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MEASUREMENTS OF PRESSURE DISTRIBUTION AND SHOCK-WAVE SHAPE 

ON POWER-LAW BODIES AT A MACH NUMBER OF 6-85 

D.H. Peckham 

Experiments on a family of power-law body shapes, y a xn, at a Mach number 
of 6.85 showed that for bodies of given fineness-ratio, minimum pressure drag is 
obtained at a value of the exponent n of about 0*7, the drag being approximately 
2@ less than that of a cone of the same fineness-ratio. Comparisons of the 
experimental pressure distributions with values calculated from approximate 
theories, strictly applicable only at M = 00 and y + I, were made. It was con- w 
eluded that for low hypersonic Mach numbers (Mm h 7) a more fundamental under- 
standing of the flow field is required before reliable estimates of the pressure 
distributions on such body shapes can be obtained, 
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1 INTRODUCTION 

3 

l i The problem of determining the shape of a non-lifting body of revolution 
of given fineness-ratio having minimum pressure drag at hypersonic speeds, has 
been the subject .of numerous theoretical investigations l-8 

b . At low supersonic 
speeds, the assumption of small-perturbation potential flow can be made, but 

n this assumption does not remain valid at high Mach numbers when perturbation 
velocities become of the same order as the speed of sound. So for hypersonic 
speeds, minimum-drag shapes have been calculated using the Newtonian impact 
approximation, hypersonic small-disturbance theory, and "piston" theory, the 
main requirement in sll these methods being that l/ML is sufficiently small. A 

general characteristic of all such minimum-drag shapes, for the condition of 
given fineness-ratio 4/d, is that over the major part of the body the local 
slope is small compared with the slope near the nose; thus minimum drag is 
achieved by accepting high pressures on a relatively small area of large slope 
near the nose, with a consequent reduction in pressure on a relatively large 
area towards the base of tie body. 

The body shape of minimum drag derived by Eggers et al' using the 

. Newtonian impact approximation has a rather complicated formula, but it was 
found that it could be approximated closely by a power-law profile y cc x1' of 

-. 
4% 

exponent n = 2, for sll but small values of fineness-ratio. V/hen the effects 
of centrifugal forces in the flow were accounted for, a fatter profile was 
obtained. The advantages of simple geometry are obvious, and later investiga- 
toi's have confined their attention mainly to power-law body shapes. 

. 

The aim of the tests described in this Report was to make pressure-plotting 

measurements on a series of power-law bodies at low hypersonic speeds (14 c 7) for 
comparison with values calculated by the theories referred to above, which are 
strictly appropriate only at high hypersonic speeds, and slso to compare the 

results with those for pointed cones so that an estimate can be made of the 
centrifugal-force effects on the pressure distributions, caused by the curvature 
of the bodies in their meridian.planes. In addition, measurements were made of 
shock-wave shape in order to check the fundamental assumptions of certain 
hypersonic flow theories. 

c 2 THEORY 

2.1 Geometry 

The power-law body profile (Eig,l) is given by the equation 

(1) 



where y = radius at distance x from the nose 
e = overall length of body 
d = base diameter. 

It follows that the volume and aspect ratio are given by: 

Volume, V = R d2 4 ..-. -m- - 
4(2n + 17 

Aspect ratio, A = (n + I) d/4 . 
J 

The local surface slope, 6, at a distance x from the nose is given by 

(2) 

Clearly for n = 1 (i.e. a cone) the surface slope is constant, but for 
n < I the slope at the nose is infinite. However, the radius of curvature at 
the nose, R,’ varies in the folloming way 

For 0 c n < & R. is infinite 

i n=* R. is finite (4) 

$<n<l R. is zero . 

From Fig.1 it can be seen that the area of a surface element, dS, is 
given by 

dS 
dx d$ 

= YdsW = Y,,,~ 

where s J distance measured along the body profile _ . 

9 = meridional angle. 
.~ .-r 

The contribution to drag from the pressure on this surface element is 
.>- 

dD = (p - pJ dS sin 6 . 

Thus the total pressure drag is 



5 ‘i-5 

l 

den 
D = 2 

JS 
(P - P,) Y tan 6 dx d$ 

00 

4 
D = 2~ 

1 
(P-PJYdY l 

0 

The drag coefficient CD referred to base area is then 

1 

CD = D 

s, ~ (d/w2 
= 2s cp?*a(*) l 

0 

2.2 Theoretical pressure distribution 

To determine the shape of tho non-lifting body of revolution having 
i minimum pressure drag at hypersonic speeds, Eggers et al? made use of the 

Newtonian approximation for the distribution of pressure coefficient, i.e. 
'. 

*. 

.2 
C = 2 sin2 6 = A!-=- 

P I + jr2 

where $ $enotes the derivative dy/dx. 

For the case of given length and base diameter (i.e. given fineness- 
ratio) they found that the shape of the minimum-drag body of revolution could 
be represented in parametric form by 

2 

Yl ( > 1 -I- y2 

Y=& * 
Y3 

(5) 

(6) 

(7) 

the minimising curve not passing through the origin but having a forward termina- 
tion point at (0, y,) with 9, = 1. 
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It was found that the body shape given by equation (7) could be approxi- 
mated olosely by a simple power-law shape y 0: x" withn=$ Strain-gauge bal- 

ance measurements were therefore made of drag on a series of bodies with n = 1, 

49 9 ' and $, for a range of Mach numbers between 2*7 and 6*3. These showed that 
the lowest drag coefficient was given by the 3 power body shape, its drag being 
about 1% less than a cone (n = 1) of the same fineness-ratio. The experiments 
also showed that the drag of the & and $- power bodies was less than that pre- 
dicted by the Newtonian approximation, and this was attributed to the neglect 
of centrifugal-force effects in the flow past the highly-curved noses of these 
blunter bodies. (It must be noted ! though, that this conclusion is based on 
measurements of overall drag, and not from measurements of pressure distribution.) 

Eggers et a? therefore considered the theory of Busemann', which gives the 
reduction in pressure coefficient due to centrifugal-force effects as 

ac = x.$ 
p Roe 

(8) 

in the limit M + w and y + 1, as the shock layer becomes infinitely thin, where 
. 

R = radius of curvature of body in meridian plane 
c 

y cos 6 dy, the meen stream velocity in the shock layer 

0 

u = free stream velocity. 

A comparison of values of C obtained from equations (6) and (8) with 
experimental distributions on at&ent ogive body of -3/d = 3, at a Mach number 
of 6, led Eggers et al' to conclude that the theory of Busemann 9 strongly over- 
estimates centrifugal-force effects at free-stream Mach numbers which are large, 
but for which y of the flow downstream of the bow shock is closer to I-4 than 
unity. They therefore proposed two modifications to the Busemann theory' for 
use under such conditions - firstly, since the mean radius of curvature of the 
flow in the shock layer would be expected to approach the body radius of 
curvature, R, only near the nose, while with increasing distance downstream of 
the nose it would be expected to become larger than R, it was suggested that a 

better approximation to the mean radius of curvature, ii, of the flow in the shock 
layer would be 
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ii 1 
5 = 1 - y/@/2] l 

(9) 

i 

. c 

Secondly, it was suggested that a simple approximation to the mean velocity 
in the shock layer, i?, would be 

Thus 

AC = 
P 

cl- d2 
Y.- *I cos6 . (11) 

The shape of the minimum-drag body of revolution determined by using 

equations (6) and (11) was found to be somewhat more blunt in the region of the 
nose, and to have more curvature in the region downstream of the nose than the 

$-power body shape. Calculation of its drag showed that it was only a few per 
cent less than that of the s-power body, but no wind tunnel tests were made at 
that time to check this estimate. 

This description of the derivation of the shape of the minimum-drag body 
of revolution of given fineness-ratio by Eggers et a?, has been described in 
some detail since theirs was the first published work on the subject (I 956). 
Later, Cole2 showed, by using hypersonic small-disturbance theory, that the $- 
power and 2/3-pourer bodies are minimum-drag shapes for the cases of centrifugal- 
force effects neglected, and included, respectively. These results were obtained 
using the slender-body approxlimation 

. . 
C 
P 

= 2y2+? . 
( ) 

Another approach by Grodzovskii andKrashohennikova',using "piston-theory", 

gave n = 0.7 as the value of the exponent for a minimum-drag power-law body. 

More recently, Miele and collaborators 5-7 have produced a series of reports 

on minimum-drag shapes in both two- and three-dimensional flows, including also 
the effects of skin friction. Most recent of all, Boyd8 has extended the study 

of minimum-drag shapes to include ducted bodies. 

The drag variations with the power-law exponent n for the various theories 

are illustrated in Fig.-/, the drag of a pointed cone (n = 1) of the same fineness- 
ratio being used as a basis for comparison, 



Finally, it must be emphasised that the above discussion is limited to the 
theory of minimum-drag bodies of power-law profile, where dy/dx is continuous, 
and the surface pressure coefficient does not fall to zero. If theseoonsiraints . 
are removed, body shapes of lower drag than pori-er-law bodies can be derived 
theoretically. A detailed examination of the various optimum bodies of minimum 
drag, depending on theconstiaintsimposed, has been made by Hayes and Probstein4. 

2 

2.3 Shock-wave shape 

In the theory 10 of asymptotic hypersonic flows, the theory states that for 
bodies of the form y oc xn, the shock-wave shape is given by y oc x" where 

m = nfor& <n<l 04) 

III = kforO<n<$ 05) 

2 where k = - 
3 + j’ 

with j = 0 for two-dimensional flow, and j = 1 for axisymmetric 
flow. 

In the case cf equation (14), similarity solutions in the form suggested by 
Lees and Kubota II are available, and in the case of equation (15) the solution is 

12 . 
given by the "blast-wave analogy" as postulated by Lees , and by Cheng and 
Pallone13. 

Y 
A simple way to check the above theories is therefore to photograph the 

shock-wave shape on a variety of power-law bodies. 

3 DESCRIPTION OF TESTS 

The tests were made in the RA,E. 7 in x 7 in hypersonic wind tunnel 14 at a 
Mach number of 6-85. All tests were mrde at a nominal stagnation pressure of 
750 lb/in2 gauge, and a stagnation temperature sufficient to avoid liquefaction 
of the air in the test section (To fi 600'K). Under these conditions a Reynolds 

number of approximately O-5 million per inch was obtained. The models varied in 
length from 3.75 in to 5 in, details are given in Fig.2. 

Pressures were measured on a conventional multi-tube mercury manometer bank, 

with one tube referred to a vacuum reference, Steady readings were obtained after 

seme 10 to 15 seconds running, when the manometer was clsmped and the tunnel shut 

down. Pressure tappings on each model surface were concentrated along one 
generator, with a single tapping on an opposite generator to enable the symmetry 
of the flow to be checked. Pressure measurements were made at roll =angle, 9, of 

O", 30°, 60°, VO", 135" and 180°0 In this way, the pressure distribution at zero 

incidence was obtained as a mean from six separate tests. 

t 

1 
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Evidence suggests that manometer readings were measured to an accuracy of 
to-02 in of mercury, which with a similar error ; 

in reading the reference pressure, 

corresponds to to*003 error in pressure coefficient, C e P 
Errors in setting model 

The possible 
P 

incidence could amount to a further error in Cp of up to +0*002. 
total direct measuring error in C was therefore +0*005. Additional to this 

P 
measuring error, was the error arising from the lack of flow uniformity in the 
test section, the variation of dynamic pressure in the region of the model being 
within ?I$. 

On the basis of the above figures, the estimated maximum experimental 
errors, and R.M.S. experimental errors, are tabulated below: 

52 

0.1 

O-3 

0*5 

Maximum error in C R.M.S. error in C 
P .s- 

~0.006 20 l 004 

+O -008 20 -005 

40-010 to-006 

But since the res*ults are means from six tests, the errors should be less than 
. those quoted above. 

4 DISCUSSION OF EXFERIMENTAL RESULTS 
i 

4.1 Pressure distributions 

The pressure distributions measured at a Mach number of 6.85 on bodies of 
fineness-ratio 2 are plotted in Fig*3, and those for bodies of aspect ratio 
unity in Fig..& In both cases the results are compared with values &Lculated 
from the Newtonian approximation C = 2 sin2 6.. Also shown is the theoretical 

P 
pressure coefficient for the comparable pointed cone, as calculated by the theory 
of Taylor and Maccoll 15 ; experiments on cones have shown excellent agreement with 
this thecry 16 . 

For the 2/3 and-.&power bodies it is found that the Newtonian approximation 
underestimates &h.e.lprecsare coefficient over most of the body surface, vrhile for 

i the $-power bodies it'.oserestimates the pressure coefficient - except towards the 
rear of the body of fineness-ratio 2.- Thus the inclusion:of an ,allowance for 

* centrifugal-force effe@s'..on the--f-low-inthe~shock layer (as discussed in 
section 2.2) would increase the divergence-*between theoretical and experimental 
values in the case ofrthe 2/3 and $-power bodies, and might-decrease the 

discrepancy between theoretical and experimental values in the case of the $- 
power bodies,' cnly for regions close to the noses of these bodies. Of course, 
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the Newtonian approximation may be as much at fault as the correction term for 
centrifugal-force effects; this possibility is discussed later. 

. 
The way in which these pressure distributions contribute to drag is shown 

more clearly in Figs.5 and 6, where Cp y/(13/2) is plotted against y/(d/2), the 
drag coefficient being given by the expression: 

Thus we find, for example, that in the case of the bodies of fineness- 
ratio 2 and n = l/2, 2/j and 3/4, the drag contribution from those parts of the 
body surface in the approximate range 0 < y/(d/2) < O-5 is greater than that for 
a cone (n = i), while for y/(d/2) > O-5 the drag contribution is less, with the 
net result that the overall drag of the 2/3 and j/&-power bodies is less than 
that Of' the cone, and for the l/2-power body about the same. Integration of the 
curves in Fig.5 gives: 

cD n Experiment M = 6-85 

l/2 0.136 

2/3 0*105 

3/4 0-106 

1 0*131" 

Fineness-ratio = 2 s- 

cD cD 
Newtonian (M =CXJ 1 Taylor-Maccoll (IJ = 6.85) 

0.127 

O*lol 

O*OYY 

O-118 O-131 

*See Ref.16. 

The above values are plotted in Fig.7, together with estimates of drag 

variation with n from Refs.2 and 3. It should be noted that although the 

experimental values of drag coefficient are greater than that estimated from 
the Newtonian approximation, the measured percentage reduction in drag 

coefficient relative to the cone value for the 2/3 and j/&-power bodies is more 
than that predicted by the Newtonian approximation. Also shown are two experi- 
mental results for a Mach number of 7*7 taken from Ref.17; these give rather 
higher values of drag coefficient relative to the cone than the present tests, 
but it is shown in Ref.17 that these values of drag coefficient are probably 



high due to the effect of boundary-layer interaction, resulting from the 10~ 

. value of Reynolds number in these tests. 

Thus experiments show that for bodies of given fineness-ratio, minimum 
pressure drag coefficient is obtained with a power-law body of exponent 

n fi O-7, the drag being about ,203 less than that of the comparable cone0 This 
value of n is broadly in agreement with the various theoretical estimates 
(though these theories apply strictly only to $1 = 0~). The magnitude of the oc 
drag reduction is greater than that predicted by the Newtonian approximation, 
but less than that predicted by the theories of Refs.2 and 3. 

Fig.8 gives the variation of volume and wetted area with the exponent n, 
and it can be seen that the power-law body of n = O-7 offers some 25:'o more 
stowage volume th?an the cone. However, the wetted area is also greater, so in 
practical cases where skin-friction drag must also be included, it can be 
expected that the body of minimum (pressure + skin friction) drag would have a 
value of n slightly greater than 0.7 (see Ref,7)- 

The reason why the Newtonian approximation gives a fairly close estimate 
of the drag coefficient and the exponent n of the power-law body of minimum drag 
(for M, h 7), but not of the reduction in drag relative to that of the cone, is 
shown in Fig.9 where Cp/sin2 6 
Cp/sin2 6 

is plotted against the body slope 6 (a value of 
= 2 corresponding to the Newtonian approximation). It can be seen 

that for the 2/J and j/&-power bodies most of the experimental results lie 

within about ?j;, of the Newtonian value, while for the cone C /sin2 S varies 
P 

between 2-l and 2.5 for 30" > 6 > loo. Fig;.9 also shoves the effect of body 
curvature on the pressure distribution, the pressure on the l/2-power body 
being more than lO$ less than those on bodies of zero longitudinal curvature 

( i.e. n = 1). The apparent success of the Newtonian approximation in estimating 
pressures on the 2/3 and 3/L+-power bodies is therefore seen to be fortuitous, 
the underestimation of pressures due to the effect of body slope being balanced 
by the neglect of centrifugal-force effects on the flow past these curved bodies. 

The decrease in pressure coefficient due to body curvature can be compared 

with the Busemann estimate (equation (7)) and the modification to the Busemann 
estimate proposed by Eggers et al (equation (10)). Thus for example (from 
Fig.lO), with the l/2-power body of 4/d = 2 the slope at x/4 = 0.2 is 15*6', 
and the Cp at this point is O*lL+Lb; on a cone of the same slope the C is 

P 
0*164, giving the change in C 

P 
due to body curvature as A C = - 0*02O in this 

P 
case. (But bearing in mind the level of experimental accuracy, the inaccuracy 
inherent in deriving a small difference between two large numbers, and 
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differences which could arise through boundary-layer growth effects, this value 
of A Cp must be considered as only very approximate.) 

The Busemann expression (equation (8)) gives: 

A C P 
= - $ cos 6 = - 0.125 x 0.963 T - 0.120 

which is a gross over-estimate, even if all the possible experimental errors in 
A Cp are assumed to be cumulative, 

The modification to the Busemann expression (equation (11)) gives: 

A C = - $ 
P 

cos 6 = - 0-120 x 0.553 = - 0=067 

which is still a large over-estimate. 

It appears therefore that neither of these ways of estimating the effect 

of body curvature on pressure distribution is appropriate for 
low as 7, probably because over the rclati~ylarge distance 
wave and the body surface flow conditions vary significantly, 
"centrifugal-force effect" approach is not very meaningful. 

4-.2 Shock-wave shape 

The shock-wave shapes were obtained by measurement from 

Mach numbers as 
between the shock 
and a simple 

enlarged photo- 

graphic prints of shadowgraph pictures of the flows past the models. The shock- 
wave shapes obtained from the various bodies are plotted in Figs.ll-14; Figs.ll- 
13 give results for bodies of various fineness-ratios of exponent n = l/2, 2/3 

and 3/4 respectively, while Fig.14 gives the results for bodies of fineness- 
ratio 3 and values of n ranging from l/IO to 3/4. 

Since the figures are plotted on logarithmic scales, the slope of the curves 
gives the exponent m of the shock-wave shape directly, and it is found that there 

is some variation of m with downstream distance from the nose of the bodies (m 
increasing with increase of x/4). This effect may be the result of boundary- 
layer growth. There is also a slight tendency for m to increase with increase 
of fineness-ratio, at a given value of n; this effect too may be due to boundary- 
layer effects. 

The variation of the shock-wave exponent m with the body exponent n is given 
in Fig.15, and the results show that the shock-wave shapes change uniformly with 
n over the range l/IO < n < 3/4, with no discontinuity at n = l/2 as indicated in 

the theory of asymptotic hypersonic flows. This is in agreement with the tests 
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made by Freeman IO et al at the N.P.L., and the theoretical implications of this 
. result are discussed in Ref.10, 

5 CONCLUSIONS 
* 

Experiments on a family of' power-law body shapes, y oc xn, at a Mach number 
of 6*85 have shown that: 

(1) For bodies of given fineness-ratio (length/base diameter), minimum 
pressure drag is obtained at a value of the exponent n approximately equal to 
0.7, thz drag in this case being about 2Q% less than the cone (n = I) of the 
same finaness-ratio. For n = O-7, the stozage volume is some 25% greater than 

that of the cone, but its wetted area is also greater than that of the cone; SO 
in praotioal cases where skin friction drag must also be included the body of 
minimum (pressure + skin friction) drag wotld have a value of the exponent n 
slightly greater than 0.7. 

(2) The Newtonian impact approximation gives a fairly close estimation 

of the 3rag coefficient, and the exponent n, of the power-law body of minimum 
drag fcv Moo ti 7, but not qf the dr ag reduction relative to the cone shape. The 
experimental results show that the apparent success of the Newtonian approxima- 
tion in estimating the pressure distribution on the 2/j and j/4-power bodies of 
fineness-ratio 2 is largely fortuitous, the under-estimation of pressures due to 
the effect of body slope being balanced by the neglect of centrifugal-force effec 
cn the flow past these curved bcdies. Hypersonic small-disttirbance theory, and 
"piston-theory", alsn gave good estimates of the value af' the exponent n for the 
minimumd'rag body, but over-estimated the drag reduction relative to the cone. 

ts 

(3) The reduction in pressure coefficient due to body curvature was found 
to be much less than that given by the theory of Busemann for infinite Mach 
number, or by the modification to the Busemann theory proposed by Eggers et al, 

(4) The variation of the shock-wave ahape exponent m with the body-shape 
exponent n is smooth, with no apparent discontinuity at n = l/2 as indicated in 
the theory of asymptotic hypersonic flcws. 
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Appendix 

It has been pointed out by N.C. Freeman and H. Hornung of Imperial College 

that the correlation of shock-wave shapes on power-law bodies is best performed 
as follows. 

If the equation for the body is written as 

where D is a non-dimensionalizing length scale, then the ordinates and abscissae of 

the shock-wave shapes may also be non-dimensionalized by this length scale. If 
this is done, the shock-wave shapes for all values of 4/d and a particular value of 
n collapse onto a single curve for each Mach number. Moreover, for large Mach 

numbers, the correlation is independent of M over a large range of x. 

The results in Figs.11, 12 and 13 have been replotted in this way and are 
shown in Figs.16, 17 and 18 respectively. 

A similar correlation of surface pressure distribution is also suggested 
by some work at Imperial College, that is, plotting the pressures as 

P log - 
( ) PJ2 

versus log ; 
0 

rather than versus x/d or x/d. This has not been attempted for the present 

results however. 
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