Boundary-layer separation is 
Figs. 2a and 2b. 

not extensive : compare 

2. The solidity is not so great that the semi-linearised 
theory begins to break down : compare Figs. 2c and 2d. 

The theory is expeoted to yield useful results in cascade geometries 
which do not have combinations of high camber, thickness and solidity. 

2.2 Potential flow cmpressibility transformation2 

The method 
transformation for a 

Putting n 
the relevant results 

is based on an extension of the Prandtl-Glauert 
single aerofoil: see Fig. 3. 

= d(l - Mz ) where M co is the vector mean Mach number, 

of the transformation arei 

1 
tan azid = - tan amid 

II 

A* - 'zid = A - amid 

a* * 
%id - 'mid 

Z 'Iid - %id 

and similarly for asid 
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C*/S* = (C/S)sec amia/4(P + tarPamid) 

where * denotes the equivalent inoompressible geametq. 

The transformation is non-dimensional and in Fig. 3, C* has been 
chosen to be equal to C. 

It is seen that for a given conf'iguration in oompressible flow at 
Mach number Mm, the equivalent geometry at M m = 0 has higher stagger, 
soli.diQ and fluid angles. The blade profiles are unchanged since the 
boundaq conditions of the problem are satisfied on the blade chord and not 
on the profile. The method may not be used if the blade camber, thickness 
and solidity become too great: this is consistent with the restrictions in 
para. 2.1. 

The pressure distributions around the actual and equivalent 
geometries are relate4 by: 

Similar expressions hold for tia ana CMLa. The linearisation 
involved in the transformation requires that fluid angles relative to the 
blade chord (at large distances from the casoade) remain unchanged and that 
deflection angles are small and thus independent of Mach number. 

Fig. 4 shows comparisons of experimental and theoretical velocity 
distributions taken from Ref. 11. These theoretical results were obtained 
by the method of Ref. 4 ti conjunction with a transformation which differs 
slightly from that of Ref. 2. Agreement is quite acceptable in these cases 
considering the relatively high solidity and thick blade profile. 

2.3 Calculation of the boundary layer 

Boundary-layer development is calculated by conventional theory an& 
the methods are summarised in Refs.6j, 4, 5 and 6. The boundary-layer 
compressibiliQ transformation used 
compressibili@ transformation2 

differs from the potential flow 
in that a change 3n length scale occurs. 

The transformation of Ref. 2 alters the planform of the cascade without 
reference to physioal size and the transformation of Ref. 6 is assumecl to alter 
the physical size and Reynolds number without changing the planform. 

2.3.1 Estimation of transition position 

A great area of uncertainty lies in the position of boundary-layer 
transition. At the ReynoXis numbers under investigation (approx. 3~1@ based 
on the blade chord) it is expected that laminar flow will exist for A0 to 2074 
of the chord. Some evidence is available on the value of momentum defect 
thickness Reyno1d.s number at transition in incompressible flow (Re6*) and 5s 

t 
shown in Fig. 5. The correlating function is inf'low Reynolds number although 
R*fp will also depend upon the degree of freestream turbulence, the 

t 
roughness/ 
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roughness and curvature of the su-rface and the shape of the applies pressure 
distribution. Ref* -I2 suggests that a value R*O* = 250 is a reasonable 

t 
estimate for turbomachinexy due to the high level of turbulence present. 
Ref. 13 presents observed values of R*e.+ for cascades using blades of the 

t 
N.G.T.E. C.4 section with 30° and 40' of circular aru csmber. Ref. -I4 
presents transition lines observed by dust deposits on a 4-bladea fan ana on 
a two-dimensional cascade blade of the same section and at the same inflow 
Reynolas number and incidence. The variation of inflow Reynolds number in 
Fig. 5 for the fan omresponds to different stations along the blade. Large 
three-dimensional effects can be seen on the fan data due, presumably, to a 
stabilising effect of the radial pressure gradient. 

The bulk of the data falls within the range, 

150 < ReO* < 300 
t 

ana it is proposed to use a constant value of R* 
et 

= 250 for cascade 

calculations unless boundary layers are artif'icially 'trippea'. 

2.3.2 Estimation of separation point 

The method of Ref. 3 predicts laminar separation at a transformed 
shape parameter H* = 3955 and turbulent separation is normally supposed 
to occur in the range I*8 < H* < 206~ Ref.'15 presents a two parameter 
correlation of laminar and turbulent separation positions. This suggests 
that if boundary-layer separation is to be treated as a one parameter 
ocourrence then the values 

H* 
sP 

z 3.5 - 3.6 h&i= 

H* = 2.4 - 206 turbulent 
sP 

should suffice. The actual values of H* at separation are not too 
critical since the @?owth of H* is normally veq rapid. 

An independent check on separation positions predicted by 
oonventionalbounaary-layer theory can be made by Stratford's methods for 
lsdnar and turbulent flowl6. These methods postulate that a bounaaxy layer 
in a pressure rise may be divided into two regions, 

~~~ an outer layer in which the pressure rise merely lowers the 
dynamic lead profile, and shear losses being almost identical 
to flat plate flow 

(21 an inner layer in which the inertia f&ces are so small that the 
velocity profile is distorted by the pressure rise until the 
pressure gradient is balanced by the transverse shear gradient. 

The theory is developed so that the flow development length to 
separation can be found from the pressure rise and pressure gradient at 
separation. The pertinent results of the theob are summarised in Ref. Ii'. 

2Jd 
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2.4 Effect of viscosity on cascade flow7 

The growth of boundary-layer displacement thickness on the blade 
alters the effective thicbess and camber distributions and can be represented 
by small changes in the source and vortex distribution used in Ref. I. The 
induced velocities around the blades are changed by a small amount hence 
altering the inflow, outflow and vector mean air angles. The inviscid 
pressure distribution obtained by the methods of Refs. 1 and 2 is assumed to 
apply to viscous flow through the cascade at slightly different air angles. 
The total head loss behind the cascade is obtained from the momentum defeat 
thichess at the trailing edge by a method similar in result to the well known 
Squire and Young equation for isolated aerofoils. A further small correction 
to the outflow angle is deduced on account of the reduced total lead in the 
outflow. 

Allowance is made for the existence of small amounts of 
boundary-layer separation at the rear of the blade. This is an important 
part of the theory since many cascade configurations have maximum L/D when 
the rear of the blade has some separation. 

The method is derived for incompressible flow and the solution is 
performed in the transformed plane and the results transformed back to 
compressible flow. 

3. DEUCE Programmes and Procedure 

3.1 Summary of available programmes 

Schlichting's method for the calculation of inviscid, incompressible 
flow through a cascade of arbitrary aerofoils has been programmed in 
Alphacode for DEUCE in three parts. 

(I) The calculation of the influence coefficients which are a function 
only of stagger and solidity (Warton Prog. No. 561/~ and Ref. 8). 

(2) Blade profile smoothing and calculation of thickness and camber 
gradients at specified points along the blade (Warton Prog. No. 
561/~ and Ref. 9). 

(3) The calculation of potential pressure coefficients (based on outlet 
conditions) at specified points on the blade, the overall lift 
coefficient and outflow angle in potential flow. This programme 
uses the results of (1) and (2) above with a specified inflow 
angle (Warton Prog. No. 561/c and Ref. 10). 

In order to use these programme s when the flow through the cascade is 
compressible, it is necessary to find the equivalent incompressible geometry 
and air angles (Woolards transformation). (Warton a-code Prog. No. l&/O and 
Ref. 2.) The incompressible pressure coefficient output from Prog. 561/c is 
converted to vector mean reference then to compressible flow by Woolard's 
transformation and finally to a Mach number distribution (Warton a-code Prog. 
No. l&/4). Pitching moment about the L.B. is calculated at this stage. 

This completes the inviscid calculation. 

Boundary-layer/ 
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Boundary-layer development is calculated in the transformed plane 
using the external potential pressure distribution (Warton a-code Prog. No. 
lW5). The associated losses and influence of the boundary layer on the 
potential flow are also calculated in the transformed plane (Warton a-code 
hog. No. 1446). If required, Stratford's method (Warton a-code Pro& No. 
144,/T) may be used to confirm or otherwise the existence of separations 
predicted by Prog. lw5. Finally transformed aerodynamic characteristics 
of the cascade are converted to compressible flow. This part of the 
calculation has not been programmed. 

An auxiliary programme (Warton a-code Prog. No. 14-4) is available 
for the calculation of the ordinates of N.G.T.E. circular arc and parabolic aro 
camber lines. 

5.2 Computation of outflow angle in compressible flow 

In order to apply Woolard's transformation to compressible flow2 it 
is necessary to know the vector mean air angle am and the vector mean Maoh 
number M co- In general the inlet conditions will be known together with the 

mass flow rate per unit area. If a reasonable guess can be made of some 
outflow conditions, say a2 using the deviation rule Ref. j 8, an iterative 
procedure can be set up to converge on the correct as and hence vector mean 
conditions. 

Given the cascade geometry and inflow conditions, a reasonable 
range of a2 is selected and used in Prog. Il.&/O. This programme produces a 
range of transformed geometries and flow angles as the vector mean oonditions 
vary with aa, al, being constant. 

The corresponding variations of az and a:, produced by this 
programme may be plotted against the values of aa (Fig. 6). Programmes 
561/A and 561 /C are used with the transformed geometries and inflow angles to 
produce a second variation of a: (and a:). 

The value of a at which the variations of a: coincide is the a 
correct value within the theoretical limitations. Due to the approximations 
made in the theory of Ref. 2, the final value of a: may not be entirely 
consistent with aa. This restriction is not severe unless large deflections 
are required at high Mach number. 

3.3 Application to incompressible flow 

If the flow through the cascade can be considered incompressible, 
Prog. No. l&/O and the procedure in para. 5.2 may be omitted. However, 
consistent realistic values of 'incompressible' Mm, R(x)/x and adv must 
be speoified for Progs. 14J+/4, 5 and 7 in order to get the Reynolds n$ber 
scale correct and to ensure that the transformations operate correctly in the 
limit of small M 00. 

3.4/ 
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3.4 Calculation time 

(a) Incompressible flow 

Approximately 30 min for the first inflow angle and 15 min 
per succeeding inflow angle. 

(b) Compressible flow 

Approximately 60 min for the first inflow angle and 23 min 
for each succeeding inflow angle. 

A block diagram of the programmes available is shown in Fig. 7. 

4. Comparison with Experiment 

Figs. 8 and 9 present comparisons of the proposed theory with 
incompressible experimental results of Ref. 7. Boundary-layer flow is filly 
turbulent and calculations are performed entirely from theory. Ref. 7 presents 
a comprehensive survey of experimental characteristics for cascades of NACA 8440 
and OOIO blade sections. The geometry of Fig. 8 is representative of 
high-stagger, high-solidity blading with limited separation and should provide a 
fair test of the validity of the theory for incompressible flow. The geometry 
of Fig. 9 is less extreme but has more extensive separation and may lie outside 
the limits of the theory. 

4.1 Pressure distributions Figs. 8B and yl3 

The comparison of Fig. 8B is seen to be good except downstream of the 
separation point. The effects of a separated region are not inoluded in the 
pressure distribution calculation. The relatively small amount of separation 
in Fig. 8 does not appear to have affected the upstream pressures to any great 
extent. 

The agreement of Fig. YB is poor for two reasons. Extensive 
boundary-layer separation has strongly influenced upstream pressures and there 
appears to be a local separation near the nose. 

4.2 Position of separation 

Fig. 8A suggests that the observed separation point may be predicted 
when the theoretical H* is in the range 1*8 to 2.0 provided that separation 
is not extensive. The difference between these values and those given in 
para. 3.3 may be due to the difference between the experiments1 and theoretical 
pressure distributions. Fig. YA shows that the observed separation point 
cannot be predicted from the theoretical pressure distribution when the 
separation becomes extensive. Separation can be called extensive when it 
covers more than 2% of the blade chord. Predictions of separation by 
Stratford's method appear to be slightly pessimistic. Agreement could, no 
doubt, be improved by use of the experimental pressure distribution. 

4e3 Force, deflection characteristics and working range 

Figs. 8C to 8F, YC to YF indicate that the variations of CL, C,,, z v 
AV/U and e are predicted satisfactorily provided that separation is not 
extensive. 

Fran/ 
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From Figs. 8 and 9 crude criteria oan be fuund to predict the upper 
and lower limits of the working range. The upper limit to the working range 
is largely governed by trailing-edge separation and arbitrarily, the upper 
limit is chosen at the point where theoretical separation covers the last 2% 
of the upper blade surface, i.e., the C L where H* = I.9 (say) at 
40 = 0*8. This limit is shm in Figs. 8 and 9 and crudely corresponds 
to the point where the experimental CD begins to depart markedly from the 
mid-range value. The lower limit is probably governed by leading-edge 
separation, especially on highly cambered profiles, and at low Reynolds numbers 
it will be a laminar separation. A lower limit to the working range can be 
obtained on this basis by say, Stratford's workIT. 

Also presented in Figs. 8 and $3, are the calculations of Ref. 7. 
Apart frm Figs. 8C to 8F, the discrepancies between the present calculation 
and the calculations of Ref. 7 can be'attributed to the differences between 
hand and automatic calculation. The discrepancies in Figs. 8C to 8F are 
probably due to a systematic error in that particular set of caloulations in 
Ref. 7 since the present calculations give much better agreement with experiment. 
Ref. 7 presents a large number of comparisons of theory with experiment whioh 
indioate that theory and experiment are in good agreement provided that 
separation is not extensive. 

No comparisons have been made in compressible flow as the present 
writers are not aware of compressible cascade measurements as comprehensive as 
the incompressible measurements of Ref. 7. 

5. Conclusions and Recommendations 

Since the theory used in this Note leans heavily on linearisation, 
good predictions cannot be expected for geometries which have combinations of 
large camber, thick blades and high solidity or for geometries which have local 
supersonic flow or extensive regions of separation. Certainly, if' such 
combinations are avoided, adequate predictions sre obtained in incompressible 
flow. Whether the same is true in compressible flow cannot be deoided until 
further comparisons are available. If such calculations confirm the 
approximations made, there seems no reason why the procedure should not be 
programmed for a very fast computer and used to produce design charts for 
extreme geometries. 

NOTATION/ 
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NOTM!ION 

&Y Distance along and normal to blade (ft) 

C Blade chord (ft) 

s Blade pitch (ft) 

WvJ Axial, tangential and resultant velocity (ft/sec) 

Id Mach number 

n = d(l - M2) 

a Air angle (deg) 

P = f2 + 90 (de63 

7L Blade stagger (deg) 

%EhE Angle between chord and camber line at leading and 
trailing edges (deg) 

i Camberline incidence, i = a - X - #I~ (deg) 

a Deviation angle d = a2 - x + #+,,, bd 

t3 Deflection angle s = q - a2 (deg) 

P Fluid density (slugs/cu ft) 

P,P Total and static pressure (lb/sq ft) 

v Kinematic viscosity (fi?/sec) 

AV * AV 
- Cascade deflection coefficient - = tan q - tan a2 
U U 

PI - p2 
Cascade loss coefficient zv = 

&J: 

'L*'D Lift and drag coefficients per unit span 

lift/unit span dra&nit span 
CL = 

6 pmw2 
CD = 

spmJQ 

P -P 
cP Pressure coefficient C = ref 

P 4-p ref'ref 
a 
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0 Boundary-layer momentum defect thictiess 

H Boundary-layer form psrameter 

H = 

‘ee 

Re = -i-- 
Momentum defect thickness Reynolds number 

e 

SUFFICES 

t Inflow conditions, i.e., far upstream of cascade 

a Outflow conditions, i.e., far downstream of oasoade 

00 Vector mean conditions defined by Fig. I 

t Position of boundary-layer transition 

e Conditions at edge of boundary layer 

id Potential flow 

sP Position of boundary-layer separation 

SUPERSCRIPT 

* Denotes incompressible function defined by the compressibility 
transformations 

REFERXNCES/ 
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FIG 8 CONT 
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FIG 9 CONT. 
EXPERIMENTAL AND CALCULATED LIFT DRAG RATIO. 
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