Analysis of Hinge Moment Data for Rectangular and Near Rectangular Trailing Edge Controls at Supersonic and Transonic Speeds
by.
D. Isaacs

LONDON: HER MAJESTY'S STATIONERY OFFICE
1966

```
U.D.C. NO. 533.694.511 : 533.6.013.155 : 533.6.011.35/5
```

ANALYSIS OR HITNGE MONENT DATA POR RECYANGULAR AND NEAR RECTANGULAR TRAILING IBDGE CONTROIS AT SUPERSONIC AND TMANSONIC SPHMDS
by
D. Isaacs

SUMMARY

Similarity miles have been used at supersonic and iransonic speeds to obtain a correlation of available experimental data on hinge moment curve slope, $\left(d C_{H} / d \eta\right)$, and to compare the experimental values with theoretical estimates.

The effects of varying control aspect ratio, thickness chord ratio, body interference, hinge line location, and trailing edge thickness are examined, suitable theoretical or empirical methous for predicting these effects are indicated, anỉ their range of validity and accuracy determined.
COITIENTS
Page3
2 GHOTCE OF DATA 3
3 MTTHOD OR ANAIYSIS OF DATA 4
$4 \quad \mathrm{dC}_{\mathrm{H}^{\prime}} / \mathrm{d} \mathrm{\eta}$ AT SUPERSONTC SPEDDS 8
4. 1 Linear theory for rectangular controls 8
4. 2 Comparison of theoretical and experimental hinge moment coeificients 10
1.2.1 Controls with hinge line at leading edge 10
4.2.2 Effect of hinge line location 14
4.2.3 Tiffect of trailing edge thickness 14
$5 \quad \mathrm{aC}_{\mathrm{H}} / \mathrm{d} \eta$ AT TRAINSONTC SPHEDS 14
5.1 Theoretical considerations 14
5.2 Correlation of experimental data 16
5.2.1 Controls with hinge line at leading edge 16
5.2.2 Effect of hinge line location 18
5.2.3 Pffect of trailing edge thickness 18
6 CONCLUUSIONS 18
Appendix A $\quad d C_{F} / d \eta$ for a rectangular control on an infinite wing of double wedge cross section at transonic Mach numbers 20
Table 1 Details of wings and controls 25
Table 2 Details of hinge moment correlation 28
Symbols 33
References 36
Illustrations Figures 1-23
Detachable aiostract cards

1
 INIRODUCTION

A large amount of experimental data on trailing edge control hinge moments at supersonic and transonic speeds has accumulated during recent years. Although in several cases the individual experimental data have been compared with theoretical estimates, a much better understanding can of ten be obtained by a more comprehensive analysis covering a wider range of experimental configurations.

Using similarity parameters a correlation of the available experimental data is attempted here, and the effects of control aspect ratio, thickness chord ratio, body interference, hinge line location, and trailing edge thickness are examined.

At transonic speeds an approximate theory is developed for $\mathrm{dC}_{\mathrm{H}} / \mathrm{d} \eta$ of a rectangular control, based on the transonic small perturbation theory solution for the flow over a two dimensional wing of double-wedge profile. A comparison is made betweon the oxperimental data and this theory at transonic speeds, and with exiṣting linear thcory at supersonic speeds, in order to determine the range of applicability of theoretical mothods, and to obtain a mothod of extrapolating the data to coniigurations outside the range of existing measurements.

2 CHOICE OF DATA

A complete list of all configurations analysed in this report is given in Table 1. This shows in some detail all relevant goometrical propertics of the wings and controls, in addition to giving the reference number of the data, the Reynolds number or the tests, and bricf details of the experimental technique used.

Although some hinge moment measurcments made on a frce flight model have been included in the analysis, most or the data is of wind tunnel origin and includes measurenents made using most of the standard tosting techniques, viz. sting mounted models and half models mounted on reflection plates over the entire speed range, with the addition of the "transonic bump" technique ${ }^{1}$ at transonic speeds.

In all cases the hinge moments have been measured directly using internal strain gauge balances located eithar in the wing along the hinge line; or alternatively, within the body of a wing-body combination, or beneath a reflection plate or bump surface.

Measurements of control hinge moments on a two-dimensional wing of circular-arc section by Czarnecki and Mueller ${ }^{2}$, have shown the importance
of fixing boundary layer transition at low Reynolas numbers at supersonic speeds. At a Reynoids number of 10^{6} based on wing chord, transition did not occur naturally, and measured values of $d C_{H} / d \eta$ at zero η were much lower than those measured with transition artiricially fixed. In view of this result, it would have been logical to select data for analysis where either boundary-layer transition had been artificially fixed, or alternatively, where the Reynolds number vas sufficiently large for natural transition to have taken place ahead of the control. However, due to the small amount of data available, it has been necessary to include in the present analysis data which had been obtained under conditions of natural transition, with no record of where transition had occurred. Although sone of these measurements with natural transition were obtained at Reynolds numbers (based on wing root chora) as low as 2.2×10^{6}, the majority of the results were ob cained at Reynolds numbers of 5×10^{6} and above.

Not all the available data has been included in the following analysis. Some showed large amounts of scatter betwoen repeat tests on the same . configuration, and was rejected on grounds of accuracy. ilthough controls of near rectangular planiorm have been included in the anolysis, e. g. rectangular controls with raked tips, in some cases controls were considercd to deviate too much from a rectangular shape and the data were not used. Similarly, data for controls having discontinuitios in their profile shape (other than double-wedge profile) have been ignored. In some cases of rectangular controls the control geonetry was so complicated tiat the data could not be conveniently analysed, e. g. the individual eifects of aspect ratio, hinge line location, hinge line thickness, and trailing edge thici:ness could not be identified. In the case of outboard, part span controls on reillection plate mounted wings at transonic speeds, it was often difficult to determine the effect the roflection plate had on the control hinge moments, i. e. the control was neither so far away from the reflection plate that its effect could be ignorca, nor was it so close to the reflection plate that the control aspect ratio was effectively doubled. In casos like this the data were rejected.

3 METHOD OR ANALYSIS OF DATA

The analysis was restricted to rectangular and near rectangular controls, with less tion 10° of leading and trailing edge swecp (Fig. 1), and with the hinge line parallel or nearly parallel to the control leading edge.

The aspect ratio of the control was defined as

$$
A=b^{2} / s
$$

where b is the control span and S is the control area. In the case of a control mounted on a reflection plane or on an axis of symmetry of a circular cross section body, the aspect ratio of the control was assumed to be twice that of the exposed panel.

Fig. 2 illustrates the definition of control span (b) used in the analysis. In the case of a control mounted on a body, a gross semi-span (s) which includes the body radius was defined,

$$
s=\frac{b}{2}+r
$$

A control whose span is identical to the wing has 'free' tips or side edges, whereas a control whose span is less than that of the wing can have either 'free' tips or tips which are 'bounded' by the wing (Fig.2).

Details of wing and control section shape were given in the original data in most cases. However, additional information was required in the case of some NASA type aerofoils and tinis was obtained from reference 3. The majority of controls had a lincar variation of thickness with chordwise location (Fig. 3 a and b), and the thickncss chord ratio of the control did not vary across its span. In thesc cases the control thicknoss parameter τ was defined as

$$
\tau=\frac{t}{c},
$$

where t is the conirol thickness at its leading edge and c is the choid. For controls with plane upper and lower surfaces, the trailing edge included angle was defincd as

$$
\phi=2 \tan ^{-1} \frac{1}{2}\left(\tau-\tau_{1}\right)
$$

or'

$$
\phi=2 \tan ^{-1} \frac{1}{2} \tau
$$

where $\tau_{1}=0$.
Here τ_{1} is a parametcr deiining the trailing cdge thickncss of the control (Fig. 3b),

$$
\tau_{1}=\frac{t_{1}}{c}
$$

where t_{1} is the control thicknoss at the trailing edge.

In a few cases with raked tip controls on delta wings (see Nos. 3 and 4 in Table 1), the control profile was a continuation of the wing proiile (NACA 0005-63), so that inevitably the thickness-chord ratio of the control varied across its span. Initially, τ was defined at an arbitrary spanwise station. This value was later checked by determining a mean value of τ across the span.

$$
\tau_{\text {mean }}=\int_{0}^{1}\left(\frac{\max }{c}\right) \mathrm{a}\left(\frac{y}{b}\right),
$$ measured from the root. The agreement between the two values ras found to be good. In these cases ϕ was again defined as

$$
\phi=2 \tan ^{-1}\left(\frac{\tau}{2}\right)
$$

In the analysis of the effect of hinge line location some of the data used was for controls of double-wedge cross section. In all cases, the rear wedge of the control was a continuation of the ving section (Fig. 3c), and ϕ was taken to be the included angle at the trailing odge.

The hinge moment coefficient C_{H} was defined as

$$
\mathrm{S}_{\mathrm{H}}=\frac{\mathrm{H}}{\mathrm{qS} \overline{\overline{\mathrm{C}}}}
$$

where H is the hinge moment measured about the hinge line (positive when it tends to derlect the trailing edge domavards), q is the frea stream kinetic pressure and $\overline{\overline{\mathrm{O}}}$ is the control a.erodynamic mean chord.
i.e. $\overline{\bar{c}}=\int_{0}^{b} c^{2} d y \int_{0}^{b} c d y=\frac{1}{5} \int_{0}^{b} c^{2} d y$.

Hinge moment data of NASA origin for controls both with and without leading edge.sweepback usually has $2 m$ as tho reierence volume, where lit is defined as the first moment of area of the control behind the hince line about the hinge Iine. In all cases the data has been corrected to the standard form of this analysis, viz.

$$
\mathrm{C}_{\mathrm{H}}=\frac{\mathrm{H}}{\mathrm{q} S \overline{\overline{\mathrm{c}}}}
$$

For tapered controls with swept leading edges, with the hinge line a line of constant percentage chord (rigs.1b and 1d), we have

$$
\overline{s \bar{c}}=\int_{0}^{b} c^{2} d y=b c_{r}^{2}\left[\lambda+\frac{(1-\lambda)^{2}}{3}\right]
$$

and

$$
2 \mathrm{M}^{\prime}=\left(1-\frac{h}{c}\right)^{2} b c_{r}^{2}\left[\lambda+\frac{(1-\lambda)^{2}}{3}\right] \cos \Lambda_{H_{0} I_{0}},
$$

i.e.

$$
2 M^{2}=S \bar{C}\left(1-\frac{h}{c}\right)^{2} \cos \Lambda_{\mathrm{H} \cdot \mathrm{I}_{0}}
$$

where c_{r} is the control root chord, λ is the control taper ratio, and h / c and $\Lambda_{H_{0}, \text {. }}$ are the chordwise location and sweepback angle of the hinge line respectively. For tapered controls with unswept leading eages (Figs. 1a and 10), and with the hinge line at the leading edge, it follows that,

$$
2 \bar{n}^{\prime} \equiv S \overline{\bar{c}} .
$$

For rectangular controls with raked tips (Fig. 1e),

$$
S \overline{\bar{c}}=c^{3}\left[\frac{\overline{\mathrm{~B}}}{\mathrm{c}}-\frac{2}{3} \cot \cdot \Lambda_{\mathrm{T}}\right],
$$

and

$$
2 \pi=\left(1-\frac{h}{c}\right)^{2}\left[\frac{b}{c}-\frac{1}{3}\left(1-\frac{h}{c}\right) \cot \Lambda_{T}\right]
$$

where c is the constant chord of the inboard part of the control and $\Lambda_{r \mathcal{L}}$ is the sweepback angle of the tip. In the above expression for $\overline{\mathrm{E}}$ and $2 \mathrm{~m}^{2}$ for both tepered controls and rectangular controls with raked tips, b should be replaced by $b / 2$ when the control is nounted on a reflection plane or body.

The control deflection (η) was always measured normal to the hinge line, and was defined as being positive when the trailing edge was derlected downvrards. In general, the variation of C_{H} with η was non lincar, and the present analysis has been restricted to the initial hinge moment curve slope, $\mathrm{ac}_{\mathrm{H}} / \mathrm{dm}$ at zero η.

Full cetails of the anolysis are given in rable 2.
$4 \quad \mathrm{dC}_{\mathrm{H}} / \mathrm{d} \mathrm{\eta}$ AT SUPIRRSONIC SPEEDS
4.1 Linear theory for rectangular controls

Two dimensional
For a rectangular control of infinite aspect ratio, the expressions for lift coefficient C_{L} and aerodynamic centre position x_{a}, arc:-

$$
\begin{equation*}
\frac{d C_{L}}{d \eta}=\frac{4}{B} \text { and } \frac{x_{a}}{c}=\frac{1}{2} \tag{1}
\end{equation*}
$$

where $\beta=\sqrt{M^{2}-1}$.
If h / c is the chordwise location of the hinge line,
then

$$
\begin{equation*}
-\frac{d C_{H}}{d \eta}=\frac{2}{\beta}-\frac{4}{\beta} \cdot \frac{h}{c} . \tag{2}
\end{equation*}
$$

For $h / c=0$, this becomes

$$
\begin{equation*}
-\frac{d c_{\mathrm{H}}}{d \eta}=\frac{2}{\beta} \tag{3}
\end{equation*}
$$

Rectangular control with two "free" tips

This solution is identical to that of an isolated rectangular wing ${ }^{4}$. From

$$
\begin{equation*}
\frac{\partial C_{L}}{d \eta}=\frac{4}{\beta}\left(1-\frac{1}{2 A \beta}\right) \tag{4}
\end{equation*}
$$

and
we have for $h / c \neq 0$,

$$
\begin{equation*}
-\frac{\partial C_{H}}{\partial \eta}=\frac{4}{\beta}\left(1-\frac{1}{2 A B}\right)\left\{\frac{1}{2}\left[1-\frac{1}{3(2 A \beta-1)}\right]-\frac{n}{c}\right\}, \tag{5}
\end{equation*}
$$

which is valid for $\beta A>1$ (Fig. $4 a$).
Equation (5) can be written as,

$$
\begin{equation*}
-\frac{d C_{H}}{d \eta}=\frac{2(2 A \beta-1)}{A \beta^{2}}\left[\frac{(3 A \beta-2)}{3(2 A \beta-1)}-\frac{h}{c}\right] \tag{6}
\end{equation*}
$$

which for $\mathrm{h} / \mathrm{c}=0$ becomes

$$
\begin{equation*}
-\frac{d C_{H}}{d \eta}=\frac{2}{\beta}-\frac{4}{3} \frac{1}{A \beta^{2}} \tag{7}
\end{equation*}
$$

For $1 / 2<\beta A<1$, the expressions for $d C_{L} / \partial \eta$ and x_{a} / c given in Ref. 4 are considerably more complex, and are not reproduced here. Por most. controls of practical size and thickness, linear theory is not likely to be accurate over this range of βA, since the flor will be transonic in nature.

Rectangular control with two 'bounded' tips

The expression for $d C_{H} / d \eta$ has been obtained by Tucker and Nelson ${ }^{5}$ for a control on a. rectangular planform wing, and for $h / c=0$ it is

$$
\begin{equation*}
-\frac{\partial C_{H}}{d \eta}=\frac{2}{\beta}-\frac{8}{3 \pi} \times \frac{1}{A \beta^{2}} \tag{8}
\end{equation*}
$$

The range of validity of this expression depends upon control and wing planforms. The limit due to control planform is identical to that for a control with 'free' tips, viz.

$$
\begin{equation*}
\beta A \geq 1 . \tag{Fig.4a}
\end{equation*}
$$

The two limits due to wing planform are

$$
\beta A \geqslant \frac{b}{b_{w}-2 y_{c}-2 b}
$$

and

$$
\begin{equation*}
\beta A \Rightarrow \frac{b}{2 y_{c}} \tag{Fig.4C}
\end{equation*}
$$

where b_{w} is the wing span and y_{c} is the distance from a reflection plane to the inboard edge of the control. In the case of a control situated next to a reflection plane, only the first of these two limits applies. Putting $y_{c}=0$ in the expression and writing $b / 2$ for b and $A / 2$ for A we obtain

$$
\begin{equation*}
\beta A \geqslant \frac{b}{b_{w}-b} \tag{Fig.4d}
\end{equation*}
$$

The above expression for $d C_{H} / \mathrm{d} \eta$ applies to controls with 'boumded' tips on any wing; in cach case, however, the first of the two limits due to wing planform
shape is different. In the case of a delta wing or any wing with a raked tip, this limit is

$$
\begin{equation*}
\beta A \geqslant \frac{\left(1+\beta \cot \Lambda_{L_{0}, E_{o}}\right) b}{\left(D_{w}-2 y_{c}-2 b\right)} . \tag{IIg.4e}
\end{equation*}
$$

For $\beta A \leqslant 1$, the expression for $\mathrm{do}_{\mathrm{H}} / \mathrm{d} \eta$ can be obtained from Ref. 5 .
Rectangular control with one 'rree' tip and one 'bounded' tip
From reference 5 we have for $h / c=0$

$$
\begin{equation*}
-\frac{\partial C_{H}}{d \eta}=\frac{2}{\beta}-\frac{2}{3}\left(\frac{2+\pi}{\pi}\right) \frac{1}{A \beta^{2}} \tag{9}
\end{equation*}
$$

where the limits are

$$
\begin{equation*}
\beta \mathrm{A} \geqslant 1, \tag{Fig.4a}
\end{equation*}
$$

and

$$
\beta A \geqslant \frac{b}{b_{w}-20}
$$

For

$$
\beta A \leqslant \frac{b}{b_{w}-2 b},
$$

and

$$
\beta A \geqslant 1,
$$

the expression for $\mathrm{dC}_{\mathrm{H}} / \mathrm{a} \eta$ is given in Ref. 5.
4.2 Comparison of theoretical and experimental hinge moments coeificients

4.2.1 Controls with hinge line at leading edre

Available experimental data for controls with the hinge line at the leading edge is showm in Fig. 5. The data have been plotted in the form of the usual supersonic similarity parameters $\left(-1 / A d \mathrm{C}_{\mathrm{H}} / \mathrm{d} \eta\right.$ against $\mathrm{A} \sqrt{\mathrm{M}^{2}-1}$). Linear theory estimates for a two dimensional control, a rectançular control with 'free' tips, and a rectangular control with 'bounded' tips, are also shown in this figure. The experimental data collapse fairly well onto a single curve for $2<\mathrm{A} \sqrt{\mathrm{M}^{2}}-1<20$, the widest scatter (80,0 of the data within $\pm 10 \%$ of the mean curve) occurring at low values of $A \sqrt{n^{2}-1}$. No significant differences are present between the data for difforent types of planform, and although at small values of $A \sqrt{4^{2}-1}$, the results for controls having 'bounded' tips fall slightly below those for controls having 'Irce' tips (the opposite
effect to that predicted by theory), the differences are not marked. At all values of $\mathrm{A} \sqrt{\mathrm{m}^{2}-1}$ the experimental points are some 20% less than the theoretical. estimates.

There are several possible reasons for the discrepancy between experiment and linear theory: the finite thickness of the controls, interference effects from bodies, and the effect of gaps between control and reflection plane or body.

Tucker and Nelson ${ }^{5}$ have estimated the characteristics of rectangular trailing edge controls having finite thicknoss with plane uppur and lower surfaces. Their method was to assume that the use of third order approximations to the pressure coefficients, altered only the marnitude of the pressures on the control, the shape of the pressure distribution remaining unaltored; i.e. if the ratio of the third order approximation to the linear approximation for $d 0_{H} / d \eta$ of a two dimensional control with thickness is calculeted, this factor can then be applied to the linear theory estimate for a rectangular control. For small control deflection the thickness factor depends only on the trailing cage included anglo ϕ, and is given by,

$$
\begin{equation*}
K_{\phi}=1-\frac{C_{2}}{C_{1}} \phi+\frac{3}{4} \frac{C_{3}}{C_{1}} \phi^{2}, \tag{10}
\end{equation*}
$$

where C_{1}, C_{2} and C_{3} are constants in the Busemann third order approximation for the pressure coefficient in two dimensional, isentropic, supersonic rlow, viz.

$$
\begin{equation*}
c_{p}=c_{1} \theta+c_{2} \theta^{2}+c_{3} \theta^{3} \tag{11}
\end{equation*}
$$

where θ is the flow deflection angle, positive for a compression and negative for an expansion, and

$$
\left.\begin{array}{l}
c_{1}=\frac{2}{\left(m^{2}-1\right)^{\frac{1}{2}}}, \\
c_{2}=\frac{(r+1) m^{4}-4\left(m^{2}-1\right)}{2\left(m^{2}-1\right)^{2}}, \tag{12}\\
c_{3}=\frac{1}{6\left(n^{2}-1\right)^{7 / 2}}\left[(\gamma+1) m^{8}+\left(2 r^{2}-7 r-5\right) m^{6}+10(r+1) m^{4}-12 m^{2}+8\right]
\end{array}\right\}
$$

Values of C_{1}, C_{2} and C_{3} are tabulated in several sources, e.g. Ref. 5 and 6 . Shock expansion theory has been used ${ }^{7}$ to obtain a thickness factor for linear theory, however, it is cumbersome, as the factor is dependent upon the wing profile ahead of the control, and it requires a separate calculation for each deflection angle. Similarly, the use of the Busemann thind order approximation with the additional constant D incluaded in the case of oblique shock compressions ${ }^{6}$, viz.

$$
\begin{equation*}
o_{p}=C_{1} \theta+C_{2} \theta^{2}+\left(C_{3}-D\right) \theta^{3} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
D=\frac{\frac{(r+1) n^{4}}{12}\left[\left(\frac{5-3 x}{4}\right) x^{4}+(r-3) n^{2}+2\right]}{\left(m^{2}-1\right)^{7 / 2}} \tag{14}
\end{equation*}
$$

is complicated in that the wing shape ahead of the control has to be included in the calculation. Moreover, the magnitude of D is quite small, say 10% of C_{3}, so that orly a small gain in accuracy results from its inclusion. K_{6}, calculated from equation number 10, is plotted in $\mathfrak{F i g} .6$ for positive values of $\phi\left(\tau_{1}<\tau\right)$ at several liach mumbers. It is always less than unity for positive ϕ, and in general it decreases with increasing Mach number. The limit of epplicability was obtained in Rererence 5 by comparing the third order approximation with an exact calculation using shock-cxpansion theory on a double wedge aerofoil. A ciiscrepancy oi $10 ; j$ between the two values of $K_{\%}$ was regarded as the limit to which third order thoory could accurately be applied.

Where a trailing edge control is situated next to a circular cross section boay, in theory a further reduction of $d C_{H} / \partial \eta$ occurs, because the body does not act as a perfect reflection plane. The principles on wing body interference are explained in some detail by Pitts, Ticlson, and Kaattari in Rererence 8, and it is from this source that the relovant factor, $k_{V(B)}$, is reproduced in Fig. 7. In the present context, $k_{v(B)}$ is defined as the ratio of the lift on a control in the presence of a circular section body to the lift on an isolated control (of aspect ratio twice that of the exposed panel, c.f. Section 3). The body is considered to be at zero incidence, and the lift is proluced by deflection of the control. Fig. 8 shows the intorferenoe orfects on aerodynamic centre (again obtained from Ref.8). A factor K_{x} is definod as

$$
\begin{equation*}
K_{x}=\frac{\left(\frac{x}{c}\right)_{\text {control }}+\text { body }-\frac{h}{c}}{\left(\frac{x_{a}}{c}\right)_{\text {control }}-\frac{h}{c}} \tag{15}
\end{equation*}
$$

where x_{a} is the chordwise location of the aerodynamic centre. Fig. 9 shows values of K_{x} calculated for controls with the hinge line at the leading edge. In Ref. 8 it was recommended that the linear theory estimates for $k(B) \frac{\text { and }}{2}$ x_{a} / c should be used for $A \sqrt{M^{2}-1}>2$, and the slender body value for $A \sqrt{N_{1}^{2}-1}<2$.

No attempt has been made in this analysis to correct the hinge moment coefficients for the effect of gaps between controls and bodies or reflection planes, due principally to. the limited amount of information on gaps available in the present data. However, slender body theory ${ }^{9}$ does indicate that the component lift on wing body combinations is significantly reduced by the presence of gaps. Measurenents have been made by Dugan ${ }^{10}$ of the component lift on a 60° delta wing-body combination at $M=1.4$ for various gap widths. His results, in the form of a gap factor K_{g} (ratio of lift on wing with gap present to lift on wing with no gap), are shown in Fig. 10, together with a theoretical curve again taken from Ref. 10 but originally derived using the theory of Ref.9. The experimental results, although for a ving-body combination having a body radius to semi-span ratio (r / s_{w}) of 0.216 , should be applicable to a control-body combination having the same value of r / s. The measured values of K_{g} are compared with theory only for values of $\mathrm{g} / \mathrm{s}_{\mathrm{w}}$ greater than 0.03 . Here, the measured values exceed theory by about 10% for values of gap to semi-span ratio ($\mathrm{g} / \mathrm{s}_{\mathrm{w}}$) above 0.03 , probably due to viscous effects in the gap. Obviously for large gaps ($g / \mathrm{s}>0.004$ say), the effect on control lift and hinge moment is likely to be important, but for most practical sizes of gap to somi-span ratio ($\mathrm{g} / \mathrm{s}<0.004$), it is unlikely that the effects will be too significant. This is confirmed by the exporimental correlation in Tig. 11. Here the basic data have been factored to allow for both control thickness and body interforence, viz.

$$
\begin{equation*}
\left[\frac{d \mathrm{C}_{H}}{d \eta}\right]^{\prime \prime}=\frac{1}{\mathrm{~K}_{\dot{\varphi}}} \times \frac{1}{\mathrm{~K}_{\mathrm{x}}} \times \frac{1}{\mathrm{k}_{\mathrm{wv}}(B)} \times \frac{d C_{H}}{d \eta} \tag{16}
\end{equation*}
$$

The introduction of these factors gives a much better correlation than that shown in Fig. 5. Although the differonces between the theoretical solutions for a control with 'free' and 'bounded' tips are not very large, the 'froe' tip solution seoms to indicato better the trend of the experimental results at low values of $A \sqrt{M^{2}-1}$.

4.2.2 Effect of hince line location

Fig. 12 shows hinge moment derivatives measured on controls with various hinge line locations. The values of $d_{F} /$ In have been corrected for control thickness and body radius in the manner described in Section 4.2 .1 , and are plotted as $1 / A\left[d C_{H} / d \eta\right]^{\prime \prime}$. against $A!M^{2}-1$. The trend of the results with hinge line location is sensible, but in order to make an accurate comparison with theory the data has been replotted in Tig. 13 against hinge line location for various values oi $A \sqrt{M^{2}-1}$. The agreement between experiment ard theory is shown in Fig. 13 to be reasonably good.

4.2.3 Effect of trailinc edge thickness

An increase in the trailing eage thickness of the control gives a. corresponding increase in $d C_{H} / d \eta$ (Fig. 14a). Fowcver, if the values of $d C_{H} / d \eta$ are corrected for trailing edge angle ϕ and body interference offects using the method described in Section 4.2.1, then the lata for all trailing edge thicknesses collapse onto the lincar theory estimate for a rectangular control with free tips (Fig. 14b). This result means that $\mathrm{dC}_{\mathrm{H}} /$ d η for a control whose upper and lower surfaces are parallel $\left(\tau_{1}=\tau\right)$, is identical to that on a control with zero thickness. Por negative valucs of $\phi(\tau,>\tau), K_{\phi}$ is always greater than unity which inaicates that $\left(\alpha_{H} / d \eta\right)$ continues to increase as τ_{1} uncambered wings of finite aspect ratio, as originally put forward by Sproiter ${ }^{12}$, can be written in the following manner:

$$
\begin{equation*}
(\gamma+1)\left(\frac{t}{c}\right)_{w}^{1 / 3}\left(\frac{d C_{L}}{d \alpha}\right)_{\alpha=0}=f\left[\frac{M^{2}-1}{\left(\frac{t}{c}\right)_{w}^{2 / 3}(\gamma+1)^{2 / 3}}, A_{w}\left(\frac{t}{c}\right)_{w}^{1 / 3}(\gamma+1)^{1 / 3}\right] \tag{17}
\end{equation*}
$$

Similarly it can be shown that,

$$
\begin{equation*}
(r+1)\left(\frac{t}{c}\right)_{w}^{1 / 3}\left(\frac{d C_{m}}{d \alpha}\right)_{\alpha=0}=g\left\{\frac{M_{1}^{2}-1}{\left(\frac{t}{c}\right)_{w}^{2 / 3}(r+1)^{2 / 3}}, A_{w}\left(\frac{t}{c}\right)_{w}^{1 / 3}(r+1)^{1 / 3}\right\}, \tag{18}
\end{equation*}
$$

where f and g are some unspecified functions of the parameters in the brackets, γ is the ratio of specific heats (if only one fluid medium is being considered, functions of γ can be left out of the equation), $(t / c)_{w}$ and A_{W} are the thick- ness chord ratio and aspect ratio of the wing respectively.

The analysis of Busemann ${ }^{14}$ and Harder ${ }^{15}$ produced an alternative form for the similarity parameters,

$$
\begin{gather*}
\left.(\gamma+1)^{1 / 3}{N^{2 / 3}}^{2 / \frac{t}{c}}\right)_{w}^{1 / 3}\left(\frac{d C_{L}}{d \alpha}\right)_{\alpha=0}=f\left[\frac{M^{2}-1}{m^{4 / 3}(\gamma+1)^{2 / 3}\left(\frac{t}{c}\right)_{w}^{2 / 3}},\right. \\
\left.A_{w}\left(\frac{t}{c}\right)_{w}^{1 / 3}(\gamma+1)^{1 / 3} n^{2 / 3}\right\} \tag{19}
\end{gather*}
$$

and similarly for $\mathrm{dC}_{\mathrm{m}} / \mathrm{d} \alpha$. Spreiter ${ }^{13}$ has shown that this second form of the similarity parameters improved the correlation between experiment and transonic flow theory in certain cases, e.g. the drag of a two dimensional single wedge section. However, MoDevitt ${ }^{16}$, using the simpler parameters put forward by Spreiter originally, obtained a good correlation of the experimental characteristics of a family of rectangular wings. In view of this result, and because of the increased complexity of the modiricd parameters, it was decided to use the simpler parameters in an attempt to correlate hinge moments at transonic speeds.

Although at subsonic speeds control hinge moments depend on the wing shape and the relative proportions of control and wing, the development of regions of supersonic flow over the wing suriacc at high subsonic hach numbers would probably decrease the influence of the wing on $\mathrm{dC}_{\mathrm{H}} / \mathrm{dn}$. At $M=1.0$ $\mathrm{dC}_{\mathrm{H}} / \mathrm{d} \eta$ should be independent of the tring planform. There is some reason, therefore, to expect a corrclation of $d C_{H} / d \eta$ both at high subsonic speecis as well as sonic and low supersonic speeds based solely on control parameters.

In Appendix A, using shock-expansion theory, an approximate expression is developed for $d C_{H} / d \eta$ of a rectangular control on an infinite double wedge wing at Mach numbers of 1.0 and above. The numerical values obtaincd are reproduced below.

$A \tau^{1 / 3}$	$-\tau^{1 / 3} \frac{\mathrm{dC}_{\mathrm{H}}}{\mathrm{d} \mathrm{\eta}}$			
	$\frac{\mathrm{M}^{2}-1}{\tau^{2 / 3}}=0$	0.5	1.0	2.0
	0.186	0.179	0.173	0.165
0.887	0.726	0.699	0.672	0.643
1.774	1.012	0.974	0.937	0.896
3.549	1.161	1.117	1.074	1.027
5.323	1.208	1.162	1.118	1.069
∞	1.304	1.255	1.207	1.154

5.2 Correlation of experimental data

5.2.1 Controls with hinge line at leading edge

Fig. 15 shows a plot of $-\tau^{1 / 3}\left[\mathrm{aC}_{\mathrm{H}} / \mathrm{d} \eta\right]^{\frac{1}{2}}$ against $\mathrm{i}^{2}-1 / \tau^{2 / 3}$ for controls with the hinge line at the leading eage. $\left[\mathrm{aC}_{\mathrm{H}} / \mathrm{d} \mathrm{\eta}\right]^{\prime}$ is the hinge moment derivative corrected for body interference effects on lift only (slender body theory) in the manner described in 4.2 .1 , i.e.

$$
\left[\frac{d C_{H}}{d \eta}\right]^{\prime}=\frac{1}{k_{w(B)}} \times \frac{d C_{H}}{d \eta}
$$

where $k_{\mathrm{w}(\mathrm{B})}$ is the slender body value (Fig. 7). Because $\tau^{1 / 3}\left[\mathrm{ac}_{\mathrm{H}} / \mathrm{in}\right]^{\prime}$ is also a function of the other transonic similarity parameter $A \tau^{1 / 3}$, the only deduction possible from Fig. 15 is that there is a marked increase in $-\mathrm{dC}_{\mathrm{H}} / \mathrm{dm}$ between subsonic and supersonic speeds. Using the uata in Fig. $15, \tau^{1 / 3}\left[\mathrm{dC}_{\mathrm{H}} / \mathrm{d} \eta\right]^{\prime}$ has been replotted against $A \tau^{1 / 3}$ for various values of $i^{2}-1 / \tau^{2 / 3}$ (Fig.16).

The correlation of the experimental $\mathrm{dC}_{\mathrm{H}} / \mathrm{d} \eta$ is only fair at subsonic speeds (Fig. 16a,b, c), and there is appreciable scatter. In general for $4^{2}-1 / \tau^{2 / 3}=-2$ and -1 , the experimental data approaches the linear theory ${ }^{17}$ estimate for $\mathrm{dC}_{\mathrm{m}} / \mathrm{d} \alpha$ about the leading edge of an isolated wing at small values of $A \tau^{1 / 3^{m}}$. For large values of $A \tau^{1 / 3}$, the expcrimental valuos are at about $50 ; \%$ of the linear theory value. It is possiblo that the corrclation at subsonic speeds is fortuitous, since the range of wing planforms in the data is rather restricted (mainly 60° deltas), and the ratios of control chord to wing root chord are all ubout the same value (0.1).

At supersonic speeds the correlation is fairly good (Fig. 16d,e,f,g). At $M=1.0$ the experimental hinge moments are in good agreement with the experimental values of $d C_{m} / d \alpha$ measured by MoDevitt ${ }^{16}$ on isolated rectangular wings for $A \tau^{1 / 3} \leqslant 2$. At $M^{2}-1 / \tau^{2 / 3}=0.5$ and 1.0 the pitching moment data falls slightly below the hinge moment data. The theory of Appendix A agrees well with experiment at $M^{2}-1 / \tau^{2 / 3}=2.0$, but tends to overestimate at lower values of $M^{2}-1 / \tau^{2 / 3}$. This theory gives the acrodynamic centre position of the two dimensional control at 50% c for all positive values of $\mathrm{m}^{2}-1 / \tau^{2 / 3}$. However, it is shown in Section 5.2.2 that in practice ${ }^{18}$
the aerodynamic centre position of a control with $A \tau^{1 / 3}=5.1$ is located up to 0.085 c forward of this point, for $M \geqslant 1.0$. The results of Ref. 16 showed that for an isolated rectangular wing, the aerodynamic centre position was identical to the two dimensional value for $A \tau^{1 / 3}>1$ at supersonic speeds and $A \tau^{1 / 3}>2.5$ at subsonic speeds. If it can be assumed that a similar result holds for rectangular controls, then the aerodynamic centre position of the control with $A_{c} \tau^{1 / 3}=5.1$ can be used to obtain a factor (ratio of (x_{a} / c) experiment to (x_{a} / c) theory) which can then be applied to the tneory.

$\frac{M^{2}-1}{2 / 3}$	$\left(\frac{a}{c}\right)_{\text {experiment }}$ $\tau^{1 / 3}=5.096$	$\left(\frac{a}{c}\right)_{\text {theory }}$ $A \tau^{1 / 3}=. \infty$	Factor
0	0.415	0.500	0.830
0.5	0.443	0.500	0.886
1.0	0.460	0.500	0.920
2.0	0.475	0.500	0.950

The modified theory (valid for $A \tau^{1 / 3}>1$) is in much better agreement with experiment especially at $M=1.0$ ($F \mathrm{ig} .16 \mathrm{~d}, \mathrm{e}, \mathrm{r}, \mathrm{g}$).

An attempt was made to allow for the effects or the boundary layer thickness on the control thickness-chord ratio. The effective value of τ was assumed to be

$$
\begin{equation*}
\tau \text { effective }=\tau+\frac{2\left(\delta: \frac{*}{\text { turb }}\right)_{\text {mean }}}{c} \tag{20}
\end{equation*}
$$

where ($\delta_{\text {turb }}^{*}$) mean is the mean value across the control span of the disylacement thickness of a flat plate boundary layer, with transition at the wing leading edge. The use of this modified value of τ did not result in any improvenent in the corrclation of the exporiment data.

The discussion in Section 4.2 .1 on gap effects at supersonic speeds will apply equally here, but as in that case no further analysis is possible because of the lack of information on gaps in the present data.

5.2.2 Effect of hinge line location

Because $\mathrm{dC}_{\mathrm{H}} / \partial \eta$ is dependent upon such a large number of parameters at transonic speeds; it was not possible to aetermine the variation of $\tau^{1 / 3}\left[\mathrm{dO}_{H} / \dot{d} \eta\right]^{\prime}$ with h / c by plotting data for different controls on the some figure. However, Fig. 17 shows the effect on $\tau^{1 / 3}\left[\mathrm{aO}_{\mathrm{H}} / \mathrm{d} \mathrm{\eta}\right]^{2}$ of varying the
hinge line location (from $\mathrm{h} / \mathrm{c}=0.065$ to 0.507) for one particular coritrol ${ }^{13}$ of $A \tau^{1 / 3}=5.096$. For $\mathrm{M}<1.0 \mathrm{dC}, \mathrm{dm}$ varies linearly with h / c for $\mathrm{h} / \mathrm{c}<0.50$, whereas for $\mathrm{M}>1.0$ the range of linearity is restricted to $\mathrm{h} / \mathrm{c}<0.30$. The location of the control aerodynamic centre position as obtained from the linear portion of the curve in Fig. 17 is shown in Big .13 , together with the experimental values ${ }^{19}$ for a control of $\mathrm{Ar}^{1 / 3}=4.201$, the linear theory ${ }^{4,17}$ estimate for an isolated roctangulor wing with $A \tau^{1 / 3}=5.096^{\prime}$, and the experimental values i'or an isolated rectangular ving ${ }^{1}{ }^{\prime}$. The agreement between the measured values for the wo controls is good, the discrepancy at positive values of $\mathrm{m}^{2}-1 / \tau^{2 / 3}$ is probably duc to a non linearity in the curves of $\tau^{1 / 3}\left[\mathrm{dC}_{\mathrm{H}} / \mathrm{d} \eta\right]^{1}$ against h / c for the control ${ }^{19}$ with $\mathrm{At}^{1 / 3}=4.201$, similar to that observed in Fig. 17. (Only two hinge line locations were tested on this control, $h / c=0.07$ and 0.50.)

5.2.3 Effect of trailing edge thichness

In general an increase of $-\mathrm{dC}_{\mathrm{H}} / \mathrm{d} \eta$ results from increasing the trailing edge thickness of the control (ig. 19). The factor $\mathrm{Kr} \mathrm{f}_{1}$ is derined as the ratio of $\left(\mathrm{aC}_{\mathrm{H}} / \mathrm{an}\right)_{\tau_{1} \neq 0}$ to $\left(\mathrm{dc}_{\mathrm{H}} / \mathrm{d} \mathrm{\eta}\right)_{\tau_{1}=0}$, and is shown in Pigs. 20 and 21 . Although at subsonic speds the variation of $\mathrm{K}_{\tau_{1}}$ with $\mathrm{M}^{2}-1 / \tau^{2 / 3}$ for the two configurations appears inconsistent. ($\mathrm{Fig}, 20$), valucs of $\mathbb{K}_{\tau_{1}}$ do show good agreement at $\mathbb{N}=1.0$ with the two dimensional shock-axpansion theory of Appendix A (Fig. 21).

6 COMCLUSIONS

Similarity rules have becninsed at supersonic and transonic speeds to obtain a correlation of experinentai values or $\mathrm{dC}_{\mathrm{H}} / \mathrm{d} \eta$ and to compare these values wi.th theory.

At supersonic. speeds for controls with the hinge line at the leading edge, $\mathrm{dC}_{\mathrm{H}} / \mathrm{d} \eta$ can be predicted with reasonablo accuracy (80 ; of data within $\pm 10 ; 3)$ within the range, $2<A \sqrt{4^{2}-1}<20$, using the supersonic ininear theory
solution for a control with 'free' tips, and applying corrections to allow for the effects of body interference and control thickness, i.e.

$$
\begin{equation*}
-\frac{d C_{H}}{d \eta}=K_{\phi} \times K_{x} \times k_{w(B)} \times\left\{\frac{2}{\beta}-\frac{4}{3} A \beta^{2}\right\} \tag{21}
\end{equation*}
$$

(see Figs. 6, 7, 9 and 11).
For controls with the hinge line not at the leading edge the accuracy is about the same ($\pm 10 \%$ of value for $h / c=0$) within the range, $6<A \sqrt{m^{2}-1}<14$. In this case,

$$
\begin{equation*}
-\frac{d C_{H}}{d \eta}=K_{\phi} \times K_{x} \times k_{w(B)} \times\left\{\frac{2(2 A \beta-1)}{A \beta^{2}}\right\}\left\{\frac{(3 A B-2)}{3(2 A \beta-1)}-\frac{h}{c}\right\} \tag{22}
\end{equation*}
$$

(see Figs. 6, 7, 8, 9 and 13).
At transonic speeds for controls with the hinge line at the leading edge and with $\tau<0.13, d C_{H} / d \eta$ can be predicted, again with reasonable accuracy $(\pm 10 \%)$, above $M=1\left(0<M^{2}-1 / \tau^{2 / 3}<2\right)$, using shock expansion theory with an empirical correction factor applied to the aerodynamic centre position and a slender body factor to allow for body interference on lift (see Figs. 7 and 16 and Appendix A). Below $M=1$ the experimental correlation is only fair (a scatter of $\pm 20 \%$ on the mean value), and even this may fortuitous since the range of wing planform in the data is restricted to 60° delta, and the ratios of control chord to wing root chord are all very similar (around 0.1).

The effect of trailing edge thickness on $\mathrm{dC}_{\mathrm{H}} / \mathrm{d} \eta$ can be estimated at supersonic speeds by merely adjusting the factor K_{ϕ}, and at $M=1$ there is. some evidence that it can be predicted using the two dimensional shock-expansion theory of Appendix A.

Appendix A

The theoretical solution for the inviscid transonic flow past a double wedge profile has been known for some tine ${ }^{20,21}$. For free stream ivach numbers between unity and the value appropriate to bow shock attachment, theory predicts subsonic flow over the forward facing wedge with the local ifach number increasing from zero at the leading edge to a value of unity at the shoulder (Figs. 22 and 23). The flow then uniergoes a supersonic expansion around the shoulder. For a given value of $(t / \mathrm{c})_{\mathrm{w}}$ the local nach number immediately behind the shoulder, identical to the value given by a Prandth-Meyer expansion, is independent of free stream kiach number. Because some of the expansion waves from the shoulder are reflected from the sonic line as compression waves, the local liach number decrease slightly between the snoulder and the trailing edge. At the trailing edge the flow then returns to the free stream direction by means of an oblique shock compression.

Since both the free stream and the local flow over the roar halr of the aerofoil are supcrsonic, it is possible to distort or deflect part of the profile near the trailing edge without, affccting the flow over the rest of the proifile, providing that no detachod shock waves are produced by thesc local changes of slope.

In order to calculate the hinge moment on a control some simplifying assumptions have been made. For the majority of the calculations the above mentioned variation of local Mach number over the rear wedge has boon ignored. The Nach number was taken to be constant at the Prandili-ifeyer expansion value (Fig.23).

With the rlow model shown in Figs. 22 and 23, and with in arbitrarily taken to be 1°, the hinge monent derivative, $\mathrm{dC}_{\mathrm{F}} / \mathrm{d} \eta$, of a two dimensional control was calculatcd using shock-expansion theory. The rosults at $k=1.0$ are summarized in the following table:-

$M^{2}-1 / \tau^{2 / 3}$			
ϕ°	τ	$-\frac{\mathrm{dC}_{H}}{\mathrm{~d} \eta}$	$-\tau^{1 / 3} \frac{\mathrm{do}_{\mathrm{H}}}{\mathrm{d} \mathrm{\eta}}$
5	0.0873	2.939	1.304
10	0.1750	2.280	1.275
15	0.2633	1.931	1.238

The use of the transonic similarity parameter, $\tau^{1 / 3} \mathrm{dC}_{\mathrm{H}} / \mathrm{d} \mathrm{\eta},{ }^{16}$ was found to give an adequate although not perfect collapse of the theoretical estimates for different values of τ. All further calculations have been performed with $\phi=5^{\circ}$.

Under the assumptions of the theory, the Mach number over the rear wedge of the aerofoil is independent of free stream Mach nunber, and dependent only on ϕ. It follows that the nondinensional parameter,
pressure difference between control upper and lower surfaces,
local total pressure
is also independent of freo stream Mach number. If we assumo that the loss of total pressure through shock waves can be ịgnored, (for $\phi=5^{\circ}$ and $m^{2}-1 / \tau^{2 / 3}=2.0$, then $M=1.181$, and the loss in total pressure through the bow shock wave amounts to $\frac{1}{2} \%$, then the variation of $d C_{H} / d \eta$ with free stream Mach number arises through the variation of the ratio of total pressure to kinetic pressure with Mach number. Calculated values, in transonic similarity form, are shown below.

$$
\phi=5^{\circ}
$$

$\frac{n^{2}-1}{\tau^{2 / 3}}$	$-\frac{d C_{H}}{d \eta}$	$-\tau^{1 / 3} \frac{d C_{H}}{d \eta}$
0	2.939	1.304
0.5	2.830	1.255
1.0	2.722	1.207
2.0	2.601	1.154

The effect of trailing edge thickness for a control with a linear thickness distribution, is independent of Mach number and is show in the following table:-

$$
\tau=0.0873
$$

$\frac{\tau}{\tau}$	$\mathrm{K}_{\tau_{1}}$
0	1.000
0.5	1.124
1.0	1.325
1.5	1.726

The effect of finite aspect ratio has been obtained by multiplying the two dimensional values calculated from transonic thoory by the ratio of the
supersonic linear theories for finite and infinite aspect ratio. The supersonic linear theories were based on the wing local Mach number just ahead of the control, and the finite aspect ratio value was calculated for a control with 'free' tips, since this gave the best agreement between theory and experiment at supersonic speeds. The effect of finite aspect ratio is shown in the following table:

$$
\phi=5^{0} \quad \tau=0.0873 \quad \tau_{1} / \tau=0
$$

A	$A \tau^{1 / 3}$	$-\tau^{1 / 3} \frac{d C_{H}}{d \eta}$				
		$\frac{\mathrm{~m}^{2}-1}{\tau^{2 / 3}}=0$	0.5	1.0	2.0	
1.0		0.186	0.179	0.173	0.165	
2.0		0.726	0.699	0.672	0.643	
4.0	1.774	1.012	0.974	0.937	0.896	
3.0	3.549	1.161	1.117	1.074	1.027	
12.0	5.323	1.208	1.162	1.118	1.059	
∞	∞	1.304	1.255	1.207	1.154	

The above values are strictly valid, only within the range

$$
0<\frac{n^{2}-1}{(r+1)^{2 / 3}\left(\frac{t}{c}\right)_{w}^{2 / 3}}<1.26
$$

The upper limit* is the value predicted by transonic small perturbation theory ${ }^{21}$ for an attached shock wave at the leading edge of the wing with uniform sonic flow behind it over the front wedge. If, instead of the wing thickness chord ratio ($t / c)_{w}$, we use the control thickness parameter τ in the similarity parameter, we arrive at the following limits of validity

$$
0<\frac{M_{1}^{2}-1}{(\gamma+1)^{2 / 3} \tau^{2 / 3}}<\frac{1.26}{2^{2 / 3}}=0.794
$$

or

$$
0<\frac{m^{2}-1}{2 / 3}<1.4,23
$$

However, an exact calculation performed using shock expansion theory over the entire wing $\left(\phi=5^{0}\right)$ at $1^{2}-1 / \tau^{2 / 3}=2.0,\left(n^{2}-1 /(\gamma+1)^{2 / 3} \tau^{2 / 3}=1.424\right)$,
*The exact value of the transonic similarity parameter, $i n^{2}-1 /(r+1)^{2 / 3}(t / c)_{w}^{2 / 3}$, at this condition for a medge of 5° included angle is 1.451.
again arbitrarily taking the control deflection to be 1°, gave a value of -1.161 for $\tau^{1 / 3} \mathrm{dC}_{\mathrm{H}} / \mathrm{d} \mathrm{\eta}$ compared with -1.154 using the approximate method. It is clear, therefore, that the approximate theory compares favourably with exact theory at values of $M^{2}-1 / \tau^{2 / 3}$ well above the limit for bow shock attachment. The assumption of constant Mach number over the rear wedge of the wing means that the estimated tro dimensional values of $\mathrm{dC}_{\mathrm{H}} / \mathrm{d} \eta$ are too small, due to the mean Mach number over the undeflected control being too high. The error is worst for a control of vanishingly small chord at $M=1.0$, where the correct value of $\tau^{1 / 3} \mathrm{dC}_{\mathrm{H}} / \mathrm{d} \mathrm{\eta}$ is 1.433 compared with the approximate value of $1.30 t_{\text {t }}$ The correct value was calculated assuming that the Mach number over the rear wedge of the wing is given by $I^{2}-1 /(\gamma+1)$ $(t / c)_{w}^{2 / 3}=1.72$ instead of the Prandtl-Meyer expansion value of 2.07 (see Mig. 23). Because the assumed Mach number over the control is too high, the factor applied to the two dimensional $d C_{H} / d \eta$ for the effect of aspect ratio is also in error, in the opposite sense to the error in the two dimensional $\mathrm{dC}_{\mathrm{H}} / \mathrm{d} \mathrm{\eta}$. For most practical sizes of control the two errors eitior wholly or partially offset one another. The valucs shom in tho table below are for a control with vanishingly small chord, for a control with finitc chord the errors are slightly less.

$$
M^{2}-1 / \tau^{2 / 3}=0 \quad \phi=5^{0} \quad c \rightarrow 0
$$

A	$A \tau^{1 / 3}$	$-\tau^{1 / 3}\left(\frac{d C_{H}}{d \eta}\right)_{\text {approx. }}$	$-\tau^{1 / 3}\left(\frac{d C_{H}}{d \eta}\right)_{\text {oxact }}$	$\because \operatorname{exror}$
1.0	0.444	0.186	0.143	+30.1
2.0	0.887	0.726	0.725	0
4.0	1.774	1.012	1.072	-5.6
8.0	3.549	1.161	1.252	-7.3
∞	∞	1.304	1.433	-9.0

The effect of finite span on the pressure disiribution over double medge cross section wings at transonic speeds above $M=1.0$, has been investigated experimentally by Vincenti ${ }^{22}$. His results showed that for wings of finite aspect ratio, the locus of the intcrscetion of the sonic lino with the wing surface is a curve, which joins the two wing tip leading edges and is furthest aft at the centre of the wing span. This furthest aft distance of the sonic line is always ahead of the profila shoulded for finite aspect ratios, and moves forward as the aspect ratio docroasos. Although this means that there is a large area of suporsonic flow ovor the fore wedge of the wing, the pressure coefficient and honce the local hiach number immodiatoly behind the
shoulder, are almost identical to the two dimensional value over the entire wing span. There is, however, an increase of pressure between the shoulder and the trailing edge, consistent in extent with that produced by a Mach line from the shoulder at the tip. A trailing edge control situated in the tip region of a rectangular wing would thereîore experience a slightly lower hach number than one situated inloard of the tip. As in the case of the chordwise Mach number variation, however, the overall effect on $\mathrm{dC}_{\mathrm{H}} / \mathrm{a} \eta$ may not be tco significant.

0	000 ${ }^{\circ}$	＂		＂	－	${ }^{*}$	4	4	«	μ	\＃	${ }^{*}$	${ }^{*}$	${ }^{\prime}$	u	μ	92	55
$0 \varepsilon^{\circ}+7$	$005^{\circ} 0$	${ }^{\prime}$		＂	－	＂	${ }^{\prime \prime}$	${ }^{*}$	＊	${ }^{*}$	＊	＂	\cdots	＂	${ }^{\prime}$	μ	92	OG
$85^{\bullet} 8$	0	OS $\vdash^{\circ} 0$	＂	0	－	0	$000{ }^{\circ} \mathrm{t}$	0	＋${ }^{\text {c }}$ •0	6Lレ・で	${ }^{\prime}$	${ }^{*}$	\cdots	u	＊		92	PG
$85^{\bullet} 8$	0	OS $\square^{\circ} 0$	${ }^{4}$	0	1	$2 \angle 2 * 0$	$79 \varepsilon{ }^{\circ} 0$	0	197＊0	$\angle T O \cdot 5$	\cdots	4	4	μ	μ		92	35
$85^{\bullet} 8$	0	OS $5^{\circ} 0$	＂	0	－	zLて＊o	¢1で0	0	$289{ }^{\circ} 0$	L85＊${ }^{\circ}$	4	${ }^{*}$	＂	${ }^{\prime}$	＊		92	QS
$85^{\circ} 8$	0	OS $\square^{\circ} \mathrm{O}$	əโโ」0エd 8итب쏘	0	1	$200^{\circ} 0$	6れ1゚0	0	$9<900$	＋ $79^{\circ} \mathrm{z}$	$\begin{gathered} 5+0^{\circ} 0={ }^{m}(0 / 7) \\ {[80088 \times \theta \mathrm{H}} \end{gathered}$	00° ¢	$688^{\circ} 0$	880° ¢	6＊7		92	8
62° ¢	$005 \cdot 0$	${ }^{*}$		${ }^{*}$	，	${ }^{*}$	ω	＊	＊	${ }^{*}$	＂	＊	＂	＂	4	\cdots	Sz	97
$96^{\circ} \mathrm{G}$	0	＋ $\mathrm{O} \mathrm{I}^{\circ} \mathrm{O}$	əโTร0コ 8utc．	0	$081^{\circ} 0$	0	$000{ }^{\circ} \mathrm{L}$	0	$\left.\right\|_{(\text {dTq pexex }} ^{0 \%}$	L $18^{\circ} \mathrm{L}$			0	$000^{\circ} \mathrm{z}$	$L^{\bullet} \varepsilon$	$z-u-s$	Sz	8
\cdots	－	－	＂	＂	，	＂	\cdots	\ldots	μ	μ	u	＊	${ }^{\prime \prime}$	${ }^{\prime}$	＂	\cdots	＋2	PL
4	－	－	$\begin{aligned} & \text { ospom } \\ & \text { erqnod } \end{aligned}$	＂	1	＂	＂	＂	＊	＂	＂	＂	μ	＂	4	μ	＋	\bigcirc
\cdots	＂	＂	${ }^{4}$	ことを．0	4	${ }^{\prime}$	＂	4	${ }^{\prime}$	LSで 6	4	＊	＂	4	4	4	72	9乏
$96^{\circ} \mathrm{G}$	0	＋ $2+0$	－ 9uTh	0	08：0	0	000＊	0	$\begin{gathered} (\text { dT7 peস्धx }) \\ 0^{\circ}, \end{gathered}$	$+85^{\circ} \mathrm{E} \downarrow$		$巾^{*}$ ¢9	0	$000^{\circ} \mathrm{z}$	$9^{\circ} 5$	1	72	${ }^{8}$
HL｀G	0	001＊0	əโโよ0工® 9uTM	0		0	000＊	0	$\begin{gathered} (\text { dT7 persx }) \\ 0^{\circ}! \end{gathered}$	くば「	$\begin{gathered} 8+0 \circ 007 \\ 0 \varepsilon 0^{\circ} 0={ }^{m}(0 / 7) \\ \text { [8uosвxer } \end{gathered}$	00＊08	0	SOL 0	ぐカーカ゚を	$\mathrm{Z}-\mathrm{u}-\mathrm{H}$	£z	τ
4	\cdots	\cdots	\cdots	005＊0	－	＂	${ }^{*}$	\cdots	\cdots	4	u	\cdots	\cdots	4	＊	4	61	Q \downarrow
$29^{\circ} \mathrm{L}$	ドド○	¢¢ $\vdash^{\circ} 0$	－TちJOスd \％uFM	0LO 0	$86 \cdot 0$	0	$919{ }^{\circ} 0$	0	$0^{\circ} 1$	¢£2•8	$\begin{gathered} 0+0 \cdot 0={ }^{m}(0 / 7) \\ \text { โвu088xe } \end{gathered}$	00＊09	0	$60 \varepsilon^{\circ} \mathrm{Z}$	$6^{\circ} \mathrm{E}-5^{\circ} \mathrm{C}$		61	81
0^{ϕ}	24^{\prime}	2	प057028 T0x740	०／प	s／1／	${ }^{\wedge}{ }^{0} \kappa_{2}$	$m_{q / q}$	${ }_{0}^{x} \times T_{0}$	V	V	иот7\％os sutw	4 （ ${ }^{*}{ }^{\circ} \mathrm{T}$（V）	${ }^{4} \times$	${ }_{*}^{M}$	$\mathrm{g}^{01} \times$		－гө	－${ }^{\text {N }}$
T0．17000											Sutcm							

			$R \times 10^{-6}$	Wing				Control										
No.	Ref.			${ }_{\text {A }}$	λ_{1}	(4. ${ }_{\text {L.E. }}{ }^{\circ}$)	wing section	A	λ	$4_{\text {L.E. }}$	${ }^{\text {b/bw }}$	${ }^{25} /{ }_{0} \mathrm{br}_{\mathrm{m}}$	r/s	h/c	Control section	τ	τ_{1} / τ	ϕ°
68	27		6.3	2.309	0	60.00	Rounded L.E. paralilel centre section tharp t.E.E. $(t / c)_{m}=0.030$	$2 .{ }^{217}$	$(\text { raked tip) }$	0	0.217	0.567	-	0	$\begin{aligned} & \text { profing } \\ & \text { profile } \end{aligned}$	0.225	0	12.82
6b	27			n	"	"	"	4.909	1.0	0	0.567	0	-	0	"	0.225	0	12.82
60	27			n	"	"	"	9.280	$\begin{aligned} & \text { (raked tip) } \end{aligned}$	0	1.0	0	-	0	"	n	"	*
6 6	27	-	"	"	"	n	"	!	"	*	"	"	-	"	$\begin{gathered} \text { Linear } \\ \text { thickness } \end{gathered}$ distn.	"	0.5	6.44
6 e	27	"	7	"	"	"	"	3	n	"	"	"	-	n	$\left\|\begin{array}{c} \text { Constant } \\ \text { thickness } \end{array}\right\|$	"	1.0	0
7a	28		$\begin{aligned} & 8.6 \text { to } \\ & 10.4 \end{aligned}$	2.820	0.229	38.65	$\begin{aligned} & \text { NACA } \\ & 65 \mathrm{AOO}+4 \\ & \text { streamwise } \end{aligned}$	4.535	0.304	4.26	0.238	0.524	-	0	Wing	0.096	0	5.50
7 b	28	"	"	"	*	"	*		"	n	"	"	-	"	Constant thickness	*	1.0	0
8 a	18		$\begin{aligned} & 2.2 \text { to } \\ & 2.7 \\ & \hline \end{aligned}$	2.309	0	60.00	$\begin{aligned} & \text { Hexagonal } \\ & (t / c)_{w}=0.040 \end{aligned}$	10.192	1.0	0	0.661	0	-	0.065	$\begin{aligned} & \text { wing } \\ & \text { profile } \end{aligned}$	0.125	0	7.16
8 b	18	"	"	"	*	*	"	n	n	"	"	"	-	0.242	"	"	"	"
8 c	18	"	\%	n	"	"	"	"	"	"	*	"	-	0.333	"	*	"	-
8 d	18	"	"	n	"	"	"	"	*	"	"	"	-	0.441	"	"	"	"
8 c	18	"	"	"	"	"	"	"	"	"	"	"	-	0.507	"	"	"	"
9 a	29		6.1	1.449	0.055	68.00	Sharp L.E. Sharp T.E.	2.44	1.0	0	0.269	0	0.275	0	$\begin{aligned} & \text { Wing } \\ & \text { profile } \end{aligned}$	0.128	0	7.34
96	30	"	$\begin{aligned} & 10.5 \mathrm{to}^{2} \\ & 13.5 \end{aligned}$	"	"	"	"	"	"	"	n	"	"	"	"	n	"	*
10a	31		$\begin{aligned} & 12.5 \text { to } \\ & 19.4 \end{aligned}$	1.995	0.073	60.00	$\begin{gathered} \text { Round L.E. } \\ \text { Sharp P.E. } \\ (\mathrm{t} / \mathrm{c})_{\mathrm{w}}=0.04 \end{gathered}$	2.978	0.774	9.70	0.481	0	0.266	0	$\begin{aligned} & \text { Wing } \\ & \text { profile } \end{aligned}$	0.087	0	4.97

i
\vdots
\vdots

02.6	－	－	өярем elqnod	00ザ0	$9+1200$	0	0\％	0	0．1	HFEOL	 LOO甘59 VOWN	26.65	101＊0	688． 1	$\left\lvert\, \begin{gathered} 0.51 \\ 07 \\ 8.5 \end{gathered}\right.$		$+1$	$2 \downarrow$
85° ¢	0	¢90＊0	${ }^{0}$ otfjoxd such	0	－	0	0．	0		$200 \cdot 01$	$\begin{gathered} 050^{\circ} 0={ }^{\text {M }}(0 / 7) \\ \text { oppan } \\ \text { өranod } \end{gathered}$	$\pi \times{ }^{\circ} \mathrm{C}$	0	$000{ }^{\circ} \mathrm{z}$	0\％8		§	い
L6＊7	0	L80＊0	－ 9 なJoxd guth：	0	$298{ }^{\circ} 0$	0	1870	0L＊6	＋LLCO	$826^{\circ} \mathrm{C}$		00＊09	£L0．0	566.1	s．2ヶ	によ－S	2¢	901
${ }^{\text {¢ }}$	$2 /{ }_{2}$	2	प0т77025 1014u00	0 M	5／x		${ }^{4} \mathrm{q} / \mathrm{Q}$	${ }_{0}^{-\pi}{ }_{0}^{\circ} z_{0}$	k	V	บот7008 8uTM	${ }^{4}\left(\begin{array}{c}* \\ \\ 0\end{array} I_{0} \mathrm{~V}\right)$	${ }^{M}{ }_{6}$	${ }_{*}^{*}$	$\mathrm{g}_{-} \mathrm{OL} \times \mathrm{y}$		－joy	－${ }^{\text {N }}$
20x7000											Suph ${ }^{\text {g－}}$							

[^0]Table 2 －DETALLS OP hTAGE MONGNT CORRBLAPTON

	눈우웅 	さタッnmº 	MポN 	$00^{\circ} 0^{\circ}$		
	 	స్NN్NN NoNㅇㅇ ícióo ó	Mo 잉․	N． 		
\％	우ㅇㅒㅜ양「io운	テíióó	Row No ヘiot oo io	$\dot{y} \div \dot{\gamma} \div \dot{m}$		－
	YNNN －©o	엉Nㅇㅇㅇㅇㅇ ©○○ㅇ	～iom 웅N $0^{\circ 0} 0^{\circ}$	ばさ～ロロ～ 	뀽ㅇㅇㅇㅇ웅 －ioㅇㅇㅇㅇㅇ	
x^{*}	$\therefore 0^{\circ} 0^{\circ}$		$00^{\circ} 0^{\circ}$	8ふぁため ○oうogo －000	－ذo ó	－0 $0^{\circ} 0^{\circ} 0^{\circ}$
$\underset{\sim}{\infty}$	－0000000：－	 	人ू⿵人一⿰⺝刂 o̊osiogioioio	まぁ口o －ジローッチン	 	ஷํㅜㅇㅇㅇㅇ
\cdots	があざぁむ $\dot{\circ}_{\circ}^{\circ} 0^{\circ \circ}$		かo $0^{\circ} 0^{\circ}{ }^{\circ}$		$0^{\circ} 0^{\circ \circ} 0^{\circ}$	\&ivo iono
		Nㅓㅇ్ㅇㅇ్N ○○○	M－Mõo ○○○。	๒๓กัํ「チóo o	웅숭승뭉 －io óo	－© o o
$\xrightarrow[4]{\text { ¢ }}$	ぶべがかめ 	 	NNㅇ우ㅇㅜㅕ ウ்ポか	がャウ゚が		
	 	 ○ㅇ99	 	 		－© o só
\cdots		 				
$\stackrel{0}{8}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \end{aligned}$	0	\bigcirc	$\begin{aligned} & N \\ & \text { N } \\ & \hline \mathbf{0} \end{aligned}$	N
$\stackrel{m}{5}$	$\begin{aligned} & \text { ָ } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{\top} \\ \text { - } \end{gathered}$	$\begin{aligned} & \text { O} \\ & \stackrel{\infty}{\dot{N}} \end{aligned}$	$\begin{aligned} & \mathbf{\circ} \\ & \substack{0 \\ 0} \end{aligned}$		
\bullet	$\begin{aligned} & m \\ & \vdots \\ & \vdots \end{aligned}$	$\underset{\substack{m \\ \vdots \\ \vdots}}{ }$	$\frac{8}{5}$	to		
4	N－m	ハু	$\stackrel{N}{N}$	$\begin{aligned} & \text { む్ర゙ } \\ & \text { ~ } \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \text { Nू } \\ & \text { Non } \end{aligned}$	Nิ
$\begin{aligned} & \varphi_{0} \\ & \underset{\sim}{x} \\ & \underset{x}{n} \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \dot{m} \\ & \dot{8} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \dot{m} \\ & \dot{8} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \text { if } \\ & \dot{f} \\ & \dot{+} \\ & \dot{\sim} \end{aligned}$	ํ．	－	$\stackrel{\square}{\circ}$
¢	\bigcirc	$\stackrel{\sim}{\square}$	N	む	む	＊
\％	\pm	\bigcirc	N	mf	¢	$\stackrel{\circ}{\circ}$

$068^{\circ} 0$ $\varepsilon 96^{\circ} 0$ $568^{\circ} 0$ GعL＂O 885 ${ }^{\circ} 0$ $825^{\circ} 0$ $105^{\circ} 0$ ths．0	$068^{\circ} 0$ ع96 0 $568^{\circ} 0$ SعL＂O 885＊0 $825^{\circ} 0$ 105＊0 H $\boldsymbol{c}^{\circ} 0$				$\begin{aligned} & 000^{\circ}! \\ & 000^{\circ} t \\ & 000^{\circ} t \\ & 000^{\circ}! \\ & 000^{\circ} t \\ & 000^{\circ} t \\ & 000^{\circ} t \\ & 000^{\circ}! \end{aligned}$	．		．		ع0． 00° $86^{\circ} 0$ $96^{\circ} 0$ $+6^{\circ} 0$ $26^{\circ} 0$ $06^{\circ} 0$ $08^{\circ} 0$	0	$810^{\circ} \mathrm{Z}$	$960^{\circ} 0$	S¢S＊7	ザOL O7 9＊8	82	8
			2L1＊O	79100	000 ${ }^{\circ}$ ！	ZLL＊O	2く100	OLCト1	¢65 ${ }^{\circ}$	$19^{\circ} 1$	0		らてて＊0	082＊6	$\varepsilon^{\bullet} 9$	$L 2$	－ 9
			$891^{\circ} 0$	$091^{\circ} 0$	$000 \cdot 1$	2LL•O	くれ＊＊	OLCH	858．	$19^{\circ} \mathrm{L}$	0		らてで0	082＊6	$\varepsilon^{\circ} 9$	L2	P9
－	－		$591^{\circ} 0$	000 ${ }^{\circ}$	000 ${ }^{\circ} \downarrow$	CLL＊ 0	して1•0	O以゚い	081•1	$19^{\circ} \mathrm{l}$	0		Sてz＊0	082\％${ }^{\circ}$	$\varepsilon^{\bullet} 9$	$L 2$	09
			$5 L Z^{\circ} 0$	000 1	000 1	CLL＊ 0	2LでO	＋6109	$\varepsilon+0^{\circ} \downarrow$	$19^{\circ} \mathrm{L}$	0		Sて2＊0	$606 * 7$	$\varepsilon^{\bullet} 9$	$L 2$	99
			$\begin{aligned} & 605^{\circ} 0 \\ & 5 \Sigma 9^{\circ} 0 \end{aligned}$	$\begin{aligned} & 000^{\circ} 1 \\ & 000^{\circ} t \end{aligned}$	$\begin{aligned} & 000^{\circ} \downarrow \\ & 000^{\circ} \downarrow \end{aligned}$	$\begin{aligned} & S+L^{\circ} 0 \\ & Z L L^{\circ} 0 \end{aligned}$	$\begin{aligned} & 6 \angle \varepsilon \cdot 0 \\ & 06+{ }^{\circ} 0 \end{aligned}$	$\begin{aligned} & 999^{\circ} \varepsilon \\ & \angle 6 L^{\circ} \tau \end{aligned}$	$\begin{aligned} & \downarrow+70^{\circ} \mathrm{C} \\ & \angle 80^{\circ} \mathrm{b} \end{aligned}$	$\begin{aligned} & 10^{\circ} \mathrm{Z} \\ & 19^{\circ} \mathrm{I} \end{aligned}$	0		Sてz＊o	$\angle 120 て$	$\varepsilon^{\bullet} 9$	42	89
			らて1＊O	000\％ 1	000＇1	$88^{\circ} 0$	$521^{\circ} \mathrm{O}$	L9§＊S 1	$825 \cdot 1$	$19^{\circ} \mathrm{L}$	0		OS $1^{\circ} 0$	6L1・で	6＊7	92	よك
			$\angle \varepsilon 1^{\circ} 0$	000＇1	000 1	$8 ¢ 8^{\circ} 0$	Sこと「0	L9 $\varepsilon^{\circ} \mathrm{G} \downarrow$	$825 \cdot 1$	$19^{\circ} 1$	0		OS $1^{\circ} \mathrm{O}$	6 Ll － 21	$6^{\circ} 7$	92	\bigcirc
\cdots	，	－	$\begin{aligned} & 880^{\circ} 0 \\ & 81^{\circ} 0 \end{aligned}$	$\begin{aligned} & 000^{\circ} 1 \\ & 000^{\circ} 1 \end{aligned}$	$\begin{aligned} & 000^{\circ} 1 \\ & 000^{\circ} 1 \end{aligned}$	$\begin{aligned} & 228^{\circ} 0 \\ & 8 \varepsilon 8^{\circ} 0 \end{aligned}$	$\begin{aligned} & 2 \angle 0^{\circ} 0 \\ & 660^{\circ} 0 \end{aligned}$	$\begin{aligned} & G \varepsilon Z \cdot 1 Z \\ & \angle g \varepsilon \cdot G 1 \end{aligned}$	$\begin{aligned} & 8 \angle 8^{\circ} 0 \\ & +02^{\circ} 1 \end{aligned}$	$\begin{aligned} & 10^{\circ} \mathrm{Z} \\ & 19^{\circ} 1 \end{aligned}$	0		$051{ }^{\circ} 0$	6L1・で	$6^{*}+$	92	PS
			$622^{\circ} 0$ $+120^{\circ} 0$	$\begin{aligned} & 000^{\circ} \downarrow \\ & 000^{\circ} \mathrm{r} \end{aligned}$	$\begin{aligned} & 000^{\circ} \downarrow \\ & 000^{\circ} \downarrow \end{aligned}$	$\begin{aligned} & 228^{\circ} 0 \\ & 8 £ 8^{\circ} 0 \end{aligned}$	$\begin{aligned} & 88 \vdash^{\circ} 0 \\ & 0 £ 巳^{\circ} 0 \end{aligned}$	$\begin{aligned} & 0080^{\circ} 8 \\ & 89 \varepsilon^{\circ} 9 \end{aligned}$	$\begin{aligned} & 9+66^{\circ} \\ & 291^{\circ} 1 \end{aligned}$	$\begin{aligned} & 10^{\circ} \mathrm{Z} \\ & 19^{\circ} \mathrm{I} \end{aligned}$	0		OS $1^{\circ} 0$	L＋ $00^{\circ} \mathrm{S}$	$6^{*} 7$	92	$0 ¢$
			$\begin{aligned} & 08 \varepsilon^{\circ} 0 \\ & 86+7^{\circ} \end{aligned}$	$\begin{aligned} & 000^{\circ}! \\ & 000^{\circ} 1 \end{aligned}$	$\begin{aligned} & 000^{\circ}! \\ & 000^{\circ} t \end{aligned}$	$\begin{aligned} & 228^{\circ} 0 \\ & 888^{\circ} 0 \end{aligned}$	$\begin{aligned} & 21 \varepsilon^{\circ} 0 \\ & \angle 1+O^{\circ} \end{aligned}$	$\begin{aligned} & 165^{\circ}+7 \\ & +92 \cdot \varepsilon \end{aligned}$	$\begin{aligned} & 808^{\circ} 0 \\ & 6 L 0^{\circ} 1 \end{aligned}$	$\begin{aligned} & 10^{\circ} 亡 \\ & 19^{\circ} 1 \end{aligned}$	0		OS $1^{\circ} 0$	$48 S^{\circ} \mathrm{z}$	$6^{\circ 17}$	92	qG
			1950	000\％	000\％ 1	$858^{\circ} 0$	OLT＊ 0	$9 ¢ \varepsilon^{\circ} \varepsilon$	てれで！	$19^{\circ} \mathrm{l}$	0		$05 \vdash^{\circ} 0$	$+\pi^{+1} 9^{\circ}$	$6^{\circ}+$	92	B
$\begin{aligned} & 2 \angle 6^{\circ} 0 \\ & 8+8^{\circ} 0 \\ & 569^{\circ} 0 \\ & +\angle T^{\circ} 0 \end{aligned}$	$\begin{aligned} & +56^{\circ} 0 \\ & \varepsilon 08^{\circ} 0 \\ & 099^{\circ} 0 \\ & 0 S^{\circ}+7^{\circ} \end{aligned}$	$\begin{aligned} & 69 L^{\circ} 2 \\ & 29 L^{\circ} \\ & 5+\pi \cdot 1- \\ & 895 \cdot 2- \end{aligned}$	$\begin{aligned} & z L 1^{\circ} 0 \\ & +0 Z^{\circ} 0 \\ & +6 Z^{\circ} 0 \end{aligned}$	$\begin{aligned} & 266^{\circ} 0 \\ & 066^{\circ} 0 \\ & +86^{\circ} 0 \end{aligned}$	$966^{\circ} 0$ $066^{\circ} 0$ $286^{\circ} 0$ $8^{+6} 6^{\circ} 0$ $8^{+6}{ }^{\circ} 0$ $8^{+6} 6^{\circ} 0$	$\begin{aligned} & \Sigma 88^{\circ} 0 \\ & 088^{\circ} 0 \\ & \angle 98^{\circ} 0 \end{aligned}$	$\begin{aligned} & 091^{\circ} 0 \\ & 981^{\circ} 0 \\ & 652^{\circ} 0 \end{aligned}$	$\angle+\angle \cdot O L$ 000 ＊ $+6+09$	$\begin{aligned} & 252^{\circ} \downarrow \\ & 05^{\circ} 1 \\ & 820^{\circ} 2 \\ & 60 L^{\circ} 1 \\ & 20^{\circ} \circ \\ & \angle 56^{\circ} 0^{\circ} \end{aligned}$	$\begin{aligned} & 0 L^{\circ} I \\ & \xi \xi^{\circ} \cdot \\ & 0 \varepsilon^{\circ} I \\ & 06^{\circ} 0 \\ & 08^{\circ} 0 \\ & 09^{\circ} 0 \end{aligned}$	0	$9 \angle 9^{\circ} \varepsilon$	＋o ${ }^{\circ} \mathrm{O}$	$L 18^{\circ} \mathrm{L}$	$L^{\bullet} \varepsilon$	SZ	97
$\begin{aligned} & \angle E 6^{\circ} 0 \\ & 9 \angle L^{\circ} 0 \\ & 059^{\circ} 0 \\ & T^{+1} \nabla^{\circ} 0 \end{aligned}$	$\begin{aligned} & 026^{\circ} 0 \\ & 9 \varepsilon L^{\circ} 0 \\ & \angle 19^{\circ} 0 \\ & 12^{\circ} 7^{\circ} 0 \end{aligned}$	$\begin{aligned} & 69 L^{\circ} 2 \\ & 29 L^{\circ} 0 \\ & 54^{\circ} 1- \\ & 895^{\circ} 2- \end{aligned}$	$\begin{aligned} & 691^{\circ} 0 \\ & 102^{\circ} 0 \\ & 00 \varepsilon^{\circ} 0 \end{aligned}$	$\begin{aligned} & 266^{\circ} 0 \\ & 066^{\circ} 0 \\ & +86^{\circ} 0 \end{aligned}$	$\begin{aligned} & 966^{\circ} 0 \\ & 066^{\circ} 0 \\ & 28^{\circ} 0 \\ & 8^{\circ} 6^{\circ} 0 \\ & 86^{\circ}{ }^{\circ} \\ & 8^{\circ} 6^{\circ} 0 \end{aligned}$	$\begin{aligned} & \Sigma 88^{\circ} 0 \\ & 088^{\circ} 0 \\ & \angle 98^{\circ} 0 \end{aligned}$		$\begin{aligned} & \angle \pi L \cdot 01 \\ & 000 \cdot 6 \\ & +6+\because 9 \end{aligned}$	$\begin{aligned} & 76^{\circ} \downarrow \\ & 9 \varepsilon \varepsilon^{\circ} 1 \\ & 956^{\circ} 1 \\ & 595^{\circ} 1 \\ & 21 \varepsilon^{\circ}! \\ & 268^{\circ} 0 \end{aligned}$	$\begin{aligned} & 0 L \cdot 1 \\ & \varepsilon S^{\circ}! \\ & 0 \varepsilon^{\circ}! \\ & 06^{\circ} 0 \\ & 08^{\circ} 0 \\ & 09^{\circ} 0 \end{aligned}$	0	$9 \angle 9^{\circ} \mathrm{K}$	＋ $\mathrm{O}^{\circ} \mathrm{O}$	$L i 8^{\circ} L$	$L^{\bullet} \varepsilon$	G2	87
			$\begin{aligned} & 150^{\circ} 0 \\ & 650^{\circ} 0 \\ & \varepsilon 20^{\circ} 0 \\ & 660^{\circ} 0 \\ & 001^{\circ} 0 \end{aligned}$	$\begin{aligned} & £ 66^{\circ} 0 \\ & \varepsilon 66^{\circ} 0 \\ & 186^{\circ} 0 \\ & 896^{\circ} 0 \\ & 556^{\circ} 0 \end{aligned}$	$\begin{aligned} & 000^{\circ} 1 \\ & 000^{\circ} 1 \\ & 566^{\circ} 0 \\ & \angle 86^{\circ} 0 \\ & 086^{\circ} 0 \end{aligned}$	$\begin{aligned} & 088^{\circ} 0 \\ & £ 88^{\circ} 0 \\ & 088^{\circ} 0 \\ & \angle 98^{\circ} 0 \\ & 098^{\circ} 0 \end{aligned}$	$\begin{aligned} & 7+10^{\circ} 0 \\ & 250^{\circ} 0 \\ & \varepsilon 90^{\circ} 0 \\ & 280^{\circ} 0 \\ & 080^{\circ} 0 \end{aligned}$	$\begin{aligned} & G 56^{\circ}+1 \\ & \angle Z L \cdot z t \\ & 0+\zeta_{2} \cdot 01 \\ & 069^{\circ} \angle \\ & 0+1 l^{\circ} 9 \end{aligned}$	$\begin{aligned} & 60^{\circ} 7^{\circ} 0 \\ & 08^{\circ} 0 \\ & \varepsilon 8^{\circ} 5^{\circ} \\ & \angle S L^{\circ} 0 \\ & +T^{\circ} 0 \end{aligned}$	$\begin{aligned} & 06^{\bullet}! \\ & 0 L^{\circ} 亡 \\ & 0 \xi^{\circ}! \\ & 0 \varepsilon^{\circ}! \\ & 0 Z^{\circ}! \end{aligned}$	こ¢¢ ${ }^{\circ}$	－		LSて・6	$9^{\circ} 5$	＋	PR
$\left[\frac{u p}{H_{0 p}}\right]_{\varepsilon / r^{2-}}$	$\frac{u p}{H_{O D}} \varepsilon / t^{2-}$	$\frac{\varepsilon / z^{2}}{1-z^{W}}$	$\left.\frac{u p}{H_{j p}}\right] \frac{H}{l}$	${ }^{X}$	（g）${ }^{\prime}{ }^{\text {d }}$	ϕ_{X}	$\frac{u p}{H_{D P}} \frac{H}{l}-$	$\underline{-2}^{-2} \mathrm{~V}$	$\frac{u p}{H_{0 p}}-$	N	$0 / 4$	$\varepsilon / \vdash^{2 V}$	2	\forall	$9 \mathrm{OH} \times 8$	－Јəy	${ }^{\circ} \mathrm{ON}$

Table 2 (Contd.) - DETAILS OF HINGE MOMENT CORRELATION																	
No.	Ref.	$\mathrm{R} \times 10^{-6}$	A	τ	$A \tau^{1 / 3}$	h / c	M	$-\frac{\mathrm{dC}_{\mathrm{H}}}{\mathrm{~d} \mathrm{\eta}}$	A $\sqrt{\mathrm{M}^{2}-1}$	$-\frac{1}{\mathrm{~A}} \frac{\mathrm{dC}}{\mathrm{H}} \mathrm{~d}$	${ }^{\mathrm{K}}{ }_{\phi}$	$k_{\text {w }}(\mathrm{B})$	K_{x}	$-\frac{1}{A}\left[\frac{d C_{H}}{d \eta}\right]^{\prime \prime}$	$\frac{M^{2}-1}{\tau^{2 / 3}}$	$-\tau^{1 / 3} \frac{\mathrm{dC}_{\mathrm{H}}}{\mathrm{d} \mathrm{\eta}}$	$-\tau^{1 / 3}\left[\frac{d C_{H}}{\frac{\mathrm{H}}{}}\right]^{\prime}$
76	28	8.6 to 10.4	4.535			0	0.80 0.90 0.92 0.94 0.96 0.98 1.00 1.03	$\begin{aligned} & 1.272 \\ & 2.074 \\ & 2.303 \\ & 2.567 \\ & 2.807 \\ & 2.996 \\ & 2.836 \\ & 2.636 \end{aligned}$				$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$		$\begin{gathered} -1.715 \\ -0.905 \\ -0.732 \\ -0.555 \\ -0.373 \\ -0.189 \\ 0.189 \\ 0.209 \end{gathered}$	$\begin{aligned} & 0.583 \\ & 0.950 \\ & 1.055 \\ & 1.176 \\ & 1.286 \\ & 1.336 \\ & 1.300 \\ & 1.208 \end{aligned}$	$\begin{aligned} & 0.583 \\ & 0.950 \\ & 1.055 \\ & 1.176 \\ & 1.286 \\ & 1.336 \\ & 1.300 \\ & 1.208 \end{aligned}$
8 a	18	2.2 to 2.7	10.192	0.125	5.096	0.065	$\begin{aligned} & 0.60 \\ & 0.70 \\ & 0.80 \\ & 0.85 \\ & 0.90 \\ & 0.95 \\ & 1.00 \\ & 1.05 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 0.641 \\ & 0.674 \\ & 0.712 \\ & 0.734 \\ & 0.778 \\ & 0.897 \\ & 1.335 \\ & 1.557 \\ & 1.409 \\ & 1.357 \end{aligned}$				$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & -2.560 \\ & -2.000 \\ & -1.0440 \\ & -1.110 \\ & -0.743 \\ & -0.390 \\ & 0.390 \\ & 0 \\ & 0.410 \\ & 0.840 \\ & 1.570 \end{aligned}$	$\begin{aligned} & 0.321 \\ & 0.337 \\ & 0.356 \\ & 0.367 \\ & 0.389 \\ & 0.448 \\ & 0.667 \\ & 0.778 \\ & 0.704 \\ & 0.678 \end{aligned}$	$\begin{aligned} & 0.321 \\ & 0.337 \\ & 0.356 \\ & 0.367 \\ & 0.389 \\ & 0.448 \\ & 0.667 \\ & 0.778 \\ & 0.704 \\ & 0.678 \end{aligned}$
8b	18	2.2 to 2.7	10.192	0.125	5.096	0.242	$\begin{aligned} & 0.60 \\ & 0.70 \\ & 0.80 \\ & 0.85 \\ & 0.90 \\ & 0.95 \\ & 1.00 \\ & 1.05 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 0.164 \\ & 0.164 \\ & 0.164 \\ & 0.148 \\ & 0.173 \\ & 0.312 \\ & 0.779 \\ & 0.822 \\ & 0.804 \end{aligned}$				$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & -2.560 \\ & -2.040 \\ & -1.440 \\ & -1.110 \\ & -0.743 \\ & -0.390 \\ & 0 \\ & 0.410 \\ & 0.840 \\ & 1.570 \end{aligned}$	$\begin{aligned} & 0.082 \\ & 0.082 \\ & 0.082 \\ & 0.074 \\ & 0.087 \\ & 0.156 \\ & 0.390 \\ & 0.411 \\ & 0.402 \end{aligned}$	$\begin{aligned} & 0.082 \\ & 0.082 \\ & 0.082 \\ & 0.074 \\ & 0.087 \\ & 0.156 \\ & 0.390 \\ & 0.411 \\ & 0.402 \end{aligned}$
8 c	18	2.2 to 2.7	10.192	0.125	5.096	0.333	$\begin{aligned} & 0.60 \\ & 0.70 \\ & 0.80 \\ & 0.85 \\ & 0.90 \\ & 0.95 \\ & 1.00 \\ & 1.05 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & -0.047 \\ & -0.068 \\ & -0.123 \\ & -0.155 \\ & -0.113 \\ & 0.047 \\ & 0.321 \\ & 0.443 \\ & 0.417 \\ & 0.379 \end{aligned}$				$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$		$\begin{array}{r} -2.560 \\ -2.000 \\ -1.440 \\ -1.110 \\ -0.743 \\ -0.390 \\ 0 \\ 0.410 \\ 0.800 \\ 1.570 \end{array}$	$\begin{array}{r} -0.023 \\ -0.034 \\ -0.061 \\ -0.077 \\ -0.056 \\ 0.023 \\ 0.160 \\ 0.222 \\ 0.209 \\ 0.190 \end{array}$	$\begin{array}{r} -0.023 \\ -0.034 \\ -0.061 \\ -0.077 \\ -0.056 \\ 0.023 \\ 0.160 \\ 0.222 \\ 0.029 \\ 0.190 \end{array}$
8d	18	2.2 to 2.7	10.192	0.125	5.096	0.441	$\begin{aligned} & 0.60 \\ & 0.70 \\ & 0.80 \\ & 0.85 \\ & 0.90 \\ & 0.95 \\ & 1.00 \\ & 1.05 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{array}{r} -0.344 \\ -0.371 \\ -0.457 \\ -0.526 \\ -0.490 \\ -0.331 \\ 0.086 \\ 0.150 \\ 0.179 \end{array}$				$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & -2.560 \\ & -2.040 \\ & -1.440 \\ & -1.110 \\ & -0.743 \\ & -0.390 \\ & 0 \\ & 0.410 \\ & 0.840 \\ & 1.570 \end{aligned}$	$\begin{array}{r} -0.172 \\ -0.185 \\ -0.29 \\ -0.263 \\ -0.245 \\ -0.166 \\ 0.043 \\ 0.075 \\ 0.089 \end{array}$	$\begin{array}{r} -0.172 \\ -0.185 \\ -0.229 \\ -0.263 \\ -0.245 \\ -0.166 \\ 0.043 \\ 0.075 \\ 0.089 \end{array}$

$\stackrel{\rightharpoonup}{\sim}$	\pm	$\stackrel{\rightharpoonup}{8}$	$\stackrel{\rightharpoonup}{\infty}$	8	∞	${ }_{\Phi}^{\infty}$	3
¢	W	N	$\stackrel{\square}{4}$	岁	N	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\text { P }}{\substack{\text { ¢ }}}$
Y ∞ 0 0 + 0 0	$\stackrel{\infty}{\circ}$	$\stackrel{\rightharpoonup}{N}$			$\stackrel{\circ}{\square}$	N i O N i	＋ \times $\stackrel{\rightharpoonup}{0}$ α
$\xrightarrow{\stackrel{\rightharpoonup}{*}}$	＋	N00	N	N	$\stackrel{\sim}{+}$	$\xrightarrow{\stackrel{\rightharpoonup}{0}}$	－
$\stackrel{\square}{\stackrel{\rightharpoonup}{\square}}$	－	$\stackrel{\circ}{\circ}$	－	$\stackrel{\bigcirc}{\stackrel{\circ}{\infty}}$	$\stackrel{\circ}{\stackrel{\circ}{\infty}}$	$\stackrel{\square}{\text { ज }}$	न
N0	－	$\stackrel{\stackrel{\rightharpoonup}{ \pm}}{\substack{\text { ¢ }}}$	$\stackrel{\stackrel{\rightharpoonup}{*}}{\stackrel{\rightharpoonup}{\infty}}$	$\stackrel{\stackrel{\rightharpoonup}{*}}{\substack{\text { un }}}$	$\stackrel{\stackrel{\rightharpoonup}{*}}{\text { u }}$	－	$\stackrel{\text {＇s }}{\sim}$
－	－	\bigcirc	\bigcirc	－	\bigcirc	－	\％
它守容恶	$\begin{aligned} & \circ \circ \circ \\ & \text { O8: } \\ & 080 \end{aligned}$	信			N ${ }_{\text {N }}^{\text {Nor }}$	$\rightarrow \overrightarrow{-\rightarrow 000000}$ 	
				$\overrightarrow{-} \vec{\square} \vec{\square} \dot{\square}$ 		000！d！！！！ 	（1）
		\cdots		－－．			$\sum_{\substack{\infty}}^{\infty}$
			웅ㅇㅇ 				
			0．0．000 0 ज오옹		$\begin{aligned} & 000 \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$e^{\text {a }}$
	$\vec{\circ}+\vec{\circ}$	000000000 ゅめ	00000000 	00000000000 	$\begin{aligned} & \circ \circ \circ \\ & \text { o. } \\ & \text { 우웅 } \end{aligned}$	$\stackrel{\rightharpoonup}{\circ} \dot{\circ}$	習
			우웅				$x^{\times 1}$
$\begin{aligned} & \circ 00 \\ & 0.80 \\ & \text { Boy } \end{aligned}$							
						 	N_{1}^{-N}
			$\begin{aligned} & \text { ooo } \\ & \text { you jow } \\ & \text { Now } \\ & \hline \end{aligned}$	우웅ㅇㅇㅇㅇㅇ 		000！！！d d！d 	$\stackrel{\text { N }}{\stackrel{1}{\omega}}$
		00000．000 ฟ勺u いいののの＋		웅ㅇㅇㅇㅇㅇㅇㅇㅇㅇ Noqivisw 		ㅇo obd！！！！ 以	+

SYMBOLS

All symbols refer to oontrols unless sthervise specified.

A	aspect ratio, $=\mathrm{j}^{2} / \mathrm{S}$
b	net control span $\}$ see Fig. 2
$\mathrm{b}_{\text {w }}$	net wing span $\}$ see Fig. 2
c	chord
c_{r}	root chord b
$\overline{\bar{c}}$	$\text { aerodynamic mean chora, }=\int_{0}^{b} c^{2} d y \mid \int_{0}^{b} c d y$
C_{L}	lift coefficient, $=$ lift/qS (positive upwards)
C_{m}	pitching moment coefficient, $=$ pitching moment/qS $\overline{\bar{c}}$ (positive nose up)
C_{H}	hinge moment coerficient, = hinge moment/qS $\overline{\bar{c}}$ (positive when it tends to deflect the trailing edge downwards)
$\frac{\mathrm{dC}_{\mathrm{H}}}{\mathrm{~d} \mathrm{\eta}}$	derivative of $C_{F H}$ with respect to η at $\eta=0$
$\left[\frac{\mathrm{dC}_{\mathrm{H}}}{\mathrm{~d} \eta}\right]^{\mathrm{t}}$	$=\frac{1}{\left.\mathrm{k}_{\mathrm{W}(\mathrm{~B}}\right)} \times \frac{\mathrm{dC}_{H}}{\mathrm{~d} \mathrm{\eta}}$
$\left[\frac{\mathrm{dC}_{\mathrm{H}}}{d \eta}\right]^{\prime \prime}$	$=\frac{1}{k_{w(B)}} \times \frac{1}{K_{x}} \times \frac{1}{K_{j}} \times \frac{\mathrm{aC}_{H}}{d \eta}$
C_{p}	$\text { pressure coelficient }=\frac{p-p_{0}}{q}$
c_{1}, c_{2}, c_{3}	constants in the Busemann third order approximation for the pressure coefficient in two dimensional isentropic supersonic fllow
g	width of gap between wing and body qf wing-body combinations
H	hinge moment (positive when it tends to deflect the trailing edge downwards)
h	chordwise location of control hinge line, measured aft from control leading cdge
K_{ϕ}	control hinge moment thickness factor at supersonic speeds $=\frac{\left[\frac{d C_{H}}{d \eta}\right] \text { thind ordor two dimensional approximation }}{\left[\frac{d C_{H}}{d \eta}\right] \text { linear theory two dimensional approximation }}$
	$=1-\frac{C_{2}}{C_{1}} \phi+\frac{3}{4} \frac{C_{3}}{C_{1}} \phi^{2}$

SympoLs (Conta.)

$k_{w}(B)$	the ratio of the lirt on a control in the presence of a circular cross-section body to the lift on an isolated control (of aspoct ratio trice that or the exposed panel), lift produced by control deflection with the body at zero incidence (sue Ref. 8)
K_{x}	factor for body interfercre on aerodynamic centre position of rectangular controls at supersonic spoeds
	$\left(\frac{x}{c}\right)_{\text {control }}+b o d y-\frac{h}{c}$
	$\left(\frac{x^{a}}{c}\right)_{\text {control }}-\frac{h}{c}$
K_{g}	control hinge moment gap factor $=\left[\begin{array}{ll} \text { lift or hinge moment on wing or control } \end{array}\right] g \neq 0$
$\mathrm{K}_{\tau_{1}}$	control hinge moment trailing edge thicknoss factor at transonic speeds
	$=\frac{\left[\frac{d C_{\mathrm{H}}}{d \eta}\right]_{\tau_{1}} \neq 0}{\left[\frac{d C_{H}}{d \eta}\right]_{\tau_{1}}=0}$
M	Mach numbor
m	first moment of area of the control behind the hinge line about tho hinge line
p	static pressure
q	kinetic pressure
R	Reynolds numbor bascd on wing root chord
r	body radius
S	plan area
s	gross semi-span of control inounted on body ($=\mathrm{b} / 2+r$)
s_{w}	gross semi-span of wing ($=b_{w} / 2+r$)
t_{w}	wing thickness
t	control thickness at loading eage
t_{1}	control thickness at trailing edge.
x	chordwise distance
x_{a}	chordwisa location of acrodynamic centre
	spanwise distance

SYMBOLS (Contd.)

y_{c}	distance from wing-body junction or wing centre line (configuration without body) to inboard edge of control (see Fig. 2)
α	incidence
β	$\sqrt{m^{2}-1}$
γ	ratio of specific heats
$\left(\delta_{\text {turb }}^{*}\right)_{\text {mean }}$	mean value across the control span of the displacement thickness of a flat plate boundary layer, with transition at the wing leading edge
η	control deflection (radians), measured normal to the hinge line, positive when the trailing edge is deflected downwards
λ	taper ratio
$\Lambda_{H_{0} I_{*}}$	sweepback of hinge line (degrees)
$\Lambda_{\text {L. }} \mathrm{E}_{\text {。 }}$	leadiag edge sweepback (degrees)
Λ_{T}	tip sweepback of controls with raked tips (degrees)
τ	control thickness paraneter $=t / \mathrm{c}$
τ_{1}	control trailing edge thickness parameter $=t_{1} / \mathrm{c}$
ϕ	trailing edge included angle, defined as $2 \tan ^{-1} \frac{1}{2}\left(\tau-\tau_{1}\right)$
θ	deflection angle in two dimensional supersonic flow, positive for a compression and negative for an expansion
Suffices	
w	refers to the net wing
0	refers to frce stream conditions
1	refers to conditions at control trailing edge

RETMREMCES

No.
Anthor
1 C.J. Donlan
B.C.I. Myers
A. T. Mattson

2 K.R. Czarnecki J.N. Maeller

3 I. H. Abbott
A.E. von Doenhofi

4 P.A. Lagerstrom
M. J. Graham

5 W.A. Tucker
R.I. Nelson

6

7 K. G. Winter
C.S. Brown
5.M. Iucker
E.h. Bonney

Investigation at supersonic speeds of sone of the factors affecting the flow over a rectangular wing with symmetrical circular-arc section and 30; chord trailing edge flap. NACA RM L50J18 (TTS2599), Januery 1951

Theory of wing sections, including a sumary of airfoil data. Reva, ed. Dover Publications 1959

8 ज.C. Pitts
J.N. Nielsen
G. E. Kattari

A comparison or the aerodymaic characteristics at transonic speeds oi four wing-fuselage configuration as determined from different test techniques. ARC 13956, April 1951

Low aspect ratio rectangular wings in supersonic Plow.
Douglas Aircrait Rept. No. Sin-13110, December 1947
Theoretical characteristics in supersonic flow of constant-chord partial-span control surfaces on rectangular wirgs having finite thickness. NiCA MiN 1708, Septenber 1948

Bngineering Supersonic Aeroaynamics. McGraw Hill 1950, op. 76, 77

Supersonic wini tumel tests on guidcd weapon control surraces mounted on a body. 3 teste of three rectangular controls at líach numbers of 1.61, 2.00 and 2.48.

Unpublished M.O.A. Report

Lift and centre oí pressure position oŕ wing-bodytail combinations at subsonic, transonic and supersonic spueds. NACA Ropt. 1307, 1957

RTPGRBMCES (Contd.)

No.

14 A. Buseman

17 D. Kuchemann

Title, etc.
Theoretical investigation of the effects upon lif't of a gap betwoen wing ana body of a slender wingbody combination. NACA INV 3224, August 1954

Experimentai investigation of some aerodynamic effects of a gap between ving and body of a moderataly slender wing-body combination at a liach number of 1.4 MACA RA A55D08 (RIE 4.687), May 1955

The similarity law of transonic flow. Jour. Nath. and Phys., Vol. XVI, No. 3, Oetober 191.7, pp. 182-190

Sirnilarity lays for tronsonic flow about wings of finite span.

ARC 13968, April 1951

On the application of transonic similarity rules to wings of finite span. MaCA Rept. 1153, 1953

Arplication of transonic similarity. NACA int 2687, lpril 1952

Transonic similarity rules for lifting wings. NACA MN 2724, June 10.52
J.B. MoDevitt A correlation by means of the transonic similarity rules of the experimontally determined characteristics of 22 rectangular wings of symetrical profile. ARC 16048, July 1953

A simple method or calculating the span and chordwise loadings on straight and swept wings of any given aspect ratio at subsonic speeds.

REMTRECES (Conta.)

No.

23 L.I. Guy

24 J.U. Boyd
F.A. PPyI

25 J.V. Boyd

Title, etc.

Hinge-moment, lift, and pitching-moment characteristics of a flap-type control surface having various hinge line locations on a 4 per cent thick 60° delta wing, iransonic-bump method. NACA RM L54BO8 (TITB A:166), fiarch 1954

Infects of overinang balarice on the hinge moment and effectiveness characteristics of an unswept trailing eage control on a 60° delta wing at transonic and supersonic speeds.
NACA ROM L5AG12a (MTB 4390), September 1954
The flow over a wodge profile at hach number 1. Journal Aero. Sci. Vol.17, pp. 723-735
IV. G. Vincenti Transonic flow past a wedge profile with detached bow wave. NACA Rept 1095, 1952
W. G. Vincenti Measurements of the effects of finite span on the pressure distribution over double wedge wings at Mach numbers near shook attachment. HACA TN 3522, Septembor 1955

Hinge monent and effectiveness of an unsrept constantchord control and an overhang-balanced, swept hingeline control on an 30° sifpt pointed wing at vach numbers from 0.75 to 1.96 .
NACA RI: L561911 (min 5211), August 1956
Exporimental investication of acrodynamic:ally balanced trailing edge control surfaces on an aspect ratio 2 triangular wing at subsonic and supersonic speeds.
NACA RI A $22 L 04$ (IIB 3610), Tebruary 1953

Aerodynanic charactoristics of two 25 por cent area trailing-edge :laps on an aspoct ratio 2 triangular wing at subsonic and supersonic speeds, NACA RII A520010 (IIB 3260), July 1952

REMRETVES (Conta.)

No.

Author

D.R. Lord
K.R. Czarnecki
D.R. Lord
K.R. Czarnecki
C.F. Mitcomb
C.C. Critzos
D. Isaacs
T.D. Bateman
G.T. Downer
G.F. Moss
P.G. Fiutton
D. Morton
J.D. Stephenson
A.R. Amucdo
C. T. Martz
J.

Mitle, stc.
Aerodynamic characteristics of several llap-type trailing-edie controls on a trapezoidal ving at Mach numbers of 1.61 and 2.01. NACA BI T54D19 (ITB 4255), June 1954

Hinge-moment characteristics for a series of controls arl belausing devices on a 60° delta wing at lach numbers of 1.61 and 2.01 . NACA REA L57BO1 (MTI 5489), April 1957

Transonic characteristics of outboard ailerons on a 4 -per cent-thick 30° sweptback wing, including some effects of aileron trailing-eage thicrness and aerodynamic baiance.
WACA RM L58№5 (TIL 6050), July 1958
Tests at subsonic end supersonic speeds on a slender canberod ving with fin, undcrwing ergine nacelles and trailing edge controls.

Unpublished M.0.A. Report
Force and pressure measurements on a supersonic transport moalel in the A.R.A. Hransonic tumel. Unpublished A.R.A. Mote

Unpublished Ret wind tumel tests.
Results of pressure ploting and control hinge moment tests on 1/9th scale model. of pairy delta 2 in the A.s.A. trausomic tunnel.
A.R.A. Model I'est Iote J. 12/1, Way 1961

Tests os a trianglar wing on aspect ratio 2 in the Anes 12-foot prossure wina tumel.

TI - the cifectiveness and hinge moments of a constent-chorla plain flep. WACA RASABO3 (ITB 1916), Septomber 1948

Rocket model investigation to detemine the hingemoment and normal-force properties of a full-span, constant-chort, partially baianced trailingredge control on a 60° clipped delta wing butween iach munbers of 0.50 ani 1.25.
HACA MAL53IO4. (TMB 394.3), October 1953

$$
\pm
$$

(a) RECTANGULAR

(d)

Ω	REF
60	27
$63 \cdot 4$	24,25833
80	23

(e) RECTANGULAR WITH RAKED TIP

FIG. I TYPES OF CONTROL PLANFORM

FIG. 2 DEFINITION OF CONTROL SPAN AND TYPES OF CONTROL TIP

(a) STRAIGHT TAPER WITH ZERO THICKNESS at trailing edge

(b) STRAIGHT TAPER WITH THICKNESS AT TRAILING EDGE

(c) DOUBLE WEDGE

FIG. 3 TYPES OF CONTROL CROSS SECTION

(a) CONTROL PLANFORM LIMIT

$$
B A \geqslant 1
$$

WING PLANFORM LIMITS
(b)

$$
\beta A \geqslant \frac{b}{b_{w}-2 y_{c}-2 b}
$$

(c)

$$
\beta A \geqslant \frac{b}{2 y_{c}}
$$

(d)

$$
\beta A \geqslant \frac{b}{b_{w}-b}
$$

(e)

$$
\left.\beta A \geqslant \frac{\left(1+\beta \cot \Omega_{L E}\right)}{\left(b_{w}-2 y_{c}-2 b\right.}\right) b
$$

(f)

$$
\beta A \geqslant \frac{b}{b_{w}-2 b}
$$

FIG. 4 MACH LINE LOCATION AT LOWER LIMIT OF APPLICABILITY OF PRESENT SUPERSONIC LINEAR THEORY EXPRESSIONS FOR $\frac{d C_{H}}{d \eta}$

FIG. 5 VARIATION OF $-\frac{1}{A} \frac{d C_{H}}{d \eta}$ WITH $A \sqrt{M^{2}-1}$ AT SUPERSONIC SPEEDS (hinge line at control leading edgé)

FIG.6. THICKNESS FACTOR FOR TRAILING EDGE CONTROLS AT SUPERSONIC SPEEDS

FIG.7. FACTOR FOR BODY INTERFERENCE ON LIFT OF RECTANGULAR CONTROLS AT SUPERSONIC SPEEDS

FIG. 8 EFFECT OF BODY INTERFERENCE ON AERODYNAMIC CENTRE OF RECTANGULAR CONTROLS AT SUPERSONIC SPEEDS

FIG. 9 FACTOR FOR BODY INTERFERENCE ON AERODYNAMIC CENTRE OF RECTANGULAR CONTROLS AT SUPERSONIC SPEEDS (CONTROL HINGE LINE AT LEADING EDGE)

$K_{g}=\frac{\text { (LIFT ON WING) } 9 \neq 0}{\text { (LIFT ON WING) } 9=0 .}$
BODY IS AT ZERO INCIDENCE AND
LIFT IS OBTAINED BY WING INCIDENCE ONLY.

FIG. IO GAP FACTOR FOR THE LIFT ON THE WINGS OF A WING-BODY COMBINATION.

FIG. 12 EFFECT OF HINGE LINE LOCATION ON THE VARIATION OF - $\frac{1}{A}\left[\frac{d C_{H}}{d \eta}\right]^{\prime \prime}$ WITH A/ $\sqrt{M^{2}-1}$ AT SUPERSONIC SPEEDS.

(a) $A \sqrt{M^{2}-1}=6$

(b) $A \sqrt{M^{2}-1}=8$

(c) $A \sqrt{M^{2}-1}=10$

(d) $A \sqrt{M^{2}-1}=12$

(e) $A \sqrt{M^{2}-1}=14$
---- LINEAR THEORY FOR A RECTANGLLAR CONTROL WITH FREE TIPS
$-\frac{1}{A} \frac{d C_{H}}{d \eta}=\frac{2(2 A B-1)}{A \beta^{2}}\left[\frac{(3 A B-2)}{3(2 A \beta-1)}-\frac{h}{C}\right]$ EXPERIMENTAL RESLLTTS

- MEAN VALUES OF RESLLLTS FOR $\frac{h}{c}=0$ FROM FIG.II
- RECTANGULAR CONTROLS
- RECTANGLLAR CONTROLS WITH RAKED TIPS

FIG. 13 VARIATION OF $-\frac{1}{A}\left[\frac{d C_{H}}{d \eta}\right]^{\prime \prime}$ WITH $\frac{h}{c}$ AT SUPERSONIC SPEEDS

(a) $\frac{d C_{H}}{d \eta}$ UNCOPRECTED FOR TRAILING EDGE ANGLE

(b) $\frac{d c_{H}}{\partial \eta}$ CORRECTED FOR TRAILING EDGE ANGLE

FIG. 14 EFFECT OF TRAILING EDGE THICKNESS ON $\frac{d C_{H}}{d \eta}$ AT
SUPERSONIC SPEEDS

	source of DATA (SEE TABLE 2)	A	τ	$A T^{\frac{1}{3}}$
$+$	la AND b *	8. 233	0.133	$4 \cdot 201$
\bigcirc	2	$4 \cdot 717$	0.100	2.189
Y	30	13.584	0.104	6.389
∇	$4 a$	$7 \cdot 817$	0.104	3.676
\bigcirc	7 a	4.535	0.096	2.078
\triangle	8 a,b,c,d,e *	$10 \cdot 192$	0.125	5.096
\bigcirc	96	2.047	0.128	1.033
*	10a	2.978	0.087	$1 \cdot 318$
\times	106	2.978	0.087	1.318
λ	11	10.002	0.063	3.970

* RESULTS EXTRAPOLATED TO zERO h / c

FIG.I5. VARIATION OF $-\tau^{\frac{1}{3}}\left[\frac{d C_{H}}{d \eta}\right]^{\prime}$ WITH $\frac{M^{2}-1}{\tau^{\frac{2}{3}}}$
AT TRANSONIC SPEEDS
(hinge line at control leading edge)

EXPERIMENTAL RESULTS

$$
\begin{array}{ll}
& \text { TMEAN }
\end{array} \quad \text { TMEAN }
$$

FIG.I6. VARIATION OF $-\tau^{\frac{1}{3}}\left[\frac{d C_{H}}{d \eta}\right]^{\prime}$ WITH A $\tau^{\frac{1}{3}}$
AT TRANSONIC SPEEDS

EXPERIMENTAL RESULTS

	T MEAN
∇	0.09
\odot	0.10
-	0.13

FIG. 16 (CONCLD.) VARIATION OF $-\tau^{+}\left[\frac{d C_{n}}{d n}\right]^{\prime}$ WITH AT $T^{\frac{1}{3}}$ AT TRANSONIC SPEEDS. (hinge line at control leading edge)

FIG. 17 VARIATION OF $-T^{\frac{1}{3}}\left[\frac{d C_{7}}{d n}\right]^{\prime}$ WITH $\frac{h}{c}$ AT TRANSONIC SPEEDS.

FIG.I8 AERODYNAMIC CENTRE POSITION AT TRANSONIC SPEEDS.

FIG. 19 EFFECT OF TRAILING EDGE THICKNESS ON $\frac{d C_{H}}{d \eta}$ AT TRANSONIC SPEEDS

FIG 20 VAriation of $K T_{1}$ with $\frac{M^{2}-1}{\tau^{2 / 3}}$ at transonic speeds.

FIG 21 VARIATION OF K_{1} WITH τ_{1} / τ AT $M=1$

(a) EXACT FLOW MODEL (RE F21)
(b) ASSUMED FLOW MODEL

FIG. 22 COMPARISON OF EXACT FLOW PAST DOUBLE-WEDGE PROFILE AT TRANSONIC SPEEDS WITH FLOW MODEL USED IN APPROXIMATE THEORY OF APPENDIX I

FIG. 23 COMPARISON OF EXACT MACH NUMBER DISTRIBUTION ON DOUBLE-WEDGE PROFILE WITH APPROXIMATION USED IN APPENDIX I.

	$\begin{aligned} & 533.694 .511: \\ & 533.6 .013 .155: \end{aligned}$
analysis of hinge moyent data for rectangular and near	533．6．011．35／5
rectangllar trailing edge controls at supersonic and t	ONIC SPEEDS

1ボ．ニン，D．
Similarity rules have been used at supersonic and transonic speeds to obtain a correlation of available experimental data on hinge mament curve slope， $\left(\Delta C_{H} /(\eta)\right.$ ），and to compare the experimental values with theoretical estimates．

The effects of varying contriol aspect ratio，thickness chord ratio，body interference，hinge line location，and tralling edge thickness are examined， suitable theoretical or empirical methods for predicting these effects are indicated，and their range of valldity and accuracy determined．

A．R．C．C．P．：O． 14
533.694 .511 ： 533.6 .013 .155 ：
analisis of hinge mayent data for rectangular and near 533．6．011．35／5
RECTANGULAR TRAILING EDGE CONTROLS AT SUPERSONICAND TRANSONIC SPEEDS
I Satacs，i．
May 1965
Similarity rules have been used at supersonic and transonic speeds to obtain a correlation of available experimental data on hinge moment curve slope， （ $\mathrm{dC}_{\mathrm{H}} / \mathrm{d} \mathrm{\eta}$ ），and to compare the experimental values with theoretical estimates．

The effects of varying control aspect ratio，thickness chord ratio，body interference，hinge line location，and trailing edge thickness are exsmined， aultable theoretical or empirical methods for predicting these effects are indicated，and thelr range of validity and accuracy determined．

> ack.

533．64． 511 ： 533.6 .013 .155 ．

ANALYSIS OF HINGE MOMENT DATA FOR RECTANGULAR AND NEAR 533．6．011．35／5 RECTANGULAR TRAILING EDGE CONTROLS AT SUPERSONIC AND TRANSONIC SPEEDS

Istacs，D．
May 1965
Similarity rules have been used at supersonic and transonic speeds to obtain a correlation of available experimental data on hinge moment curve slope． $\left(d C_{H} / d T\right)$ ，and to compare the experimental values with theoretical estimates．

The effects of varying control aspect ratio，thickness chord ratio，body interference，hinge line location，and trailing edge thickness are examined， suitable theoretical or empirical methods for predicting these effects are indicated，and their range of validity and accuracy cetermined．
© Crown Copyright 1966

Published by
Her Majesty's Stationery Office
To be purchased from
49 High Holborn, London w.c. 1
423 Oxford Street, London w. 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
Brazennose Street, Manchester 2
50 Fairfax Street, Bristol 1
35 Smallbrook, Ringway, Birmingham 5
80 Chichester Street, Belfast 1
or through any bookseller

[^0]:

