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SUMMARY

This note presents an approximate procedure for the theoretical
calculation of the aerodynamic characteristics of an infinite cascade of
arbitrary aerofoils, The effects of subcritical compressibility and
viscosity are included and some experimental comparisons are presented,

The procedure has been programmed in Alphacode for use on DEUCE,
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1. Introduction

The design of axial flow turbomachinery is at present carried out
with the use of semi-empirical design curves, such as those published by
N.G.T.E., and in many cases these are satisfactory, However, it is becoming
more and more desirable to limit the weight of such machinery whilst
retaining the performance and this can be done using high stagger blading not
covered by existing charts,

In devising a procedure to calculate blade characteristics, by what
is termed the direct method, a three-dimensional viscous calculation is not yet
possible, and, in any case, would be extremely complex,

If it is assumed that useful results can be obtained by
two-dimensional calculations at, say, the mean blade height, a procedure can
be devised using existing approximate cascade theories,

This note outlines such a method and enables a designer to look at
extremes of stagger and solidity not normally covered by existing charts as
well as the more normal values of these quantities, It should be noted that
the methods used are only approximate but should, at least, give correct
trends,

2, Qutline of Theory

The method requires a knowledge of the blade section; stagger and
spacing together with the inflow conditions, in order to estimate the effects
of compressibility and viscosity on the blade (i.e,, outflow conditions,
losses, operating range, Mach number characteristics etc.).

The procedure consists of the extension of an inviscid incampressible
solution to suberitical viscous flow, The effect of compressibility on the
incompressible potential solution is obtained by an extension to cascade flow
of the well known Prandtl-Glauert transformation for isolated aerofoils?, 34,5
Boundary-layer development on the blades is galculated by standard methods”? ?
using Mager's compressibility transformation®, The effect of the boundary
layer on the potential flow is taken from Ref, 7.

2.1 Schlichting's incompressible potential solutionﬂ

This is & singularity method whereby the flow through an infinite
cascade is represented by the superimposition of':

1. A translational flow representing the throughflow,

2. A continmuous source distribution representing the
thickness distribution,

3. A continuous vortex distribution representing the camber
distribution and 1lift,

The calculation procedure is simplified by placing the source and
vortex distributions on the chordline, rather than on the mean camber line,
The method is thereby restricted to small values of maximum cember helght and
meximum thickness (say 10%). This is ample for most compressor cascades but
not for strongly cambered turbine cascades,

Given/
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Given the stagger angle A* (Fig., 1), blade solidity c¢*/s*, air
inlet angle azd and the blade profile one can calculate the pressure
distribution around the contour, the air outlet angle a:id the blade 1lift
coefficient qgid and other inviseid parameters of lesser interest,

Schlichting's method has been programmed in DEUCE a-code at the
Mechanical Engineering Laboratory Whetstone and is summarised in Refs. 8, 9
and 10,

Schlichting's theory contains further simplifying assumptions which
restrict the type of blade profile which can be accurately calculated., The
blade must have a cusped trailing edge to avoid a T,E., singularity and have
distributions of thickness and camber which can be represented by 3 term
trigonometric series., The method of Ref. 8 contains a smoothing process
whereby a given profile is approximated by a '3 term' profile for which an
accurate solution is obtained and differences between the profiles are
concentrated near the trailing edge, It is not thought that these
restrictions are serious,

Schlichting's method has also been programmed for representation by
a 15 term trigonometric series' but the computation time is excessive for the
added accuracy,

Fig, 2 shows some comparisons of experimental and theoretical
pressure distributions taken from Ref, 7, High-stagger high-solidity
compressor cascades have been selected as these are of current interest,
Agreement is seen to be satisfactory provided that:

1., Boundary-layer separation is not extensive : compare
Figs, 2a and 2b,

2., The solidity is not so great that the semi-linearised
theory begins to break down : campare Figs, 2¢ and 2d.

The theory is expected to yield useful results in cascade geometries
which do not have combinations of high camber, thickness and solidity,

2.2 Potential flow compressibility transformation2

The method is based on an extension of the Prandtl-Glsuert
transformation for a single aerofoil: see Fig. 3.

Putting Q@ = v(1 - M;) where M is the vector mean Mach number,
the relevant results of the transformation are:

1
* - -
tan %»id = 5 tan %oid
B . % - -
M ealia = Mo %g
¥ - % - -
%3a " %ia = %14 T %14

and similarly for LATY
c* /S*
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*/a%x . 2 2
c*/s¥* = (C/S)sec %oid/»/(n + tan amid)

where % denotes the equivalent incompressible geametry.,

The transformation is non~dimensional and in Fig., 3, C* has been
chosen to be equal to C.

It is seen that for a given configuration in compressible flow at
Mech number M”, the equivalent geometry at ﬂu> = 0 has higher stagger,

solidity and fluid angles, The blade profiles are unchanged since the
boundary conditions of the problem are satisfied on the blade chord and not
on the profile, The method may not be used if the blade camber, thickness
and solidity become too great: +this is consistent with the restrictions in
para. 2,1,

The pressure distributions around the actuel and equivalent
geometries are related by:

o0

1
- - % %* *x % %
Cooeza(Fs0/85a 500l ) = " O% 1a(M*sC*/5%,a%; ).

Similar expressions hold for QLid and cMid' The linearisation

involved in the transformation requires that fluid angles relative to the
blade chord (at large distances from the cascade) remain unchanged and that
deflection angles are small and thus independent of Mach number,

Fig. 4 shows comparisons of experimental and theoretical velocity
distributions taken from Ref. 11. These theoretical results were obtained
by the method of Ref, 1 in conjunction with a transformation which differs
slightly from that of Ref, 2, Agreement is quite acceptable in these cases
considering the relatively high solidity and thick blade profile,

2.3 Calculation of the boundary layer

Boundary-layer development is calculated by conventional theory and
the methods are summarised in Refs, 3, 4, 5 and 6, The boundary-layer
compressibility transformation used6 differs from the potential flow
compressibility transformation® in that a change in length scale occurs,

The transformation of Ref, 2 alters the planform of the cascade without
reference to physical size and the transformation of Ref. 6 is assumed to alter
the physical size and Reynolds number without changing the planform.

2.3.1 Estimation of transition position

A great area of uncertainty lies in the position of boundary-layer
transition, At the Reynolds numbers under investigation (approx. 3+10° based
on the blade chord) it is expected that laminar flow will exist for 10 to 20%
of the chord, Some evidence is available on the value of momentum defect
thickness Reynolds number at transition in incompressible flow (R*e*) and is

t
shown in Fig, 5, The correlating function is inflow Reynolds number although
R*e‘ will also depend upon the degree of freestream turbulence, the
t
roughness/
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roughness and curvature of the surface and the shape of the applied pressure
distribution, Ref, 12 suggests that a value R*e* = 250 1is a reasonable
‘ t
estimate for turbomachinery due to the high level of turbulence present,
Ref, 13 presents observed values of R*gs for cascades using blades of the
t
N.G.T.E. C.,4 section with 30° and 40° of circular arc camber. Ref. 14
presents transition lines observed by dust deposits on & 4-bladed fan and on
a two-dimensional cascade blade of the same section and at the same inflow
Reynolds number and incidence, The variation of inflow Reynolds number in
Fig. 5 for the fan carresponds to different stations along the blade, Large
three-dimensional effects can be seen on the fan data due, presumably, to a
stabilising effect of the radial pressure gradient,

The bulk of the data falls within the range,

150 < R*e* < 300
t

and it is proposed to use a constant value of R* = 250 for cascade

¥
0%

calculations unless boundary layers are artificially 'tripped!'.

2.3,2 Estimation of separation point

The method of Ref, 3 predicts laminar separation at a transformed
shape parameter H* = 355 and turbulent separation is normally supposed
to occur in the range 18 < H¥ < 2¢6, Ref, 15 presents a two parameter
correlation of laminar and turbulent separation positions, This suggests
that if boundary-layer separation is to be treated as a one parameter
occurrence then the values

$ = Zeb -  Ze
HSp 3e5 3*6 laminar
H:P = 24 ~ 2°6 turbulent

should suffice, The actual values of H* at separation are not too
eritical since the growth of H* 1is normally very rapid,

An independent check on separation positions predicted by
conventional boundary-layer theory can be made by Stratford's methods for
laminar and turbulent flow16. These methods postulate that a boundary layer
in a pressure rise may be divided into two regions,

(1) an outer layer in which the pressure rise merely lowers the
dynamic lead profile, and shear losses being almost identical
to flat plate flow

i

(2) an inner layer in which the inertia forces are so small that the
velocity profile is distorted by the pressure rise until the
pressure gradient is balanced by the transverse shear gradient,

The theory is developed so that the flow development length to
separation can be found from the pressure rise and pressure gradient at
separation. The pertinent results of the theory are summarised in Ref. 17.

2.4/
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2

2.4 Effect of viscosity on cascade flow

The growth of boundary-layer displacement thickness on the blade
alters the effective thickness and camber distributions and can be represented
by small changes in the source and vortex distribution used in Ref, 1., The
induced velocities around the blades are changed by a small amount hence
altering the inflow, outflow and vector mean air angles, The inviscid
pressure distribution obtained by the methods of Refs, 1 and 2 is assumed %o
apply to viscous flow through the cascade at slightly different air angles.
The total head loss behind the cascade is obtained from the momentum defect
thickness at the trailing edge by a method similar in result to the well known
Squire and Young equation for isolated aerofoils, A further small correction
to the outflow angle is deduced on account of the reduced total lead in the
oautflow,

Allowance is made for the existence of small amounts of
boundary-layer separation at the rear of the blade, This is an important
part of the theory since many cascade configurations have maximum L/D when
the rear of the blade has some separation,

The method is derived for incompressible flow and the solution is
performed in the transformed plane and the results transformed back to
compressible flow,

3. DEUCE Programmes and Procedure

3.1 Summary of available programmes

Schlichting's method for the calculation of inviscid, incompressible
flow through a cascade of arbitrary aerofoils has been programmed in
Alphacode for DEUCE in three parts,

(1) The calculation of the influence coefficients which are a function
only of stagger and solidity (Warton Prog., No. 561/A and Ref, 8).

(2) Blade profile smoothing and calculation of thickness and camber
gradients at specified points along the blade (Warton Prog. No.
561/B and Ref, 9).

(3) The calculation of potential pressure coefficients (based on outlet
conditions) at specified points on the blade, the overall 1lift
coefficient and outflow angle in potential flow, This programme
uses the results of (1) and (2) above with a specified inflow
angle (Warton Prog., No. 561/C and Ref, 10),

In order to use these programmes when the flow through the cascade is
compressible, it is necessary to find the equivalent incompressible geometry
aend air angles (Woolards transformation), (Warton a-code Prog. No, 14/0 and
Ref, 2.) The incompressible pressure coefficient output from Prog, 561/C is
converted to vector mean reference then to compressible flow by Woolard's
transformation and finally to a Mach number distribution (Warton a-code Prog.
No, 1hA/4). Pitching moment about the L.,E, is calculated at this stage.

This completes the invaiscid calculation,

Boundary—layer/
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Boundary-layer development is calculated in the transformed plane
using the external potential pressure distribution (Warton a-code Prog., No.
1hh/3). The associated losses and influence of the boundary layer on the
potential flow are also calculated in the transformed plane (Warton a~code
Prog, No, 1&#/6). If required, Stratford's method (Warton a-code Prog. No.
1##/7) may be used to confirm or otherwise the existence of separations
predicted by Prog, 144/5. Finally transformed aerodynamic characteristics
of the cascade are converted to compressible flow, This part of the
calculation has not been programmed,

An auxiliary programme (Warton a-code Prog. No. 144) is available
for the calculation of the ordinates of N,G.T.E. circular arc and parabolic arc
camber lines,

3.2 Computation of ocutflow angle in compressible flow

In order to apply Woolard's transformation to compressible flow2 it
is necessary to know the vector mean air angle @, and the vector mean Mach

number Mw. In general the inlet conditions will be known together with the

mass flow rate per unit area, If a reasonable guess can be made of some
outflow conditions, say a, using the deviation rule Ref, 18, an iterative

procedure can be set up to converge on the correct @, and hence vector mean
conditions,

Given the cascade geometry and inflow conditions, a reasonable
range of a, is selected and used in Prog, 144/0. This programme produces a

range of transformed geometries and flow angles as the vector mean conditions
very with a,, a,, being constant.

The corresponding variations of q: and at, produced by this

programme may be plotted against the values of a, (Fig. 6). Programmes

561 /A and 561/C are used with the transformed geometries and inflow angles to
produce a second variation of a¥* (and a?).

The wvalue of a2 at which the variations of g; coincide is the

correct value within the theoretical limitations, Due to the approximations
made in the theory of Ref, 2, the final value of ag may not be entirely

consistent with a,e. This restriction is not severe unless large deflections
are required at high Mach number,

3.3 Application to incompressible flow

If the flow through the cascade can be considered incompressible,
Prog. No. 144/0 and the procedure in para. 3.2 may be omitted, However,
consistent realistic values of 'incompressible' M , R(x)/x and as/us must

be specifiied for Progs. 14#/#, 5 and 7 in order to get the Reynolds number
scale correct and to ensure that the transformations operate correctly in the
limit of small %n'

3.4/



3.4 Calculation time

(a) Incompressible flow

Approximately 30 min for the first inflow angle and 15 min
per succeeding inflow angle,

(b) Compressible flow

Approximately 60 min for the first inflow angle and 25 min
for each succeeding inflow angle,

A block diagram of the programmes available is shown in Fig. 7.

4, Comparison with Experiment

Figs. 8 and 9 present comparisons of the proposed theory with
incompressible experimental results of Ref, 7, Boundary-layer flow is fully
turbulent and calculations are performed entirely from theary. Ref. 7 presents
a comprehensive survey of experimental characteristics for cascades of NACA 8410
and 0010 blade sections, The geometry of Fig, 8 is representative of
high-stagger, high-solidity blading with limited separation and should provide a
fair test of the validity of the theory for incompressible flow, The geometry
of Fig, 9 is less extreme but has more extensive separation and may lie outside
the limits of the theory,

4.4 Pressure distributions Figs., 8B and 9B

The comparison of Fig. 8B is seen to be good except downstream of the
separation point, The effects of a separated region are not included in the
pressure distribution calculation, The relatively small amount of separation
in Fig. 8 does not appear to have affected the upstream pressures to any great
extent,

The agreement of Fig. 9B is poor for two reasons., Extensive
boundary-layer separation has strongly influenced upstream pressures and there
appears to be a local separation near the nose.

4,2 Position of separation

Fig. 8A suggests that the observed separation point may be predicted
when the theoretical H* is in the range 1°8 to 2°0 provided that separation
is not extensive. The difference between these values and those given in
para, 3.3 may be due to the difference between the experimentel and theoretical
pressure distributions, Fig, 9A shows that the observed separation point
cannot be predicted from the theoretical pressure distribution when the
separation becomes extensive, Separation can be called extensive when it
covers more than 20% of the blade chord, Predictions of separation by
Stratford's method appear to be slightly pessimistic., Agreement could, no
doubt, be improved by use of the experimental pressure distribution.

4.3 Force, deflection characteristics and working range

Figs. 8C to 8F, 9C to JF indicate that the variations of C;, Cp» év

AV/U and & are predicted satisfactorily provided that separation is not
extensive,

From/
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From Figs. 8 and 9 crude criteria can be found to predict the upper
and lower limits of the working range, The upper limit to the working range
is largely governed by trailing-edge separation and arbitrarily, the upper
limit is chosen at the point where theoretical separation covers the last 20%
of the upper blade surface, i,e,, the CL where H* = 1¢9 (say) at

x/o = 048, This limit is shown in Figs, 8 and 9 and crudely corresponds
to the point where the experimental CD begins to depart markedly from the

mid-range value, The lower limit is probably governed by leading-edge
separation, especially on highly cambered profiles, and at low Reynolds numbers
it will be a laminar separation, A lower limit_to the working range can be
obtained on this basis by say, Stratford's work! 7,

Also presented in Figs, 8 and 9, are the calculations of Ref, 7.
Apart from Figs, 8C to 8F, the discrepancies between the present calculation
and the calculations of Ref, 7 can be attributed to the differences between
hand and automatic calculation. The discrepancies in Figs. 8C to 8F are
probably due to a systematic error in that particular set of calculations in
Ref. 7 since the present calculations give much better agreement with experiment.
Ref., 7 presents a large number of comparisons of theory with experiment which
indicate that theory and experiment are in good agreement provided that
separation is not extensive,

No comparisons have been made in compressible flow as the present
writers are not aware of compressible cascade measurements as camprehensive as
the incompressible measurements of Ref, 7.

5e Conclusions and Recommendations

Since the theory used in this Note leans heavily on linearisation,
good predictions cannot be expected for geometries which have combinations of
large camber, thick blades and high solidity or for geometries which have local
supersonic flow or extensive regions of separation, Certainly, if such
combinations are avoided, adequate predictions are obtained in incompressible
flow, Whether the same is true in compressible flow cannot be decided until
further comparisons are available, If such calculations confirm the
approximations made, there seems no reason why the procedure should not be
programmed for a very fast computer and used to produce design charts for
extreme geometries,

NOTATION,



NOTATION
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Distance along and normal to blade (ft)

Blade chord (ft)

Blade pitch (ft)

Axial, tangential and resultant velocity (ft/sec)

Mach number

V(1 - M3?)

Air angle (deg)

a + 90 (deg)

Blade stagger (deg)

Angle between chord and camber line at leading and

trailing edges (deg)

Camberline incidence, i = a - = ¢/o (deg)

Deviation angle 4 =

Deflection angle € = q

Fluid density (slugs/cu ft)

(deg)

Total and static pressure (1b/sq ft)

Kinematic viscosity (£t3/sec)

Cascade deflection coefficient =

Cascade loss coefficient ;v

az = M+ dro (deg)

tan @ = tan a;

AV
?; =
P, -~ Py
i %Pluf

Lift and drag coefficients per unit span

lift/unit span

1 W2
= C
2Fo0 o0

Pressure coefficient C

drag/unit span

1 3
2 POOWOOO

p- pref

1
2Pref’wref



id

sp
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Boundary-layer momentum defect thickness

> pW W
T Ee D
[o] Pewe We

Boundary-layer form parameter

SRIEFL6
o pewé ®
wo
£ Momentum defect thickness Reynolds number
v
e

Inflow conditions, i,e.,, far upstream of cascade

Outflow conditions, i.e.,, far downstream of cascade

Vector mean conditions defined by Fig., 1
Position of boundary-layer transition
Conditions at edge of boundary layer
Potential flow

Position of boundary-layer separation

Denotes incompressible function defined by the compressibility
transformations
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FIG. 6
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FIG 7

PROGRAMME LINKS
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