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SUMMARY

After giving general information  on hypersonic flows, flight
conditions and vehicles, the report reviews work on the analysis of unsteady
hypersonic flows, analytical studies of the dynamic stability of hypersonio
vehicles, and experimental and analytical work on flutter at hypersonic
speeds. On this basis it then examines the need for research and suggests
lines that research should follow.

The chief conclusion is that the quasi-steady analysis of unsteady
hypersonic flows may be adequate for the practical purposes of dynamic
stabillty  and flutter analysis. It is suggested that researoh  should be
directed to finding the degree of inaccuracy involved in quasi-steady estimates
of the unsteady aerodynamic forces, and the sensitivity of dynamic stability
and flutter analyses to inaccuracies in these forces.

In structure, the report consists of the general survey and
conclusions, together with a number of Appendices which review various aspects
in detail and which give the information and references on which the statements
in the general survey are based.
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This report is concerned with hypersonic flows around bodies undergoing
pitching and plunging oscillations and around bodies or parts of bodies
undergoing flutter. It brings together information on the methods of analysis
sppllcable  to these unsteady flows, and on the practical problems of dynamic
stability and flutter of hypersonx  vehicles where an understanding of such flows
may be needed. It is intended that the report should give a basis for the
planning of research and some conclusions are drawn from the information presented
about the kind of work which would be of value or of interest.

The report is divided into a general survey and four Appendices, which
give detailed information and references. The first of the Appendices gives some
background information on hypersonic flows, flight conditions, and vehicles, and
the other three are reviews of particular fields of work - the theoretical andys~
of unsteady hypersonic flows; analytical studies of the dynamic stability of
hypersonic vehicles in level flight, and the oscillatory behaviour of vehicles
in re-entry or exit trajectories; and information from experimental and analytical
studies of flutter at hypersonic speeds.

The general survey, which forma  the first part of the document,
summarises  the information  given in the Appendices, and presents general
conclusions about the kinds of research work that should be considered. I f
detailed information, and evidence for the conclusions are not required, only
the first part needs to be read (i.e., pp. 3-V).
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General Surves and Conclusions

Theoretical and experimental investigations of unsteady flows have
formed an important part of aerodynamic research at subsonic and supersonic
speeds - principally because of the need to calculate the forces due to
unsteady flows around bodies or parts of bodies for analyses of the dynamic
stability or flutter of aircraft. Vehicles are already flying at hypersonic
speeds for short periods on re-entering the atmosphere from ballistic or orbital
flights,  and there are possible extensions  to more controllable re-entry vehicles
and to aircraft which will cruise at hypersonic speeds. These developments have
already led to some investigations of unsteady flow at hypersonic speeds; but
changes in the fluid dynamic characteristics, together with differences in the
flight conditions and the forms of the vehicles from those designed for flight
at lower speeds make it difficult to decide what kinds of investigation would
be most relevant or fruitful. Because of this, when it was decided that the
Helium Tunnel at the National Physical Laboratory would be suitable for the
study of unsteady flows at hypersonic speeds, it seemed important to review the
information at present available to provide a basis for the planning of a
research programme.

1. Hypersonic Flight Conditions

There is no clear boundary marking the change from flow at high
supersonic speeds to flow at hypersonic speeds; instead there is a growth in
the importance of certain features of the flow which are of neglxgible  importance
or are absent at supersonic speeds. Some of these features arise from the "fluid
dynamic" behaviour of the gas and are related to the high Mach number, and others
arise from the fact that the gas has a high velocity and large energy.

A Mach number of about five is usually taken as marking the lower
boundary of the hypersonic flow regime. As the Mach number increases above
five different approximate solutions of the flow equations become necessary
because, in general, linearisation of the equations is no longer possible,
potential flow can no longer be assumed, and the thickness and rate of change
of thickness of boundary layers lead to problems arising from the interaction
of the boundary layer with the external flow. When the flow velocity is large
(IO 000 fps), because of the large energy of the flow, high temperatures are
generated at stagnation poinits or when the gas is decelerated in passing through
shock waves, and problems arise from  the excitation of vibrational modes of
polyatomio  gas molecules, dissociation and ionisation,  and the ideal gas
conditions no longer apply.

The forms of vehicle used for flight at hypersonic speed bring new
theoretical problems throughout the speed range but these problems can be most
acute for hypersonic conditions. There are two main kinds of flight operation -
re-entry from orbit or from space and cruising flight at hypersonic speeds, and
different types of vehicle are used for each. In re-entry flight the vehicle
must dissipate the large amount of energy which it has when it first enters the
atmosphere and, at present,it seems likely to have the form of a bluff body,
or a slender blunted body with a large drag and a lift/drag ratio around  unity.
For cruising conditions the vehicle can be designed for efficient lifting flight,
and it may have the form of a very slender wing/body combination or a slender
lifting body. Analysis must deal, then, with-the flow around bluff bodies and
with interaction effects between surfaces on the wing/body combinations. It must
also deal with slender bodies with blunted noses and lifting surfaces of thin
section with blunt leading edges, because noses or leading edges that are
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effectively sherp at hypersonic Mach numbers are difficult to make and Eve
rise to very severe heating problems.

2. The Analysis of Unsteady Hypersonic Flows

All analyses  of unsteady hypersonic flows assume that the physxal
and chemical effects of high temperatures in real gases and the flow changes
that result from them can be calculated on a quasi-steady  basis  after the
unsteady flow for an ideal gas has been found. The analyses also assume, In the
usual Way, that the flow Can  be considered as separable into a boundary layer,
in whloh  viscous effects are xnportant, and an external flow, in which they
can be neglected - though corrections must be made to calculations of the inviscid
flow to allow for the thickness of the boundary layer. The first assumption  is
justified,for  the types of unsteady flow being considered here,by comparisons
between the characteristic times of such processes as dissociation  and lonisaticm
and those of any flow unsteadiness that is likely to occur in praotloe. It seems
possible that the second assumption may need some investigation:  although analyses
Of simple flows similar to boundary layers with a fluctuating external velocity
suggest that boundary layers oan be analysed as if they respond in a quasi-steady
manner for fluctuations having the characteristic times likely in practice,
available experimental evidence suggests that this may not be true.

The methods available for the analysis of unsteady lnvlscid  flows can
be divided into three groups:

(i) First there are third order pxston theory and Newtonian zmpact  theory:
so far these have been the methods most widely used. Although there are flow
condxtions  in which  either of these theories can be physically  sound, in many
oases their  use is empirical or semi-empirical. They are attractive  because they
give simple relations between the pressure and downwash  at a point on a body
surface.

(ii) In the second group hypersonic small disturbance theory provides a
basis (a), at small incdences,  for the use of a variational  method to find
unsteady flows around pointed slender three-dimenswnal  bodies for values of
the parameter a$6 (where 6 is the thickness ratio) up to a limit near Unltyj
and (b) for applying the shook expansion method to the calculation of unsteady
flows around thin, sharp, two-dimensional sections and, when &,6 exceeds a
minimum value near unity, around pointed,
(The limits on the values of &,,6

slender, three-dimensional bodies.
for slender bodies are not exact but are

related to the error that 1s acceptable in the calculation - this LS the sense
in which a$6 > I, and &,,6 < 1 will be used in the rest of this section).

(iii) Thirdly, there are methods of analysis in whhlch  an unsteady flow is
consdered  as & small perturbation of a known steady flow such as the solution
of a bluff body flow or a characterxtlcs  solution for a more general body
shape. These methods have been applied to some ample flows and, in principle,
they could be used for any flows where a suitable steady flow solution was
available. In practice, their  use may be limited because of the complexity of
the analysis  or the length of time necessary for coaputataon,  but they maY be
the only methods for dealing with many important  kxds of flow and they need
to be investigated more extensively.

Judged on the basis of the assumptions and apprOXimtiOnS  made in
their development, the first  two groups of methods seem to be adequate to aeel
with a number of simple flows. Piston theory (at lower hypersonic Mach numbers,
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and values of M6 < 1) and shock expansion theory seem adequate for
two-dimensional  sections and for wings with supersonic leading edges. Shock
expansion theory and the variational method should, in principle, deal
satisfactorily with slender bodies whose cross-sectlons  are everywhere convex
though, in practice, there can be difficulties if the condltlons  at the nose
are not given by a known solution, and if the cross-section is not circular
and the incidence is not small. At sufficiently high Mach numbers Newtonian
theory will give good results for surfaces that are convex, but it is liable
to be considerably in error on surfaces that ars concave, and on control
surfaces or flared sections lying within the shock layer of the body.

For steady conditions, experimental evidence supports these conclusions,
For unsteady conditions the evidence IS more limited. since very few direct
measurements of derivatives have been made, and the results which have been
obtained from flutter tests are inconclusive because of the experimental
uncertainties. It would seem likely from the nature of the theories that, whan
used within their limiting conditions, they would agree quite well with
experiments: but the size of the differences between measured aerodynamic
damping derivatives and calculated values suggest (as has been mentioned above)
that it may not be possible to assume a quasi-steady response of the boundary
layer to fluctuations of the external flow.

But these comparatively simple methods of analysis oannot  be used,
at present, for many of the kinds of flows which are likely to ooour in
practice. In particular, they cannot be used for two-dimensional sections,
swept wings, or slender bodies, above the incidence for shook detachment; for
slender bodies where M6 < I, at large incidenoes;  for blunted, thin,
two-dimensional sections and blunted slender bodies; for bluff bodies; and for
bodies on which it is neoessaly  to consider interaction effects between surfaaes.
It is possible that a satisfactory semi-empirical method of analysis can be
developed for the blunted thin section and blunted slender bcdy by using a
suitable bluff body solution for the nose region combined with the shock
expansion method downstream but, in general, for most of these flows, it will
probably be necessary to use a small perturbation method for small amplitude
motions and a quasi-steady analysis for large amplitudes. Because of this,
there will necessarily be a very close relationship between the development of
unsteady analyses and the development of sultable  steady analyses. It is likely
that, even when a satisfactory unsteady analysis has been developed, the need
to develop the results in a form suitable for use in flutter calculations will
remain a major problem, espeoially as flutter may involve longitudinal bend%
distortions of vehicles.

3. The Dynamic Stability of &Personic  Vehicles

The practical importanoe  of unsteady flows is to be found in the
investigation of dynamic stability and flutter of vehicles and, in order to
assess the need for accuracy in the analysis of unsteady hypersonic flows, it
is necessary to have information on the stability and flutter characteristics
of the vehioles.

Dynamic stability has been investigated by extending the classical
analysis of aircraft stability to flight at very high speeds and constant
altitude, and by examining the oscillatory behaviour of vehicles in re-entry
flight. It appears that the form of the vehicle and its aerodynamic
charaotefistics  at hypersonic speeds only effect the stability characteristios
in details, the qualitative behaviour being determined bY the high  speed  of
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flight  and the altitude at which it takes place. For example,  although  a
full analysis  that till give the correct behavicur at extreme altitudes requires
the ~IIC~US~OII  of terms to acccxlnt  for changes in the air density, gravity
force, and other factors with altitude, and takes account  Of the effective rate
Of pitch due to the curvature of the flight path, the behaviour of the vehicle
is dominated by the large values of the ratio of vehicle density t0 air density
at which flight is possible. The longitudinal motion of the vehicle still
exhibits two oscillatory normal modes, as at lower speeds. One mode involves,
predominantly, changes of speed and altitude, and the other involves,
predominantly, pitching oscillations. The second mode has a comparatively
short period at the lower altitudes of hypersoac  flight, and, under these
conditions, it might  involve unsteady fldw  effects. Because of the large values
Of relative density characteristic of hypersonic flight, the frequency parameters
of normal modes are small and the rates of decay of the Oscillations are low.
Qualitatively, the changes in the lateral behaviour Of vehicles at hypersonic
speeds are similar to the changes Ln the longitudinal behaviour. The frequency
parameters involved are likely to be rather higher than for the longitudinal
motion, but they will still be codsiderably  smaller than those at lower speeds.

Analyses of the longitudinal oscillatory behaviour of vehicles in
re-entry fllgbt  show no essential ~iifferences from the behaviour in the case
of level flight. At a given point in the trajectory, the frequency of the
oscillatory pitching motion is the same as it would be for level flight at the
Same speed and altitude, and the criteria for conver'gence of the motion can be
shown to be the same in the two oases apart from the inclusion in the re-entry
case of terms that are dependent on the drag of the vehicle, and the rate of
increase of air density.

It is possible to set an approximate upper limit of 0'01 on the
values of frequency parameter likely to be found in bypersonlc  stability analyses.
For values of the parameter in this range it should be possible  to treat the
flow as quasi-steady, althwgh  accurate estimates of the aerodynamic damping may
need rather careful examination of the boundary layer behaviour. The results
Of stabilitg  investigations do not show any conditions 1x1  which a very accurate
knowledge of unsteady aerodynamic forces would be of critical importance  for
normal stability analyses, especially as artificial control Of the stability
would probably  be used in normal conditions. Nevertheless, if vehicles are
designed for emergency manual control, or if it is required to analyse  the
uncontrolled motion of a re-entry vehicle, accurate values of aerodynamic
forces might be important.

4. Flutter of hersonic  Vehicles

The kinds of flutter likely to cccur  at hypersonic speeds are
determined chiefly by the form of the vehicles. From general technical
cOnsideratiOns,  it seems that the most likely form Of flutter involving the
whOle  vehicle structure will be either  that of a slender body in bending mdes,
Op Of a slender win&O+ combination involving flexure,  torsion, and camber
m&es  Of the wing, and bending modes of the body. Panel flutter Could,  also,
be a problem Over those areas of the body surfaces  where dynamic pressures can
be high but the simple, conventional flexure/torsion  flutter of lifting surfaces
is cdy likely tobe encountered on certain kinds of Control surface.

There have been Some analytical and experimental inVesti.gatiOnS  of
the flutter of 10~ aspect ratio wings with chordwlse  flexibility,  and Of rigid
cones  with pitching and plunging flexibilities, but the majority of investigations
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have been ~0nce171ed with  the flutter of two-dimensional sections with pitching
and plunging freedoms, and. the closely allied problem of cantilever wings with
root flexlbilities  IA pitching and flapping. The studies  of flutter of
two-dimensional sections have shown the effects of an altitude parameter @&,,
a thickness parameter &$, and a mean inCidenCe  parameter &a,,  where p
is the mass ratio of the section, 6 is the thxkness  ratlo,  and as is the
mean incidence. For sharp sections with similar profiles, the same pitching
axis position, and the same density and mass dxstrlbutions,  and ratios of the
natural frequency in plunge to that in pitch of less than one (which is the
usual condition), flutter speed is approximately proportional to a for
Kc06 and !&,,a, constant; decreases wzth increasing h@ for $& and M,.&,
constant, and it can decrease with increasing &~s for & and &,,6  constant.
The profile shape of a sharp-nosed section only has a large effect if it causes
a large change in the centre  of pressure position (e.g., a change from a double
wedge to a single wedge section), but blunting the nose of a section at constant
cr14,  increases the flutter speed up to a limit of blunting that depends on the
Mach number; further bluntug reduces the flutter speed or causes divergence
before the section flutters. It seems possible that the effects of strong nose
shock waves, the entropy variations that result from these, and real gas effects
may increase the flutter speed over the value which it would have if these
effects were absent. Finally, when aerodynamic non-linearities are significant,
theoretical investigations have shown that there exists a range of speeds within
which flutter can be started by disturbances of a finite size - the larger the
disturbance the lower the flutter speed.

The limited investigations of the effects of chordwise bending modes
on the flutter of low aspect ratio wings serve to show that these can be
important (though the effectidaepend  on the characteristics of the particular
structure) and that flutter of a slender wing involving only longitudinal bending
modes 1s possible. The flutter analysis and experiment on a rigid cone with
pitching and plunging flexibillties  suggest that the flutter speed/altitude
parameter for a given cone is independent of Mach number.

There do not seem to have been any investigations of panel flutter at
hypersonic speeds, but, sinoe structural limitations ensure that the
displacements are very small so that the hypersonic parameter &6 (where 6 is
a measure of the displacement) remains small, some deductions about panel flutter
behavlour can be made from the results of investigations at lower Mach numbers.
On this basis, panel flutter seems unlikely to be influenced by fluid dynamic
effects of high Mach numbers, except by those arising from the thickness of the
boundary layers; but critical conditions  could arise in practice because strong
shock waves will increase the values of local dynamic pressures above those for
the free stream, and the stiffness and end loadings of panels will increase as
a result of aerodynamic heating of the structure.

The investigations of flutter that have been examined are all concerned
with rather special cases; nevertheless, they all suggest that purely fluid
dynamic effects at high Mach numbers will not have a large Influence on the
likelihood of flutter. For example, for a two-dimensional  section, although
leading edge blunting and a large mean incidence can cause reductions in the
flutter margin at high Mach numbers, present information suggests that, for flight
at constant pressure, and when the effect of aerodynamic heating on structural
stiffness 1s ignored, the transonic  flight &gime remains as the most critical.
On the other hand, flutter could be a danger at hypersonxc  speeds because
aerodynamic heating could alter the stiffness of a structure and for sOme flight
paths, partxularly  during re-entry, high dynamic pressures occur when the heating
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rate is al30  high, and because for acme parts of the structure local dynamic
pressures can be several tlmea greater than free stream values.

The frequency parameter at which flutter will Ooour  is determined to a
large extent by the natural frequencies of the vehicle structure and by the
flight speed at which flutter cocura. An upper limit  of 0.5, baaed on body
length, has been suggested 83 probable for flutter involving slender body
bendlng modes  and. the limit for other forma of flutter 13 likely to be of the
same order. Far frequency parameters near this upper limit  It would be
necessary to take account of unsteady effects in calculation of the aerdynamic
damping forces if accurate values of these were required. The flutter
investigations for hypersonic speeds that have been reviewed do not examine the
need for accurate values of aercdynam+  forces, but acme studlea  for lower
speeds have suggested that, under certain conditions, if aerodynamic damping
terms are small, they have very little influence on flutter speeds and
frequencies.

5. Discussion and Conclusions

The eS8entid  point to emerge from this review is the need tc eatabllah
whether Or not quasi-steady analyses of unsteady flows will be adequate for the
praotioal problems of vehxle dynamic stability and flutter at hyperacnio speeda.
From the evidence available x.t  seems likely that auoh analyaea  ~611  be adequate,
but 3 definite enawer to the queatlcn  will depend, first, on the aenaitlvlty  cf
analyses Of dynamic atabillty  and flutter to small error3  in the aercdynamic
forces, especially to error3  in the aerodynamic damping; and, secondly, on the
size of errcra in the estimates of unsteady aerodynamic forces  due to the
assumption of quasi-steadiness at the frequency parameters to be met in practice.
These points suggest two lines for further research:

(i) Investigations of the sensitivity of dynamic stability and flutter
analyses to errcra in the estimations of the aerodynamic forces involved;

(ii) Investigations of the errors involved in quaal-steady  estimates cf
unsteady aerodynamic forces  at hypersonic speeds.

A number of steps would be involved in the second investigation. In
the first place, in those simple Caaea where an adequate unsteady analysis
already exists it would be a fairly straightforward matter to find the errcr
involved in assuming quasi-steady conditions. Secondly, it would be possible to
Investigate mere canplex  flows experimentally by ccxnparing unsteady measurements
with quasi-steady predictions derived either from steady analyses, or from
suitable steady-state measurements. But,finally,  it would be necessary to
develcp  methods of unsteady analysis to deal with mere complex shapes, SO that
it would be possible to establish the limits of quasi-steady analyses  with
greater generality.

There 13 a second general point to be made. Studlea  of unsteady flow8
should, in the main, be carried cut as part of more general studies either of
methods of theoretxal  analyala  or of the flow field around a body for both
steady and unsteady conditions. At hyperaonxc  speeds, methods for the theoretical
analyala  of unsteady flows are closely related to those for steady flows, and
their limltationa  3re likely to be aimllarly  related; an understanding of the
full flow field - in partxulsr, of the behavicur of the boundary layer and the
effect cf mere  bluntness - wlllbe Important for the 3ppliCetiCn  of theories
and the interpretatlcn  of results.

Recommendations for apeciflc  research projects are given  in
Sections 2.4 and 4.3 in the Appendices.
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APPENDICES

Detailed Reviews

APPENDIXI: Review of Hypersonic Flight Conditions

1.1 Characteristics of Hypersonic FlowsI,29394

The term 'hypersonic' is used of flows above about M = 5, when
CertEhI features of the flow, which are unimportant at lower Mach numbers, begin
to grow in significance. These characteristic features are separable into
changes in the fluid dynamics of a gas which result from the high Mach number,
and physical and chemical effects which result frcsn the high speed and. consequent
high energy of the flow. Because of the high energy of the flow, high temperature
will be generated where the gas is brought to rest at stagnation  points and where
it is decelerated in boundary layers and in passing through shock waves -
particularly if these are strong. These temperatures can be high enough  to cause
excitation of vibrational degrees of freedom of polyatomic  gas molecules,
dissociation and ionisation. The hydrodynamic properties of the flow are affected
by the resultant changes in the ratlo of specific heats of the gas, in the
specific heats themselves, and by the relaxation phenomena involved. When still
higher temperatures are generated, radiation from the hot gas provides an
additional means of energy transfer.

Because of the high Mach number, certain simplifications can be made
in the fluid dynamic analysis of flow in comparison with analysis at lower Mach
numbers but certain complications must be met as well. The principal
simplifications are that, for slender bodies, longitudinal disturbances  of the
flow can be neglected in comparison with lateral disturbances and certain flows,
particularly those over bluff bodies, become independent of the Mach number when
this is high enough.

The principal complications are that the range of thickness ratios for
which analyses based on linearization of the equations of motion of the fluid can
be applied becomes very small, that strong, curved shock waves can be present,
causing entropy variations in the flow so that potential flow theory cannot be
applied, and that, because of the thictiess  and rate of growth of the boundary
layer and the sensitivity of the external flow to small changes of direction,
interactions between the bo&dary layer and the external flow can be important.

Further complications are found in the analysis of flows that OCOUT
in practice because of the finite thickness of nominally sharp leading edges
and the use of blunt leading edges to reduce heat transfer. The analysis of
hypersonic flow past a bluff shape is, itself, very complex, involving all
flow regimes - subsonic, transonic,  supersonic and hypersonic. Downstream of 8
blunt leading edge, the gas which has passed. through the very strong, highly
curved, shock set up by the leading edge, forms a layer of high entropy and
vorticlty adjacent to the body. The analysis of the flow in the entropy layer
and the analysis of the interactions between the body shape, the flow in this
layer and the external flow have not yet been carried out in a completely
satisfactory way.

1.2 Hypersonic Vehicles

Hypersonic vehicles can be separated into two main groups: those
vehicles j.ntenaed to fly efficiently within the atmosphere at hypersOni0  speeas,
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and those vehicles intended for re-entry flight from  orbit or from space.
General disOussiQns  of the design problems involved are given  in Refs.  5 to 8.

The first grc~p of vehicles includes the hypersonic cruise vehicles,
for which the useful Mach number range may be 5 < M < 7, the reeus&le  booster
for space v+icles,  for which the Mach number range may extend  to M = 13, and
the one-stage-to-orbit vehicle. All of these vehicles seem likely to be of
slender form with  leading edges highly swept to reduce  both shock wave bag
and aerodynamic heating of the leading edges, either a slender-body/slenderwing
COnfiguratiOn using favourable  interference effects between wing and body  to
give maw aerodynamic efficiency (Fig.l(a) and Ref. 8) or a development of
the caret wing. The latter, in its simplest form, is a body which has a oonoave
lower surface with an inverted V cross-section: the lower surface is designed
to support a plane  shock between its edges - most of the lift is generated on
3he lower surface and the upper surfaces can be shielded from the flow in the
cruise attitude (Fig. l(b) and Refs.  9 and IO).

The common characteristics of the re-entry group of vehicles are that
they are unpowered and must dissipate large amounts of kinetic energy during the
period of re-entry. The form of the vehicle depends on the way in which it is
designed to dissipate this energy, and the degree of control of the trajectory
that is required. The simplest form is a blunt body designed to follow a
ballistic trajectory. For such a body, most of? the energy is transferred to the
gas in the shook layer ahead of the body and is dissipated in the wake. Peak
body surface temperatures are high, but the heating period is short. As speeds
increase above escape speed, a ballistio re-entry trajectory rapidly becomes
unacceptable because deceleration rates become too high, re-entry must be
initiated with very great accuracy, and there is little cantrol  of the landing
point after re-entry has started. In consequence, lifting bodies with B high
drag and moderate lift/drag ratio (in the range between 0~5-1~0)  offer
significant improvements in the control of deceleration rates and of the
trajectory. For these vehicles, peak temperatures will be lower than for the
ballistic vehicle, but heating times will be longer and .s greater amount of
heat will be absorbed by the structure. Suitable vehicles would either be bluff
bodies modified to produce  small amounts of lift or slender bodies which could
be operated at high incidence at the start of re-entry, (Fig. 2(a). and (b),
Refs.  7 and 8). A third possible re-entry vehicle is represented by the Rogallo
wing, which would be a lightweight inflatable structure of heat resistant materul
cooled by radiation (Fig. 2(c), Refs. 5 and 10).

1.3 Fli&t  Envelopes for Hvpersonio  Vehicles

For any particular hypersonic vehicle there is a flight corridor of
altitudes and speeds within which flight is possible. For flight at a given
speed the lower altitude band of this ooddor  is determined by the madmum
values of dynamic pressure and stagnation or recovery temperature that the
structure can withstand, and the upper altitude band is set by the wing lading
of the vehiale and the maximum lift coefficient that it can attain. At
comparatively low speeds (5000 ft/sec)  the wing losting  ana lift ooeffioient
define  a dynamic  pressure below which flight is not possible, but for speeds
that are .g significant fraction of orbit81 speed, account must be taken Of the
centrifugal lift developed on the vehicle. We then have

lla
w I-- = &pn”sc,

( )@
. . . (1.1)
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where W is the weight of the vehicle; S is the lifting area; R is the
radius of the flight path from the earth's centre. Thus when the speed is
high flight  is possible at lower values of dynamic pressure than when the speed
is lcw.

The actual limits of the flight corridor depend on the design of the
vehicle, but Fig. 3 has been prepared to indicate the range of flight conditions
within which hypersonic vehicles may normally be expected to operate. The
minimum value of the parameter W/XI has been taken to be 15 lb/fta:  only
vehicles involving light weight lifting structures are likely to give values .
of less than this; and the maximum value of dynamic pressure has been taken as
1000 lb/ft'. The lines in Fig. 3 representing the altitudes and speeds for
these constant parameters define a flight corridor in terms of minimum lift
and maximum dynamic pressure. Two bands are shown representing the speeds and
altitudes at which the-stagnation temperature will be 2000'R and 4CC9R. A
limit on stagnation temperature of 2OOO'R will permit flight in only a restricted
region; a limit of 4OCO"R permits a flight corridor extending to orbital speed.

Superimposed on the flight corridors defined by d.ynamiC  pressure,
stagnation temperatures and lift in Fig. 3 are shown lines of constant Reynolds
number and constant values of the viscous interaction parameters, x. The
values of Reynolds number per foot that are likely to be met suggest that, at
the higher speeds and altitudes, laminar bcundarg layers will extend over much
of the vehicle surface, and flow separations will be more easily provoked than
at lower speeds, where much of the boundary layer is turbulent. The parameter
x indioates the importance cf interaotions  between the boundary layer and the
external flow and is defined by the equation:

. . . (1.2)

where  o, is the constant in the tiscosity relation

CI T
-=c-
k -Tm

and is usually close to unity. The value of o,,, has been taken as unity in
Fig. 3. Values af x of O(O-5)  and greater suggest that these interactions
will have significant effects on pressure distributions for sharp-nosed bodies
(Appendix II, Seotion 2.2).

Fig. 4 shows some possible trajectories for super-circular ballistic
re-entry (re-entn  velocity is greater than circular orbital velocity), super
circular lifting re-entry, lifting exit, and expandable structure lifting
re-entry (W/SCL  < 15): these are superimposed on the flight corridors defined
in Fig. 3. The ballistic trajectory shcws  very high values of dynamic pressure
and stagnation temperature illustrating the severity of the conditions for this
form of re-entq which was mentioned before. The super circular lifting re-entzy
trajectory shows a condition of high dynamic pressure and stagnation temperature
in the early stages of re-entry, when the Mach number is very high, but the
Bfting exit trajectory shows a maximum dynamic pressure below the hypersonio
speed range.

APFEWDIxII/
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APPENDIX II Review of Theoretxal  Analysis of Unsteady Hypersonic Flows

Despite the complexity of the real flow situation outlined, in Section I,
it is assumed that real gas effects and boundary layer behaviour cause
mOd.ifiCations  to the flow for an inviscid  perfect gas which can be estimated
when that flow is known. This assumption is inherent in all the methods of
analysis that are available; it appears justified  in the conditions which are
considered here, but It will be discussed later in this sectlon.

2.1 Methods of Analysis

The methods used for the anelysls  of inviscid  unsteady hypersonic flows
fall into three groups. In the first group there are two methods used widely on
a semi-empirical basis because of their  simplicity. One of these is based on
Lighthill's piston theory, and the otheron Newtonian theory. In the second there
are methods based on the application of hypersonic small disturbance theory -
the variational method, and the shook-expansion method. And, in the third there
are two methods based on analyses which consider the unsteady flow quantltles
8s small perturbations  of the steady flow field: these methods have not, as yet,
been much used.

2.1.1 Piston theory and Newtonian impact theory

Piston theory and Newtonian impact theory have been used fairly widely:
piston theory for flutter analysis on wings, impact theory for the estimation of
pressures and overall forces on bodies. The methods are attractxve  because, in
the simple forms in which they are usually employed, they give du-ect  relatlonshlps
between the local downwash  and pressure on & body surface.

Piston theory is closely related to hypersonic small disturbance theory
which is ccmsldered  in 2.1.2, but it 1.9 discussed separately here since the term
has been used mainly to describe  a particular relatlonship  between the downwash
and the pressure on a surface and thu relationship has been extended, on a
semi-empirical baas, to high Mach numbers.

Piston theory in its original form14 applies  on surfaces with small
lateral curvature and supersonic edges, for Ma >> 1 and M6 << 1, where 6
is a measure of the maximum surface slope and is usually taken to be the largest
of the thickness ratlo,  mean incldenoe,  and dimensionless  amplitude of tune
dependent motion. In practice M > 2.5 appears to be the lower Mach number
limit for reasonable accuracy.

According to the theory, the pressure at a point on the surface can be
related to the streamwise slope and normal velocity of the surfaOe z(x,y,t)
by the expression

y-l IA $T
p  = pan = & I - - -

( >
. . . (2.1)

2 %a

where WC uaz+az
ax at' and p,pand a are the local pressure, density  and speed

of sound, and pm, pm and 4x are their  free stream VS~WS. Equation (2.1)
gives  the pressure  acting on a piston  moving with  a velwltY  W IntO  * 6*s In
a one-dimensional channel, under isentropic condltlons  (x.e., for w/L << 1).

Id
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In practice, equation (2.1) is replaced by the approximation given
by the leating terms in the binomial expansion of the bracket. Expressed in
non-dimensional terms, this expansion is

P - pm w
where c- =

SYPe#dS
2 -iv0 = -, and 6 is the measure of

U6 maximum surface slope defined
above.

When equation (2.2) is used to calculate the lift distribution on an
aerofoil it shows the effects both of thickness and mean incidence. Fig. 3 9 ,
from Ref. 57, shows that the predicted thickness effect agrees well with that
found by experiment, and by the more exact theory of Van Byke.
Appendix IV shows that changes in lift distribution due to thickness and
mean incidence can have an important influence on the flutter of an aerofoil
section.

From its derivation, equation (2.1) only applies for isentrcpio
conditions, and, for a compr

$fl
sion, this requires that W/G CC 1 (or M6 << 1).

But it is shown by Lighthill that equation (2.2) gives a good approximation
to the one-dimensional piston pressure up to w/r& = 1 and, on this basis,
piston theory has been used for flutter studies well into the hyPerscnic  Mach
number range considered in this report (e.g., Ref. 61).

that
wave

For values of MS > 1, Miles '5, Raymond16
a n d  E a s t17 have suggested

piston theory be extended on a semi-empirical basis by substituting shock-
relationships for equation (2.1) for compression surfaces. The methods

suggested are based on the expressions for one-dimensional-shock flow in front
of a piston moving at a speed w > G. These expressions are:

1

where

P-RX?
- = p ,

PC.2
. . . ( 2 . 3 )

P 1 + [(Y+~wYlcI
-=
PO3 1 + r(Y-fwYlP

p = y(,)[~(,)+[(~y(,.j +I]&]

Milesi suggests two ways in which these relationships could be used:

(1) Where the shock wave movement due to the unsteady disturbances is
small, equations (2.3) should be used to calculate the local flow conditions
due to the steady state surface slope, and the values of p and a from this
calculation should then be used in (2.1) with the unsteady disturbance w' to
calculate the unsteady pressure disturbance.

(PI/
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the shock wave movement is likely to be significant, it would
perturb the first of equations (2.3).

The second method is essentially that followed by East17 and Raymond 16 .
Although the relationships suggested by Raymond are developed in a way different
from that used by East and Miles the results can be shown to be equivalent. In
Ref. 15 expressions are given which are derived for the second method when it is
assumed that a strong shock wave exists  (30 that p/p, >> 1). For a strong shock
w*ve equation3 (2.3)  reduce to

P
-=
PO0

P
-=

PC0

3
-=

40

Y(Y+l)  w  a
-

2 ( )Boo

(y+l)

(y-1  1

JyyL)

. . . (2.4)

and, from equations (2.4), the perturbation pressure is given by:

P' = (y+l)p, z& Mew' . . . (2.5)

where w' is the perturbation downwash  and 8 is the mean inclination of the
surface to the free stream direction (0 i3 still small, though RS is large,
30 that tan S c 0).

This form of shock wave piston theory is smndly baaed in that it can
still be assumed that flow disturbances in the x- and y-directions are small in
comparison with those in tie s-direction and that the action of the surface on the
flow at a point can be given by the flow in front of a piston moving in a
one-dimensional channel, but it assumes that the shock wave strength is always
directly related to the piston speed by equation (2.3). In fact, equation (2.3)
is derived with the assumption of a uniform piston speed and. the relationships
should be modified to take account of the canpression  and expansion wavea  set
up by the accelerations and decelerations of the piston correa riding  to the
shape of the surface profile. These effects could be 78included but the point
relation between the pressure and the surface slope and normal velocity would
be lost.

The first method suggested by Miles'5, that the strong shock relations
should be used to calculate the local flow conditions in which equation (2.1)
is applied, is similar to the suggestion in Ref. 57  that account could be taken
of steady state entropy gradients and even real gas effects by applying simple
piston theory in the local conditions established by a steady state calculation.
Strictly, the method is applicable only where the flow conditions are little
effected by the unsteady disturbance (e.g., for panel flutter calculations).
For this case, the method seems to be soundly baaed if the local Mach number
is still high enough but its use in such ccnditions  suggests the need for an
investigation of the pressure on a piston moving in a one-dimensional channel
in a fluid with large entropy gradients.

Unsteady/
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nsteady  Newtonian theory is d i ussed by Hayes and Probstein', by
and by Zsrtarian and Saurwein 3s . The theorv  can be shown to anulv. . "

in the limits M +m, Y +I, when E +t, where E :is the density ratio
aoross the shook at the body surface. The theory assumes that there are no
interactions between fluid particles, that the only change in the velocity of a
particle impinging on a body surface takes place normal to the surface, and
that, after impact, the particle follows the surface of the body within an
infinitesimally thin shock layer. The pressure at a point at the surface of
the shock layer can be found directly from the change in the component of the
fluid momentum normal to the body surface, so that the pressure coefficient at
the surface of the shook layer is given by:

P-&Z
C e
P &@" = 2( "yqn]

where qn is the normal velocity of the body surface point arising from any
motion of the body, and any time-dependent distortion of the surface, and u,
is the component of the free-stream velocity normal  to the surface. It is clear
from the assumptions in the theory that it can be applied only where the flow
impinges directly on the surface: it can give no information about surfaces
shielded from the flow and the pressures on such surfaces are assumed to be
negligible.

A fully rational theory'920 requires a calculation of the nressure
differences aoross  the shock iayer  necessary to account for the accelerations
of the fluid partioles  following the body surface. This would involve an analysis
of the structure of the shock layer, and a consideration of the complications that
can occur in the behaviour of the layer. But, since corrections for these effects
wolld introduce very great complications, the theory, as it has been empirically
applied, assumes that the pressure at the body surface is the same as that at the
surface of the shock layer and, in this form, it is sometimes known as Newtonian
impact theory.

Under steady conditions the simple theory has been found to give
reasonably satisfactory results on convex surfaces where the Mach number is high
enough for the shook to be close to the surface, provided that the expression (2.6)
is factored to give the correct value of the Cp‘ at the stagnation point or the
leading edge of the body. The accuracy of impact theory in these circumstances
is, apparently, due in part to the oancelling of opposing errors: the pressure
behind the shook is higher than the impact theory value, but the pressure
difference across the shock.layer  due to the centrifugal effect compensates  for
this (Ref. 2).

Examples of the use of Newtonian impact theory for unsteady flow
analysis are to be found in Befs. 21, 22 and 23. In Ref. 21 Tobak and Wehrend
compare the results of impact  theory analysis for a cone with first and second
order potential flow solutions and, for the stiffness derivative, with exact
values over the Mach number range from 3-O to 5-O. The impact theory values
appear to be a limit which the exact values approach with increasing Mach
number, but the cone is an especially favourable  case for the application of
Newtonian theory. East'7 has shown that, in the limits M +co, y + 1, the
expressions from Newtonian impact theory and f-ran strong shook piston theory are
the same.
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The simplicity of the theory makes it attractive for practical
applications bu'c.it  has serious limitations  which may not always be cbvi,cus
in advance. It has already been pointed cut that it gives no information about
pressures on surfaces shielded from the mainstream flow; it is found to be
seriously in errcr  on ccncave  surfaces; and it is unreliable wherever the
effects of a finite shock layer thickness  may be important, e.g., over much
of a slender body at small incidence (Figs. 11, 12 & 13) and on control surfaces
and flared sectlana  cn slender bodies which operate within the nose shock.

2.1.2 tipersonic  small disturbance theoq

The second group of methcds  makes use of the result from  small
disturbance theory that, for slen&er  bodxes  at high enough Mach number, the
flow in a lamina  of fluid normal to the body axis can be considered as
independent of flow in adjacent laminae. This result is Gplicit  in the
assumptions of piston theory, but it has been establlshed  formally, and w1t.h
more  general applicability, in hypersonic small disturbance theory. Since the
theory brings out important characteristics  of hypersonic flow, it will be
discussed first, before ccnsdering  how its results are applied to the
calculation of unsteady flows.

Small disturbance theory is concerned with flows  involving velocity
disturbances which are small relative to the free-stream velocity, i.e., with
the flows past slender bo&es in two dlmensicns  cr three dimensions, or with
planar bodies w1t.h supersonx  leading edges and small lateral curvature. ,At
low enough Mach numbers, lineamsation  of the equations of motion i's  possible
for the flow around such bodies, but at hypersonx  Mach numbers the velocity
disturbances are not small m ccmparlson  with the speed of sound and the pressure
disturbances are not small in comparison with the free-stream static pressure,
so that the flow equations cannot be linearised. Despite the fact that the
equations are essentially non-linear, some valuable information  on the flow
conditions can be obtained and the equatlcns  themselves can be simplified by
making use of the fact that the velocity disturbances are small relative to
the free-stream velocity, and the pressure disturbances are small relative to
the free-stream dynamic pressure.

As full discussions of the theory are given by Van DykelC
and Prcbstein',

and Hayes
it will,only  be briefly outlined  here and illustrated by the

general flm equations.

Consider a slender, pointed body in a hypersonic stream at only a
small angle to the free-stream direction. The shock waves make only small
angles with the free-stream airedion  ana, because of this, it can be assumed
that velocity disturbances in this dx=acticn  are small m comparison with those
normalto it ad the lateral extent of the flow field is small in comparison
with the body length. The scale of smallness involve&  is, in general, of the
same order as the thiclaess  ratio or the angle of incidence of the body.

Take an axis system with arigin  at the ncse of the body, and the
x-axis in the direction of the free stream; let U be the free-stream velocity
an@ u, v and w be the disturbance velocity components in the x, y and Z
directions. Let the larger of the thickness ratio and the angle of incidence
be denoted by 6, and apply the transformations:

u = 6"'

* = Px' *3
. . . (2.7)

Then/
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Then the transformed velocity cconponent u' will be of the same
order of magnitude as the components v and w, and gradients of flow
quantities in terms of x1 will be of the same order of magnitude as those
in the y and z directions. Substituting these transformed quantities into
the equations of continuity, momentum and entropy (with isentropic conditions
along the streamlines) we obtain

and

aP ap ah-4
-+uus-

ah)
+-+-

a t a9 ay a2

auf auf au* au* ap
- + us -++-++-+-
at axI ay a2 pa+

av av av av 1 ap- + us -+v-- +w--+--
at a9 ay as P ay

aw an an aw 1 ap- + us -+v- +w-+--
dt axI ay az P a=

as a s as as
- + U6 ---4-v-- +w--
at ad ay az

a(puf)= -p t . . . (2.8)
ad

au'
= -6%' -, . . . (2.9)

ax*

av
= #,f -

axa 3 . . . (2.10)

an
= -6% -3 . . . (2.11)

a9

a s
= #U - . 9.. (2.12)

ai+

where S is the entropy, and is given by S = C, log(p/py)  + constant, where
CV is the specific heat at constant volume. If the right-hand sides of these
equations are neglected as they are of second order of smallness, the equations
for v, w, p and p are decoupled from that for u'. The significance of this
is seen more clearly if the equations are now transformed to axes fixed in the
fluid, for if

F=t.

-32 = x' - mt
. . . (2.13)

a a
and -=-

ax' a2
. . . (2.G)

a a a '
- = -- us -
at a? a2 I

then equations (2.8) to (2.12) beome:

ap abd ah-d
-+-+- =G 0
a% ay az

ih* tit au* 1 ap
-+v-+w- +-- = 0
aZ a;P az p aF

. . . (2.15)

. . . (2.16)
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av av a-f 1 ap
-+v-+w-+--  = 0
ax ay az P ay

aw a37 aw 1 ap
-+v-+w-+---  = 0
at, ay a2 p a2

. . . (2.17)

. . . (2.18)

as as as
-+v-+w- = 0 . . .
at

(2.19)
ay a8

It can be seen that the eqoSti0ns  (2.15) ana (2.17) to (2.19) are the
equations  for the unsteady  flow  of e fluid in two dimensions.

Since the boundary conditions at the shock wave and the body tr&form
In a similar way to the equation3 of motion, the flow around 3 slender
two-dimensional body becomes the problem of flow around an expanding ana
contracting piston in motion in two dimensions, and the flow  past a thin
twCdim?nsional  section becomes that of a piston moving in one dimension.  The
link with piston theory in the twc-dimensional  case is obvious, but the nctual
piston theory relations and the point relationship between piston velocity and
pressure do not follow unless isentropic flow is assumed III  front of the pl3ton.

A similar argument to that just used justifies the use of strip theory
on surfaces at hypersonic speeds  If the flow is attached at the leading edge of
the surface'. It cSn be shown that the transformations

y = FY-iAy'
ana

5
. . . (2.20)

v = SA-Iv'

where A is the aspect ratio of the surface, sake spannue  disturbances and
gradients in the flow of the Same order as those normal to the surface. If
thh,~; t~ra~ormatlons  are applied in equations (2.15) to (2.19),  ana terms of

are neglected, one-dimensional puton theory is shown, formally,
to be applicable on such surfaces.

It can be seen that no assumptions about the time-dependent terms
have been made  in the development of the theory. There are two limitations that
must be observed. The flrst  is that the downwash  components due to the
unsteadiness must remain  small, of O[S] 30 that, for a sinusoidal unsteadiness
giving a non-dimensional displacement ijo = h/8 at 3 point, it is necessary that

oeb
- << 1 . . . (2.21)
u

where al = 2xf.

The second limitation is that the wavelength of the unsteady disturbance
Should  be large in comparison with spatial  extent of propS@tiOn  of S point
disturbance  in the time that it takes the body to pass any point in the fluid.
Since  6, which  is a measure of the surface slope of the boay,  1s Of the same
order 8s the Mach angle, U6 is of order 'a' where 'a' 13 the speed  of sound
in the fluid. Then, at the tail of the body the maximum extent Of propagation

of/
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of a disturbance is of order sd(= a@). Consequently, the second limitation
can be expressed by

x >> 66
03..

h/d >>  6 . . . (2.22)

where- X is the wavelength of the disturbance.

Sychev  has shown, in Ref. 25, that a fdrm of small disturbance theory
can be developed for bodies at large incidence in hypersonic flow, provided that
the flow on the leeward side of the bcdy can be neglected. From this development
of the theory it can be shown that on the windward side of the body the flow in
a lamina  of fluid normal to the axis of the body can be considered as independent
of the flow in adJacent laminae. The form that the equations take will be
illustrated, as before, by considering the general equations  of motion of the
fluid. The equations are presented this time in non-dimensional form as, far
this case, the development can be seen more clearly.

The axes  &, '1, C., are taken with origin at the nose of the body and
the &-axis in the mean direction of the principal body axis and the z-axis in
the plane of the &-axis and the flow direction (Fig. 6). The independent
variables are made non-dimensIona  by the transformations:

& 11 tu co9 ag = -, T = . . . (2.23)
b

;i = --&,
b

where b is the body length, 6 is a ratio representing the maximum surface
slope, a is the angle of incidence of the body and U is the flow velocity
of the free stream.

The dependent variables are made non-dimensional by the transformations:

u cos 01 + u v W

= l+ii, 7 = f w =
u 00s a U sin a U sin a

P P
P = , and p = - . . .

pm ua sFna  a
(2.24)

PC0

where u, v, w are the velocity perturbations in the &, i, G directions.
Then the general equations of fluid motion become

pm u cos a a;; pm u cos  O L  as; poou sina a(3 pmU sina a(3
-+ -+ -+

b ax b E b6 a? b& a4

poou co.9 a a(3
= - -, . . . (2.25)

b E

u2cos2a

b I
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U2c03”a  aG Uacda  au Psin a cos a aTi Psin  a 00s  a _ aU
-.I. -.b V-+ w-

6 bS 2b a7 b a.E b6

pa Psin"a a;
+ - = -

P2 aii

ussin (I cos OL aT U~COS  OL SIP a a7
-+ -+

b ax b E

pm u2~i.13~  a;
+ - = -

p,bS  6

U’COS”U  aii
;--,

b xc
. . . (2.26)

U"sin3a  a? Psin‘a a7
V-+ w-

b6 6 b6 aZ

~“COS  O L  SLY  a a;
;-, . . . (2.27)

b aE

Vsin a 00~ a aW U200s  a sin a aii Uasin2a  aTi uzsin2~  ai
-+ --+ 7-+ w-
a7 b aC b6 6) bt, aZ

Q,  ua~inaa a; PCOS  3. sin u a&
+-- = - u - , . . . (2.28)

p&6 &f b aE

u ~0.9  a as u 00~  a as u sin  a as using a s
-+ -+ V-+ w-

b aT b aE b6 aTi bS aZ

u ~0~  a as
= - u--;

b aE

these equations reduce to

. . . (2.29)

aF ais aG3 a(F) a(l;;)
6cota-+6cota-+--+-  = - 6 cot a -3 e.. (2.30)

a5 aE a: Z ac

aci aii  aG aLi a? aii
600ta-+600ta-+~-+ii-++ttana-  = -Scotau=,  (2.31)

ax aE a;i aZ aE a.5

a7 .- 6 a7 a;;
Soota-++ccotaz+V-++-+-  =

a7
. . . (2.32)

aT aE aij ag a:
- 6 cot a G, ,

a5

ai ai aii a%  ai; a;
Soota-+6cota-++-++-+-  P -Scota;-=, . ..(2.33)

ax aE aij az Z a.5

as as as as as
Soota-+6cota-+T--+w-  = -6cotaG--.

a% aE a;i a?Z E
. . . (2.34)

But/
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u cot cl
ucota = . . . (2.35)

u co3 a

and, on the windward side of the body, the disturbances are confined between the
body and the shock wave, which lies close to the body, and consequently u is
of order 6v or 6w, and ucota is of order 6

(
cot a is of order u co3 a

>*
The right-hand sdes of equations  (2.30) to (2.34) are, then, of order 6' a!d can
be neglected if 6 is small. If the equations  are now transformed to axes parallel
to the original axes and moving in the +ve F; direction with velocity V, cos a,
and the substltutlons:

. . . (2.36)

are made, equations (2.30) to

JF
6 cot a -+

at'

6 cot a - +
at*

JY
Scota- +

at'

ai
6 cot a - +

aT1

as
6 cot a - +

aP

a a
-=-
G a?51

a a a
- = - - -
ax at* a~;'
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. . . (2.38)

. . . (2.39)

. . . (2.40)

as as
v-+w- = 0,

aij aZ
. . . (2.41)

and the problem reduces to that of an expanding, contracting  and translating piston
in two dunensions.

In the original derivation by Sychev, he states that the equations are
valid only for a body wxth all transverse dunensions  small In comparison  with  its
length. In fact, there seems no reason why the results should not apply in
two-dimensional  flow and for swept wings on a strip basu,  provded  the flow
remains attached at the leading edge. But, clearly, there 1s a range of bodzes
which  have significant lateral dimensions on which the flow detaches at the
leading edge at moderate angles of attack, or IS never attached, and in these
cases the theory will not apply.
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It was pointed cut at the beginning of the discussion of Sychev's
extension of small  disturbance theory that the theory only applied for the
windward side of bodies. It can be shown  for two-dimensional bodies that the
pressures on the leeward side are small enough in comparison with those on the
windward side for their neglect to introduce errors of the same size as the
other terms neglected in-the  theory.

2.1.3 The variational method

Some special steady flew  problems are solved acccraing to small-
disturbance theory in Ref. 24, but there does not appear to have been any attempt
to solve equations (2.15) and (2.17) to (2.19) directly for unsteady conditions.
Nevertheless , general conclusions about the nature of the hypersonic flow around
slender bodies derived from  small-disturbance theory have been used as a basis
for applyFng  a variational method to the solution of some unsteady problems and
the shock-expansion method  to the solution of others. The fullest account of
this work is given in Refs. 19, 20 and 26, and there are shorter accounts in
Refs. 13 and 27.

The results of the small-disturbance theory analysis have shown that
the flow around a slender three-dimensional bcay becomes the problem of flow
around an expanding, contracting and translating piston in two dimensions, and
the flow around a thin twcdimensicnal  section simplifies,  in the same way, to
a one-dimensional problem. In Ref. 19 it is suggested that a varlaticnal  method
should be used to solve the equivalknt  two-dimensional flow problem for a slender
body (the method could also be used for the equivalent one-dimensional flow for
a thin section, but the interest in this  case is trivial). The method assumes
that the flow can be considered as isentropic, but this is considered to be a
reasonable approximation for values of M6 < 1. This ccnclusicn  is based on the
fact that analyses which assume isentropic conditions (e.g., 3rd order piston
thecry)  give satisfactory results on twc-dimensional sections up to the value
MS L( O-7 (ocrres  onding  to M0N mO.7 for a double wedge and NON w I-4 for a

Pbiccnvex section and the entropy rise across the nose shock from a wedge is
considerably greater than that for a cone with the same value of !deN.

For general flow under isentropic conditions the variational method
starts from a consideration of the integral

t2
I = E(p)1 dV dt z . . . (2.42)

applied to the conditions set up in the stationary fluid by the motion of the
body. The integral is taken ever the disturbed volume of the fluid between two
fixed times h and tz at which conditions are known. p is the fluid
density, q is the fluid velocity, 4 is the fluid velocity potential function,

a aE(p) is the internal energy per unit volume, & z x + u z + v & + w & ,

is the fluid pressure. (Clearly, the first integral in (2.42) reduces
a+

-P + -+ E(p)1 dV dt for this case, but the form given is more
a t

closely  related to the form used in more general formulations of the variational
principle for fluids). The conditions for the first integral in (2.42) to be a
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minimum are that its variations for small variations  in the values of p, q
and $ should be zero. These conditions can be shown to lead to the equations
of continuity, irrotationality and momentum for the flow, so that the problem
of finding the flow by solving the equations of motion for the fluid can be
change& into that of finding a function for p
equation (2.42) a minimum.

which makes the integral in

For isentropic conditions, p can be expressed in terms of the
velocity potential, 6, in the form

p = r, (y-l) ( f! + $o(y-').  .  .  ( 2 . 4 3 )
Ibo L

where s, is the free-stream
can be written in the form

speed of sound. Using this expression, equation (2.42)

ta

lb [
PC.3 I

t; ‘J(t) ti (t)
-!I$(;+ $$)~y-r)w  a, (2.44)

& Iat /-I

and the problem becomes that of finding a function for $ such that the variation
in I is sero  for small variations in +. This problem canbe solved in an
approximate  manner by assuming a finite series for 4 which satisfies the boundary
conditions (including the known conditions at k and I+) and in which the
coefficients are determined by the condition that the variation in I for small
variations in each coefficient must be sero.

When this general method is applied to the case of flow around a
two-dimensional piston in Ref. 19 it is shown that the statement of the variational
principle must be modified slightly to take account of the fact that the conditions
at time te are not known. The modified statement has the form

A][(; dv at +~t2;pA~lt~t2~~  = 0 . . . (2.45)

+a
where A

u
p dV dt is the small variation in the integral for a small variation

h (t)
in P (or +), and A+ is the corresponding small variation in +. The variations
must be taken so that A$ = 0 at the outer wave from the piston, the boundary
conditions at the piston are unaltered, and at time b the disturbed volume is
zero or the flm is known everywhere and the variations are correspondingly
restrained. When both p and p are expressed in terms of the velocity potential
equation (2.45) can be written as:

. . . (2.46)
where S(t) is the disturbed area in the two-dimensional problem.

Zartari*n19/
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ZartariaJ9 gives examples of solutions using this method for simple
shapes for which known solutions  are available (e.g., flow past cylindrical and
elliptic cones aid ogival shapes), and shows that good agreement with more
exact solutions 1s obtained even for small numbers of terms in the series for
6. It is shown in Ref. 26 that some more complex cross-section shapes can be
dealt with by us~.ng  sultable  co-ordinate transformations  to give simpler forms.
Because of the limitation  to approximately isentropic conditions, the variational
method is limited to bodies at small angles of Incidence although the small-
disturbance theory still applies up to large xu%iences.

2.1.4 The shock-expansion method

The shock-expansion method for calculating the flow field around
bodies in high-speed flow was developed for steady flow conditions*S,29,30,31.
Its use for the calculation of unsteady flows is based on the fact that the
results of the small-disturbance theory analysxs  can be interpreted as meaning
that the flow in any given lamina of fluid whose plane is (approximately)  normal,
to the longitudinal axis of a bcdy (or to the mean 06ord  of a wing section) is
independent of the flow in adjacent laminae. Because of this independence, the
flow at a given station along the body depends only on the body shape that has
been'seen'  by the lamina at that station. In general, the lamina 'sees' the body
shape as an expanding and contracting piston with translational velocity, and the
analysis of the flow is independent of the fact that the translational velocity
may be the result of incidence and camber on a body in steady motion, or the
pitching and translation of a body in unsteady motion. Consequently, according
to small disturbance  theory, the flow at a given station on a body in unsteady
motion is the same as that for a body  of the same cross-section, with an
appropriate axial distortion; and the flow at a series of points along a body
in unsteady motion can be found by a series of appropriate steady flow
calculations. The shock expansion methcd  is suitable for carrying out these
equivalent steaay  flow calculations, for small-amplitude  motions at Mach
numbers for which real gas effects are not important, gives closed form expressions
for the overall force and pitching moment.

In the simplest form,the  shock-expansion methcd for two-dimensional flow,
the oblique shock relations  are applied to the wedge flow at the leading edge of
the section to give the conditions just behind the shook wave and the conditions
on the surface downstream are considered as given by applying the Prandtl-Meyer
expansion relation along the surface from the leading edge condition. The
Prandtl-Meyer relation in this case is given by

JP SP 80
-= e-2 . . . ( 2 .47 )
as sin 28, as

where S is the distance measure6  along the body surface, p and j3~ are the
local values of pressure and of the parameter p = daa"-1,  and 0 is the local
inclination of the surface to the free-stream dxreotion. For a thin section this'
can be integrated to give the expression:

ff = [I + (Y) ldpqx)  - %] yy-y . . . (2.44

where the subscript N denotes conditions  at the leahng edge.

This/
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This simple form of the method ignores the
disturbances frcm  the body surface at the shock wave
gradient in the flow, and. the picture of the flow 33

effect of the reflection of
ana from regions of entropy
consisting of a straight

shock wave from the nose followed by a simple expansion is not in general
adequate for the whole field. The significance of these reflections has been
examined. in Ref. 28 and it is found that, at the body surface, the reflected
disturbances tend to cancel each other for the condition y > l-3. Since this
condition holds for most flows of practical interest, the simple theory is
adequate to give surface pressure information.

For thin two-dimensional sections undergoing small-amplitude sinusozdal
distortions about zero  mean incidence in flow3 of sufficiently high Mach numbers,
the expressions for the nose shock conditions and for the Prandtl-Meyer relation
can be simplified and, as a result, a closed-form expression for the lift
distribution can be developed. For a symmetrical section the expression is19 :

Pe‘PU  = ze ikt

PC0 c
&[(8)"-II+1

(y-1 1
1 +- Ei.J  'ii(x)

+ 2 3

2y/(v-1)

x

- k(O)
X? -
C L

+ ikg(0) emilm  +
ax 1

+ yi& [miq x) -1 J
h(O)
- + ikg(O)] emikx  +[z + ikg]] . . . (2.49)
ax

where g(x) is the complex amplitude of the time-dependent motion; n and m
are the rates-of change of pressure and Mach number at the nose with change of
nose  angle; "N is the value of the Mach number at the nose for sero  distortion;
@ is the value of the shock inclination angle for zero  distortion; and z(x)
is the turning angle of the flow from the nose due to thichess  alone.

For conditions where the simplified expressions for the nose conditions
and the expansion could not be applied, where the amplitude was not small, or
when real gas effect3 became important, numerical methods would have tL be
employed.

The shock-expansion method can be applied to slender three-dimensional
bodies for which MS is greater than a limit around unity (the limit is not
rigid; errors become greater as unity is approached) because it can be shown
for such bodies that the flow on the body surface is locally two-d' TJym; :",planes normal to the body surface and tangential to the streamlines
as a consequence of this, the Prandtl-Meyer relation  can be applied along the
surface streamlines. The surface streamlines can be shown to follow closely the
surface geodesics through the nose. A geodesic is a line on a surface such that
at any point its projection on the tangent plane at that point has zero  curvature;
it is determined by the geometry of the surface so that once the initial direction
of the surface streamlines is known the expansion conbtiona  can, in principle,
be determined from the geometry of the surface. The condition3 at the nose of
the body must, of course, be found from the flow over a cone hating the 3ame
cross-section as the body at the nose. This presents a limitation for the
application of the method since the flow is known only for cones with certain
simple cross-sections at small angles of yaw.
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For bodies of revolution at small incidence and amplitudes of motion
it can be assumed that the surface streamlines remain the meridian lines throughout
the motion and a closed form expression can be developed for the surface pressure
distribution. But for bodies of other cross-sections, or for large amplitudes
of motion, both the nose shock conditions and the surface geodesics  beoome
difficult to determine.

Because of the Sychev extension of small-disturbance theory to large
mcidence  s , unsteady shock expansion theory can be applied, for two- and three-
dimensional bod.ies,  to oscillations about a large mean incidence, and, in a
step-wise manner, to large amplitude oscillations - provided the shock remains
attached throughout the notion.

2.1.5 Small perturbation analyses

The last methods of analysis that will be discussed both assume, as a
starting point, that.the  steady flow is known in a suitable form and that the
unsteady motion of the body is small enough for the disturbances set up by it to
be small in comparison with the steady flow quantities.

The first method, put forward by KennettJL, consders  the case of flow
in the neighbourhood of the stagnation point of a bluff body of revolution.

The equations of the flow are derived in terms of a curvilinear
co-ordinate system based on the body surface, as shown in Fig. 7. It is assumed
that the density in the shock layer is constant, that the body motion does not
produce any density changes, and that the flow perturbations caused by the
unsteady motion are small in comparison with  the steady flow quantities. The
flow equations are re-expressed in terms of the steady flow quantities and the
unsteady perturbations, and. they are then linearised  in the perturbations. The
following set of equations is obtained:

auf 1 auf au, au' a% 1 w
-+ u, -+ u' - +v,---

>
+ Y' - +

at 1 + %Y ax ax ay ay Po(l+~Y)  ax

+ Kb (%Y + v,u') = O(q'"),
I'%

av* 1

(

a+ ab

>

a+ avo I ap'
-+ &,- +u'- +v,- +v' - + - -
at I +SY ax ax ay ay PO ay

2Kb uou’ = o(q’a),
1 + SY

. . . (2.50)

. . . (2.51)

a+ WI a+ aw' 1 ap UOW' ar W'V, ar
-+ -+v,-+--+ - + -- = O(q'e),  (2.52)
at I + \Y ax ay rh a+ (l+Kg)r  ax r ay
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t

and r “” +  u’  i  +  (1+K#)r  ;+ v'~l+~Y)  z + r\]+  (1+rgy) i’ = o(q’2),
ax

. . . (2.53)

where u, + u' is velocity ccmponent  in x-direction (see Fig. 7)

vo + v' is velocity component in y-direction
w' is velocity ccmpcnent  in +djrecticn

L

is the steady flew  density
is the body surface curvature in the meridianal (x,y)-plane

9' is u', v', or w', whichever is the greater.

The terms in equations (2.50) - (2.53) are next subjected to an order
of magnitude analysis starting from the assumptmn  that for hypersonic flow

PO
EC = - >>  1

PC.2

and using the results of steady flow analyses to conclude that

uo
- = O(i),

PO
- = O ( l ) ,

U PO lJa

vo A
-  e O($), and - = O(Gi 1,
U a,

. . . (2.54)

where A is the shock stand-cffdistance  and & is the nose radius of curvature.

It is also established that if

u' V ’ P' W’

-z O(K) << 1 , -<<<  1 ,  ---cland - << 1, . . . (2.55)
u -JO PO uo

where K is a measure of the order of magnitude of the perturbations, then

P' w' _
- F  O ( K ) , and - = O ( K ) . . . . (2.56)
P,U” U

When the equations (2.52) - (2.55) are non-dimensionalised. and terms of
order K/EC are neglected then the following dimensional equations are obtained:

a
-+~~~+(iw+~)]ii+($)i = 0(&~)+0(~),..(2.57)
ax

-- 2p,uJ$i = 0(&g) + 0 . . . (2.58)
ay
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a
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where rb is the body radius of revolution, and simple harmonic motion has been
assumed with

"'b,Y,W = G,Y,deiwt,
v'kY,@;t)  = +,Y,deiwt,
"'(X,Y,tJ$)  = ~b,Y,&T . . . ( 2 . 6 1 )

and P'(x,Y,w)  = S(x,Y,deiwt.

From the equations (2.57) - (2.60) it can be seen that (2.57), (2.59) and
(2.60) can be combined to give a single equation for ;.
be found by integrating equation (2.58).

When G is known "p can

The boundary conditions at the bcdy and shock are analysed and simplified
in a similar way. Five boundary conditions  are obtained because another unknown,
the shock wave position, must be introduced.

To illustrate the application of the analysis, Kennett considers the
case of a spherical cap in plunging sinusoidal motion. He takes as a basis  an
approximate flow field and relations originally derived by Hayes, and is able to
find a solution for c in the form of a series in y, the co-ordinate normal
to the body surface with coefficients dependent on the frequency parameter - so
that, for small frequewy  parameters, only a few terms are required. The solution
'is considered to be valid within IQ% up to the point where the surface slope is
45" and this corresponds to the range of applicability  of the constant density
assumption.

Kennett  regards the results of his analysis as a first-order correction
to the results from quasi-steady  Newtonian theory  in which it is assumed that the
shook and body move together, and the perturbation pressure behind the shook is
the perturbation pressure on the body. He finds that the shock amplitude is
given by

where c = % = radius of spherical cap

and Tb = is the dimensionless amplitude of the body
surface displacement.

The pressure is given by

p"b +
c

'b4ik 00s & + 4 sin2E 7 - z sinaC
1

ys. . . . (2.63)
YS

The/
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The cut-of-phase component of Ys is plotted in Fig. 8 and the
cut-of-phase component of &, is plotted in Fig. 9 in comparison with the
quasi-steady Newtonian result. At practical values of kx where 5; = i;/a,
is the non-dimensional amplitude of the cap plunging motion, it is clear that the
cut-of-phase component of the shock wave motion will be negligible over the
range of applicability of the analysis. The cut-of-phase component of the
pressure is small for quasi-steady Newtonian theory; the present theory provides
a correction of the order of .$ at the limit of its application.

The analysis by Hclt33 can be applied to those parts of the flow
around a body where supersonic conditions exist, and a characteristic analysis
has been carried cut. Starting from an established flow field and known
characteristic directions, Hclt  expresses the flow equations in terms of a
cc-ordinate system based on the given characteristic directions and introduces
small perturbations of the flow quantities. If squares and products of the
perturbation quantities are neglected, the equations become linear equations
for the perturbations with coefficients determined by the steady flow solution.
Hclt applied this analysis to the simple case of isentropic flow over an
axisymmetric conical afterbody  in Ref. 33. More recently, Kawamura and Tsienx
applied the method of analysis to an axisymmetric body to determine the stability
derivatives, but this is for, effectively, steady state conditions.

The small perturbation methods of solution can be valid only when the
conditions are such that the hypersonic similarity parameter for the body motion,
M6 (where 6 is the change in surface slope due to the motion), is small, so
that disturbances to the flow quantities are sufficiently small. In general,
numerical solutions will be necessary, but this is unlikely to be an important
drawback since a numerical solution of the steady flow held will usually have
been necessary in the conditions for which the methods are best used.

2.2 The Influence of Real Gas Effects and Viscosity

It was pointed cut inAppendix  Ithat, in many hypersonic flows,
temperatures will be generated in the gas which are sufficient to cause excitation
of vibrational degrees of freedom of pclyatcmic gas molecules, dissociation,
and icnisaticn; and that these effects can give rise to significant mcdificaticns
to the flow. Fortunately, the characteristic times involved in these reactions
will usually be very short in comparison with the characteristic time of any flow
unsteadiness likely to be met in practice. For example, the relaxsticn  time
for dissociation of cqgen for flow in the stagnation region of a blunt body at
M = 15  at 200 000 ft is of the order of 2 x 10e4 seconds, whereas the maximum
frequency for any unsteady motion involving the structure of a vehicle is unlikely
to be as high as 100 cycles per second, and will, usually, be very much less than
this. Consequently, although the effects of these changes in the gas can complicate
analysis, they can usually be dealt with on a quasi-steady basis.

The effects of viscosity are not as clearly defined. The first effects
that must be considered exist already in steady flow and arise from the fact
that boundary layers are in general very much thicker than at lower Mach numbers
because of the rise in the temperature of the gas as a result of its deceleration
in the layer, and the smaller unit Reynolds numbers associated with high altitude
flight. The thickness of the boundary layer can be such that it exerts a
significant influence on the external 'inviscid'  flow. A measure of this influence
is usually given by the size of the parameter x defined by:

x = bf(a,JRe,)' . . . pt)

where/
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where cm is the constant in the vlsooslty relation:

P T
- = c m-
&a T,

and can often be taken as unity; and Be, is the Reynolds number based on the
distance from the leading  edge.

For x >> I, a condition which can occur close to a sharp nose Or
leading edge, the streamline inclination induced by the boundary  layer oan be
larger than that due to the bOdy surface inclination: this is termed a 'strong
interaction'. But, over most Of the body and espeolally  when the nose is not
very sharp, the effect Of the boundary layer can usually be considered as being
a small perturbation of the inviscid  flow.

The boundary layer on an oscillating body does not seem to have been
examined directly and
be a study by Li&thillj!

e only analytical evldenoe  on Its behaviour appears to

boundary-layer- ype
study by Moore32

for an incompressible fluid of the response Of a
flow io fluctuations Of velocity i: the external flow  ana a

of the compressible boundary layer on an accelerated plate.
The scale Of unsteadiness  can be measured by a frequency parameter %x/v,,,  where
w. = 2xfo and f. is the frequency of the fluctuations v, is the mean
external velocity, and x is the distance from the leading edge of the surface.
Lighthill's analysis  suggests that the boundary layer can be treated by a
quasi-steady Or first order unsteady theory for u,x,/v~  << 0.6.

Moore's analysis  shuws  that the scale of unsteadiness can be measured
x dvo x2 @PO

by parameters of the form --,--, . . . .
v: at v$ at?

for a sinusoidal Velocity

variation, the first parameter in this sequence would be equivalent to the
frequency parameter in Lighthill's work. Moore concludes that the flow can be
andysed on a first-order unsteady basis for small values of the unsteadiness
parameters.

These results suggest that, for most conditions where unsteady hypersonic
flolnrs  are likely to occur, the thiohess  of the boundary layer and, consequently,
its effect on unsteady aerodynamic forces, can be found by assuming that it
responds in a quasi-steady manner to changes in the external flow conditions,
since the frequency parameters will be considerably less than the linnting  value
proposed by LIghthill. This conclusion obviously requires investigation,
especially in view of some anomalies III experImenta  results which are mentioned
in (2.3) and there are some oases (for example, panel flutter) where frequency
parameters could  be higher than the limit suggested.

2.3 Experimental Verification of Theoretical Analyses

There have been very few reparts  of experimental mSaSUremSntS Of
unsteady forces at hypersonlo  speeds. Those reports which shOw comparisons with
theoretical calculations are References 17, 37, 38 and 39. In the report  by
Maas the oanparisons  are not very informative because of the uncertainties
in the measurements and. the lack of clarity about what theoretical methods are
being usea. The comparisons in the other reports are clearer, but there are
only scanty results. Because Of this situation it is necessary to Consider
the accuracy of the methods of analysis  under steady conditions t0 get sOme

indication/
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indication of their reliability, even  though results of their  use under steady
conditions cannot be conclusive evidence of their value when the flow  is
unstoaay.

In Figs. 10 and 11 third order piston theory predictions for the
pressure distribution on a blconvex parabolic arc section aerofoil are shown
compared with the distribution from a characteristics solution, which should
be accurate for the inviscid  flow. For a two-dimensional section the correction
for boundary layer growth should be straightforward and need not be considered
in this comparison. At M = 3'5, in Fig. 10, the agreement is quite olose,
though third-order piston values are consistently low; at M = IO, in Fig. 11,
the errors are much greater. The departures from  the characteristics result are
greatest in the regions of the nose and trailing edge over which MC > 1 (8 is
the surface slope). The error in the prediction of the oentre of pressure for
a single surface would be quite large, but this does not necessarily mean that
the oentre of pressure for the section is similarly in error, since this depends
on the increment of pressure difference with incidence and not the overall distribution.

Calculations by Newtonian impact theory are compared with characteristic
results for the same bioonvex section at M=lO and 02 for zero  incidence, and
at M = 10 for an incidence of 19~9~ in Figs. 11, 12 and 13. Results are shown
for equation (6) and for this expression modified to gave the oorreot  pressure
at the leading edge. The unmodified equation always gives values of pressure
that are considerably lower than the accurate ,values.  The modified equation is
inadequate at M = 10, (1 = O" (Fig. 11); even at M = m it is considerably
in error beyond the one third chord point (Fig. 12). For the section at an
incidence of 19*9O, the theory is being tested under very favourable  conditions,
since there should be only a thin shook layer over the lower surface of the
section. Even for this ease (Fig. 13), there are appreolable  errors in the
pressure distribution given by the modified expression.

Results for two-dimensional shook-expansion theory are given in
Figs. 14 and 15. In Fig. 14, pressure distributions on the same 1% aerofoil
section as before are given for the characteristics calculation, for the shock
expansion method, and for a simplified version of the shook expansion method
applicable to slender bodies at high Mach number (this slender aerofoil method
corresponds to the expressions used to derive equation (2.49)). There is close
agreement of the methods. In Fig. 15, the effect of real gas thermodynamics
on the pressure distributions  are shown. When oalorlc  and thermal imperfections
of the gas are fully considered in the shock expansion method, the results differ
very little from the characteristics result, consequently the characteristics
results have not been included in Fig. 15. The results from the slender aerofoil
method use an average value of y throughout the field. Above an incidence of
about IO' it is clear that the departures from perfect gas behaviour become
significant, especially for the, slender aerofoil method.

Figs. 16 and 17 illustrate the use of generalised  shock expansion
theory on an ogivalbody  of revolution. In Fig. 16 comparzon  is made with  both
characteristics results and with experiment. At adequate values of M6 = Md/8
agreement with the characteristics results is seen to be gocd, and Fig. 17 shows
that the agreement with experiment is also good if account is taken of the
boundary layer. (In Ref. 29 it is argued on physical grounds that, provided the
boundary layer flow is largely hypersonic, and the conditions governing the
application of two-dimensional shock expansion theory to a three-dimensional
body are satisfied; the boundary layer flow along geodesics can also be
calculated using two-dimensional relationships). In Figs. 19-23 results are
given for the application of shock  expansion theory to more OomPlex  slender

bodies26 ./
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bodies .26 The shape of these bodies  (Fig. 18) is such that there are no direct
SOhtiOnS  for the conical shock at the nose  and conditions  have to be determined
by perturbing the solution for a circular cone; calculation of the general
gEOdetiO8  Of the surface is too complex to be practicable and pressure distributions
are found by the shock expansion method only along top, bottom and side geodesics;
the distribution on the rest of the surface is found by assuming that the
distribution at a given section is the same as for a cone which  is locally
tangent to the body (this distribution is known from the solution found for
the nose). Two bodies are considered. <They  have identical cross-sections
but one is straight and the other cambered so that it is equivalent, according
to small disturbance theory, to the straight body undergoing a uniform rate
of pitch. For the straight body, the pressures predicted are found to be
consistently lower than those measured, though the shape of the distribution  is
predicted, Fig. 19. About half the difference between theory and measurement
can be accounted for by the effect of the boundary layer (Fig. 20). The,
incremental pressure distributions with incidence are found to be quits closely
PrediOted eXCePt  on the leeward side of the body when  separation, or a thickening
of the boundary layer,appears  to take place (Fig. 21). Similar results are
found for the cambered body. The difference in the calculated and measured basic
pressure distributions are of the same order as those for the straight model
(Fig. 22) and the incremental pressure distributions with incidence are, again,
well predicted (Fig. 23). It was not possible to assess the accuracy of the
incremental pressures due to camber because this would have involved comparisons
of pressures measured on the two models and slight differences between the models
and in the tunnel conditions meant that this was not possible.

Figs. 24 and 25, from Reference 19, show comparisons between flutter
derivatives for two-dimensional sections calculated by second-order piston
theory, third-order piston theory, and by shock expansion theory. From the
steady state comparisons it is to be expected that third-order piston theory
will be increasingly in error as k@R increases beyond unity, and this is
shown by these figures. But the figures also show that the errors for some
sections (the biconvex section) need not be very large either in the derivatives
or in the oentre of pressure position, up to quite high values of the parameter
Me

!I'
and consequently piston theory may remain valuable for flutter calculations

w e 1 beyond the theoretical limits for its application.

Results of unsteady measurements are shown in Figs. 26 to 29. Figs. 26
and 27, from Ref. 17,  show results of measurements on a 9&O semi-angle, single-
wedge section in a gun tunnel in air at Y = 9-7. The aeroaynamic  damping and
stiffness were found from measurements of the change due to the air flow in the
rate of decay and in the frequency of oscillations in pitch of the model, which
was mounted on a spring support. Fig. 26  shows the results of the stiffness
measurements. The results are compared with calculation by strong shock piston
theory with an empirical correction for nose bluntness effects. The theory gives
good agreement wzth experiment for the sharp leading edge model, though there
is some deterioration for axes positions at the nose and trailing edge. The
bluntness correction makes agreement worse, on the whole, for the blunt leading
edge models. There is a significant change in stiffness with the bluntness
for most axis positions. Fig. 27 shows the results for aerodynamic damping and
similar oomparisons  with theory. The differences between theory and experiment
vary greatly with axis position and it seems clear that there must be large
effects occurring which are not accounted for by the theory. The effeot  of
blunting also varies greatly with axis POsitiOn.

Fig. 28 shows  the results reported in Ref. 37 Of sidlar eXPerj.UEntS
on a double-wedge aerofoil  in a helium bXmd. Again, the large difference

between/
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between theory and. experiment is to be noted, though it should be understood
that for high Mach numbers the actual aerodynamic damping respresented by
these values is low. The <esult  for a sharp-nosed single  wedge oscillating
about the trailing edge is included from Ref. 17: because, at high Mach
numbers, pressures on the rear half of a double wedge are very low, the results
can be compared with those of Ref. 37. There seems to be agreement between the
results from the two sets of experiments.

The results of Refs. 17 and 37 are too few in number,  and there are
too many uncertainties about experimental oonditibns  and Interferences in the
flow (e.g., it is pointed out in Ref.17 that the shock waves from the model
support are likely to have a large influence on the flow over the model for
forward axis positions) for definite conclusions to be drawn. It appears that
the influence of bluntness is much greater than is predicted by s'
corrections based on induced pressure measurements on flat plates t'9ple. The influence
of the boundary layer may be greater than is predicted on the assumption that it
behaves in a quasi-steady manner, for it appears that a correction based on this
assumption would account for less than half the difference between theory and
experiment shown in Fig. 28.

Fig. 29, from Ref. 38, shows a comparison between the aerodynamic.
damping on a bluff body found by experiment, and the value predicted by Newtonian
impact theory. The experimental results were found from free oscillation
measurements. The theoretical and experimental values do not agree closely, but
the theoretical values are of the right order of magnitude and have the right sign.

2.4 Discussion and Conclusions

The methods that have been described provide for the analysis  of
only a small part of the unsteady hypersonic flows that may be met in practice.
This fact becomes evident when the attempt is made to set down what practical
flow problems can be dealt with, and what work remains to be done.

Piston theory, shock expansion theory, and the variational method
provide means that are physically and analytically valid for oalculating surface
pressures in a range of simple invisoid  flows. For wings of thin sharp section
which are two-dimensional or have only moderate sween (the condition 6A-'  << 1
is satisfied) third-order piston theory can be applied for Mach numbers and
inoiaenoes  such that M6 or Ma c about O-9, and 6 or (2 >> I/@', and shock
expansion theory can be applied for M8 > 1-O  and for incidenoes up to the
value for shock detachment, thaugh numerical computation  may become necessary
for large values of flow turning angle at the nose.

For low aspect ratio w.ngs  of thin, sharp section, for b6 and
Id cos A < 1 (where A = sweep angle of the leading edge), the variational
method should be applicable, though its use for the flow round such a oross-
section has not been examined. Only small incidences could be considered,
because the method depends on the fact that the flow in a fluid lamina  can be
considered as isentropic.

Mbs < 1
For pointed slender  bodies, the variational methcd  can be applied for

and for small incidenoes, and the generalized shook expansion method can
be applied for MS > 1 and for large incidences. There may, however, be
limitations on application of the methods arising from the shape of the body
cross-se&ion, or from the difficulty of determining the nose starting conditions
for the shock expansion method.

During/
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During panel flutter the surface displacements remain very small
because of the p$dcal constrslnts  involved,and  piston theory applied, in the
flow conditions set up by the body should remain  valid.

Although these methods are valid for invlscd flows, the accuracy
with which surface pressures could be found in a real flow would depend on the
accuracy with which  corrections for the boundary layer influence could be found,
and the degree of interaction between the boundary layer and the external flow.

There remain a large range of flows for which these methods are not
valid. In fact, wing sectIons  with sharp lea&ng edges and pointed slender
bodies are not likely  to be used at high Mach numbers because of the large
heating rates which a pointed leading edge or nose would experience, and the
high structure temperatures that would occur. The flows around slender wing
sections and bodies  with leading edge or nose blunting, which would be
employed to reduce temperatures and heating rates in these regions, present a
range of new problems because, at high Mach numbers, the flow around a body is
significantly affected by even small degrees of bluntzng,  and the assumptxons
of small disturbance theory are not necessarily any longer applicable.

Beside the leading edge blunting problem there remain the problems
of two-dimensional and swept sections at incidences greater than that for shock
detachment; the problems of low aspect ratlo  wings for M cos A > 1, and at
large incidence; the problems of slender bodies at moderate Incidence for M6 < 1,
and for incidences above shock detachment for MS < 1 and M6 > 1 ; the problem
of-bluff body shapes; and the problems presented by the complex flows with
interaction effects that will  occur round real vehicle shapes.

There have been attempts to deal with the nose bluntness problem
empirically or semi-empirically. East'7 obtained a correction for nose bluntness
to apply to the wedge pressures calculated by strong shock piston theory, from
experimental measurements of the overpressure generated on a flat plate by
blunting. From the results in Ref. 17 of comparisons  with experiment, the
correction does not seem to be a satisfactory one. In Ref. 57, it 1s suggested
that the effects of nose bluntxng might be allowed for by using Newtonian theory
to find the pressures on the blunt nose of an aerofoil,  and piston theory where
the surface slope became small enough. This proposal does not seem very sound
since it ignores, for example, the effect of the nose blunting and strong nose
shock on the flow downstream. When used in a flutter test to calculate flutter
speeds for comparison with experimental results (Sectlon  4.2.1 and Ref. 60),
the method gives results which correspond qualitatively to the experimental
results, but which are In error by 15-2@$.

It seems probable that the problem of leadlng  edge bluntness on slender
bodies will split into two parts with a rather undefined boundary between them.
On the one hand there will be the problem of slender bodies with small amounts
of blunting. This one might  hope to deal with by modifications  of the shock
expansion and variatlonsl  methods since the departures from the basic sharp
leading edge flow can be expected to be small. The modifxations  would involve
some treatment of the overpressure due to the blunt leading edge, perhaps through
developments of the blast wave analogy (Cherny12),  and of the effect of the
entropy layer from the nose.

On the other hand, there will be the problem of slender bodies with a
large degree of blunting: for such bodies it may be necessary to know the
details of the flow over the nose, and the results of small-disturbance theory

will/
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will no longer apply and a simple expansion from conditions downstream of the
nose would not exist. In this case, it will be necessary to apply Kennett's
small-perturbation analysis to a suitable bluff body flow solution to find the
nose conditions, and apply Halt's small perturbation analysis to a characteristics
solution of the steady flow downstream of the nose. Such analysis will apply,
of course, only for small amplitude motions of the body.

The results of small-disturbance theory will still apply for low aspect
ratio wings with sharp sections for which M oos A > 1, and for pointed slender
bodies for which Id6 < 1 at moderate incidence, and consequently, unsteady flows
around such bodies can be found from calculation of an equivalent series of
steady flows. But the only way of calculating the equivalent steady flows would
seem to be the characteristxs  method - though some sunplification  of the proce s

t.0may be brought about by applying the linearized characteristics method of Ferri .

Newtonian impact theory provides a simple method for estimating the
aerodynamic forces on wings and bodies at incidenoes  above those far shook
detachment, but the predictions made are necessarily unreliable. A satisfactory
method of dealing with these flows, for small amplitude motions of the bodies,
seems likely to involve the application of a small-perturbation analysis to a
satisfactory steady flow solution. Similar conclusions apply to the problems
of bluff bodies, and real vehicle shapes: In both cases analyses have been
made using Newtonian impact theory but these, obviously, have only limited value
and a small-perturbation analysis is required - if an adequate steady solution
exists.

In those oases where it has been suggested that a small-perturbation
analysis applied to a steady solution is likely to be the only way in which a
satisfactory unsteady flow analysis can be made, it has been made clear that the
method can only be applied for small-amplitude disturbances. There seems to be
no alternative to a quasi-steady analysis of the flow around a body is undergotig
large amplitude displacements. In practical oases this will certainly be
adequate for most oasewsince  such motions are unlikely to involve large frequew
parameters.

APPENDIX III/
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APPENDIX III Review of the D-vnamic  Stabdity of wpersonic  Vehicles

For th;?  purpose of this review, information  is re'quired on the changes
in the &'nmlc behaviour of vehicles at very high  speeds resulting from the
changed  flight  conditions,  and on the likely  order of magnitude  of frequency
parameters characterising  the unsteady motions. Sufficient information can be
obtained on these points from generalized studies  wlthout  entering into detslls
of the behaviour of particular configurations and, in consequence, this section
is concerned, in the msln, only with such generallsed  studies.'

The equations expressing the dynamic behavlour of .s flight vehicle are
changed both by the high speed and altitude, and by the kind of mission being
flown,since  re-entry or exit flight differs from steady  flight  at constant
altitude. The high speed and altitude of flight modify the equations of motion
firstly by the introduction of new terms. It may be neoesssry  to take account
of the curvature of the flight path and the rotation  of the axis system by
introducing terms for the 'centrifugal lift' and a constant rate of pitch, and,
in level flight at high altitude, variations in altitude due to oscillatory motions
can be large enough to make It necessary to introduce terms expressing changes
in the air density, gravity force, 'centrifugal lift', and rate of pitch. Seconb,
the equations need modification because of changes in the relative maptudes
of the terms involved, and because the aerodynarmo  forces may be non-linear with
changes of attitude  even for moderate amplitudes, so that the aerodynamic
coefficients cannot be considered as constant.

For vehicles in re-entry or exit trajectories changes in speed and
flight path angle along the 'steady' trajectory must be considered. The changes
in speed could involve changes in the aerodynamic coefficients as well 8s in the
dynamic pressure, and. the rates of change could be large enough,  in the time
scale of the motions involved, for this to be Important.

Also, large amplitude motions both for re-entry and for level flight,
and flight at large angles of attack, as in the case of s slender body flying
a high drag lifting re-entry trajectory (Appendix I Section 2), may require m.dySiS.

In most of the analyses which have been made It has been assumed that
the aerodynamic forces sre linear with displaoements.  Comparison of the results
of these analyses with the results of the few which  include non-linear effects
indicates that the qualitative  picture is not greatly affected by non-linearities.
The longitudinal behaviour has been studied most intensively, but there is no
reason to expect that the effects of the flight conditions on the lateral
behaviour will be very different.

3.4 Longitudinal'Behaviour of Hypersonic Vehicles

3.1.1 Steady flight at constant altitude

Nonweiled2  discusses the changes in the equations of motlOn
necessary in considering very high speed flight. He shows that the major
distinguishing  feature of flight in these conditions which affects the solution
of the stability equations is the high value of the relative density of the
aircraft,

m
p E-

CSb >
. . . (3.1)
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where m is vehicle mass; p is air density; S and b are representative
areas and lengths of the *vehicle.

If p is very large, then the terms
quartic (Duncan, Ref. 41, Chapter 5):

C, D and E in the stability

AX4 + Bh3 + Ch' + Dh + E = 0 . . . (3.2)

are very much larger than the terms A and B and it is possible to give
fairly simple expressions for the roots of the quartic in terms of the
coefficients:

which, if the dominant terms only are retained, become

. . . (3.3)

where CD is the drag coefficient;

CL, is the rate of change of lift coefficient with angle of attaok:
(q/ad ;

12% is the rate of dsnge of pitching moment coefficient with angle
of attack: (acdad ;

Cmq is the rate of change-of pitching moment coefficient with pitching
8b

velocity parameter - : ;
V

iB is the non-dimensional form of the pitching moment of inertia
about the oentre  of gravity, IB : IB/pSb3+

Kz = ?+" and R is the radius of the flight path.
P=

The first pair of roots represent the usual phugoid type of oscillation
and the seoond  pair represent the usual predominantly pitching oscillation,
provided the aircraft 1s statically stable, i.e., provded that
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The real and imaginary parts of the first patr  of roots in
equation (3.3) are both of order unity so that the period and the time constant
of the rate of decay of the phugoid oscillation are both of the same order of
magnitude as the natural unit of time

. . . (3.6)

which is large at high speeds
ua

, rided that KL is not very small,  because

of the size of the term -
( >

, the Froude number.
&

In the second pair of

roots, representing the pitching oscillation, the real part is again of order
unity,  but the imaginary part is, usually, large. The period of the pitching
oscillation is even by:

T =
P
T.+ q$(!$ 27c

-
( >A [$.%(;)I+

= qb;-+Lf . . . (3.7)

so that it depends on KL,
is large,

and becomes large only at high altitudes where XL
and does not become very small beoause  of the limit on the value of

KL set by structural limitations on speed at low altitudes. The time constant
of the rate of decay of the pitching oscillation becomes, then, very long in
compdison  with the period, And the osclllatlon  is poorly damped. Assuming
likely values of Cma and iB, Nonweiler estimates that, for KL of order
O*Ol,whioh he consders  a likely lower limit, the period of the pitching
oscillation will be 2 or 3 seconds, and the time to half amplitude will occupy
a few periods; for KL of order unity, the period will be 20 to 30 seconds,
and the time to half amplxtude  would be several minutes; and for KL large,
which would correspond to conditions close to a high altitude orbit, the time
to half amplitude could be an hour.

The phugoid motion is very lightly damped and, in the time occupied by
.a few cycles of the pitching motion, is equivalent to the motion of a system with
two degrees of freedom in neutral equilibrium. This characteristic of the phugoid
motion, coupled with  the small damplng  of the pitohing motion, could present novel
control problems since pilot or automatic action to control the pitching motion
could cause drift in the speed and altitude.

The qua itstive  cone usions
t3 4i

of Nmweiler  are confirmed by the detalled
analysis of Etkin and. Rangi for a vehicle with hypothetical characteristics
flying at a constant altitude. The analysis takes account of the effects of using
a rotating axis system, and of changes in the radius of the flight path, which
are neglected by Nonweiler. Because of the additional terms which these factors
introduce, the stability equation is a quintic,  giving three normal modes, two
oscillatory and one non-oscillatory. The characteristics of the oscillatory modes
are shown  in Figs. w(a), (b) and (c) with some particulars  of the hypothetXa1

vehicle./
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vehicle. (The difference between the damping curves for the phugoid motion for
the vehicle with air-breathing engine, and for the vehicle with rocket engine,
is a result of the assumed variation of thrust with altitude for the sirbreathing
vehicle.)

The values of frequency parameter given by Etkln's  analyst can be used
to estimate the order of magnitude of the maximum frequericy parameters that are
likely to be met in practice, except for vehicles with very low wing loadings.
This result arises from the fact that It can be shown, by a dimensional argument,
that the frequency parameter of the pitching osclllatlons  of a vehicle is
independent of vehicle size and speed, and 1s dependent only on the aerodynamic
characteristics, the altitude, the weight loading, and the inertia properties.
The hypothetical vehicle 1s sufficiently representstlve  in these respects.

In general terms, the frequency of the pitching oscillations of a
vehicle is given by:

. . . (3.8)

where M,
of inertia.

1s the aerodynamic stiffness in pitch and IB is the vehxle moment

Then, if the aerodynamic coefficients are independent of speed,

pU2Sb
fa -

I---
5

where !Y is the radius of gyration of the vehicle, and the frequency parameter

2db PSb
k=-oc -.

r
. . . i3.9)

U mK=Y

From equation (3.9) it can be concluded that the frequency parameter is
independent of the velocity of the vehicle, and depends only on the vehicle
characteristics and the altitude. It decreases with altitude.

For geometrically and inertially similar bodies, since

S cc b2,

m oc aba where cr is the vehicle density,

and 5 ~1 b,

it follows from equation (3.9) that

k cc ,'Tc. . . . (3.10)

From equation (3.10),it  can be concluded that the frequency parameter
is independent of the vehicle size, and inversely proportional to the square root

of/
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of the vehicle density or density ratio, or for bodies of the same size it varies
inversely BS the square root of the weight loading. The vehicle considered
by Etkin has a weight loading of 30 lb/fl?J this is rather low for practical
vehicles so that, by this criterion, the frequency parameters in Ref. 43 are
probably higher than would usually be found except for vehicles using lightweight
lifting structures. An estimate from Etkin's  results of the frequency parameters
for vehicles using a lightweight surface is complicated by the change in the form
of the vehicle, but one would expect from equation (3.10) that it would be of the
order of the square root of the rat.10  of the weight loading of the lifting
surfaces in the two c*ses, and this ratio would be of the order of three to one.

The argument in the preceding paragraphs sets an upper limit (f&m
Ref. 43) of 0.01 for the frequency parameter of the pitching oscillations of
most vehicles at hypersomc  flight speeds, rising to 0.03  or more for a vehicle
using a lightweight lifting structure.

3.1.2 Re-entry flitit

A general analysis of the stability of a vehicle moving in a steady
re-entry or exit trajectory, comparable to that of Etkin for the case of steady
orbital flight, has not yet been carried out. Such an analysis would be
difficult because of the time dependence of IJ,  p and y (the flight path
angle) in the steady traJectory,  and the dependence of the aerodynamic coefficients
on Mach number.

Refs. 45 to 4.8 give analyses, of increasing generality, of the problem
of the pitching oscillations of a vehicle about a mean re-entry trajectory. The
papers are chiefly;concerned  with the history of the pitching oscillations
following re-entry mth an initial  angle of incidence and/or pitching rate but,
m the ccxlrse  of the analyses, the ccmdition which governs whether the osc&tion
grows  or decays is derived. The equations  are simplified by the omission of
terms which are small or have a small effect on the pitching oscillations, and
they are expressed in terms of wind axes since this makes it simpler to handle
a large, changing mean angle of attack.

It is assumed that the equations of motion of the vehicle can be
separated into a set representing motion along the steady trajectory and a set
representing pitching  oscillat ons about this trajectory. 'This assumption is
confirmed in the paper by Fine t9 in which the full equations are solved
numerically, and it is shown that pitching oscillations up to amplitudes of IO'
have a very small effect on the mean flight path and speed of the vehicle if
its static margin is large.

Among the endyses  available, the most general solution of the
oscillation equations  is given by Sommer  and Tobak in Ref. 48. The solution
which they obtain enables the history of the oscillation to be calculated for
an arbitrary t.rsJectory under the assumptions that the drag is independent of
the angle of attack, but the other aerodynamic forces very linearly with angle
of attack, and all the aerodynamic coefficients are independent of Mach number,
except the pitching moment coefficient.

The equation describing the pitching oscillations derived  in Ref. 48 is

&' + pi(t)& + fa(t)a  = 0 . . . (3.11)

where a is the oscillatory angle of attack and
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where C .
rate of c"e:

is the rate of change of pitching moment coefficient Cm with tune
ange of angle-of-attack parameter, ah/U.

Comparison of this equation with that for the short period motion of
an aircraft in level flight  (Ref. 42: Section 6.7) shows that the equations are
the same, apart from the time dependence of U and n and the factor

in the stiffness term fa(t). The fac;or  i(Cb T) can be

shown to be negligible in comparison with the other terms tiers. 47-k 49) so
that It is to be expected that the frequency at a given altitude will be close
to that for level flight. This is confirmed by Kistler and Capalongan  in
Ref. 51 where they give the results of analogue  studies of the motion of
hypervelocity vehicles.

Fram the solution of equation (3.11),  it can be shown that the
requirement for convergence of the oscillations  is that

where q is the free-stream dynamic pressure &p,V’, . . . (3.12)

s is distance along the flight path,
B is density  parameter in p = Poe-Bh,
y flight path angle to local horizontal,

ca, = aha)
as .

The parameter K occurs also in the equation for the short period
motion of an aircraft in level flight (Ref. J+2:  Section 6.7). The convergence
criterion is then

K < 0. . . . (3.13)

It can be shown from equation (3.12) that the conditions  of re-entry
flight introduce a destabilising influence from decelerating effect of the drag
of the vehicle, and a stabilizing effect from the rate of increase of air density.

After they have established the equations of motion of a vehicle and
the convergence criterion, equation (3.12))  Sommer and Tobak examine the
oscillation histories of a range of lifting and non-lifting vehicles for a
range of entry conditions to give examples of the significance  of the damping

criterion./
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criterion. Figs. 31 and 32 are taken from the report to show the behaviour of
non-lifting vehicles: although the report is principally concerned with manned
vehicles for whi'ch  the peak acceleration is 11*5g,  which limits the initial
flight path angle to a maximum of J+.',
yi = 220

one case of an unmanned trajectory with
and the peak deceleration reaching 6Og, is included for comparison.

The oondltions  assumed for calculating the steady  trajectories are

(4 constant aerodynamic coefficients

(b) & = 5 =
JgRi

,I corresponding to entry from circus  orbit at about '
80 miles. Ui = initial speed: dgRi E circular
orbital speed.

(c) hi = 400 000 ft = initial altitude

(a) p = poevBh p. = O-0027  slugs/f+? j3 =
23'500  ft-i

(e) W/CDS = 30 lb/f@.

Fig. 31 shows graphs of critical values of the parameter K,

Kcrit. = -1 +($, siny[i+ a (I -P)] , . . . (3.14)

where u = ratio of horizontal component of flight velocity to circular orbital
speed. Equation (3.14) is the form in qhich the convergence criterion is obtained
for the condition of constant aerodynamic coefficients. The slgnificanoe  of
the curves can be seen from an examination of one of them - the yi = 22"
trajectory. Divergent oscillations occur when the value of K for the vehicle
is greater than Kcr.t , thus for a vehicle with K = -0.4,  this trajectory
shows stable oscilla&bns down to 110 000 ft, divergent oscillations from
110 000 ft. to 70 000 ft and then convergent oscillations  again.

The condition of small yi differs from the conditxon  of yi = 22'
since it does not need as large a negative value of K to prevent divergent
oscillations, and a region of Xvergence  is likely to start at a greater
altitude and, for small negative values of K, to persist for a longer time.

Fig. 32 shows graphs of the growth of oscillations along a re-entry
trajectory h decreasing, a,, being the amplitude of the oscillation and
"i the initial amplitude of oscillation. For K = -2 convergence is found
for large and small yi; for K = 0 a region of divergence is found, as
indicated in Fig. 31, but the rate of growth 1s so small that the final
amplitudes remain small fractions of the initial  amplitude; for K=+2
there is a region of rapid divergence for all values of y and, because of
the greater altitude range over which divergence occurs, tie vehicles operating
at small entry angles reach an amplitude ratio of 1 at a significantly greater
altitude than for the case of yi = 22'.

Figs. 33 and 34 show the effects of small amounts of lift. It was
mentioned in Appendix I that the use of lift in re-entry can reduce the maxmum
rate of deceleration considerably and Fig. 33 shows that the effect of lift

is/
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is to reduce further the range of values of K for which divergence occurs, but
to increase the altitude  at which divergence starts when It does occur. Fig. 34
shows that, as in the non-iifting case, K = 0 does not show serious divergence,
but K = +2 does.

Confirmation of the qualitative valltity  of the simplified analyses of
re-entry which have been discussed is provided in Ref. 53,  where the results are
presented of a 6-degree of freedom numerical  analysis, using experimentally
determined aerodynamic forces, of the re-entry motion of a blunt uncontrolled
vehxle. This analysis  shows; in particular,-that provided

of the body IS positive,  the motion converges even for
fk, + cm&).

3.1.3  The effect of aerodynamic non-linearlties

the lift-curve slope
zero value of

In Ref. 51, Kistler and Capalongan give the results of stubes,  using
analogue  computers, in which they considered the effects of aerodynamic
non-linearitles  on the longitudinal  dynamx motions of hypervelocity,  high-
altitude  vehicles. They found that reasonable accuracies could be obtained
using linear aerodynamics if the coeffxients  were determined at the trim point
of the vehlole, and provided the perturbaiions  were small. For large perturbations
accuracies began to drop rapdly. The study included level flight and shallow
re-entry conditions and one of the conclusions of the report was that artificial
damping of the vehicles  would be necessary, and thx m&t well overshadow any
non-linear aerodynamic damping characteristics.

Laitone and Coakley,  in Ref. 50, examine the effect of aerodynamic
non-linearities on the pitching oscillations  of a vehxle flying in a re-entry
traJect0x-y. The results do not affect the ooncluslons  that have been drawn
about small amplitude motions, but they show that a steady llml'c  cycle oscillation
can exist and that conditions  sre possible III whxh  osodlatlons  will grow If
the initial disturbance exceeds a certain  amplitude.

3.2 The Lateral Behaviour of the Hypersonic Vehicle

In Ref. 52 Nonweiler has also examined, qualitatively, the lateral
dynamic behaviour of a hypersonic vehxcle. The analysis is carried out in the
same way as for the longitudinal behavlour: the approxxnate  roots for the
stability equation are found under the assumption that terms involving the
relative density, p, are large. The roots show the usual modes: normally,
two non-oscillatory modes and one oscillatory,  the 'dutch  roll'. An examination
of the factors governing the modes shows that it should not be difficult to
ensure convergence of the non-oscillatory modes and damping of the dutch roll
even for slender bodies  at high incidences. But the period of the lateral
oscillation is likely to be rather shorter than that of the pitching oscillation
for slender bodies at high incidence - typxally  3 seconds for a value of KL
of unity, but since such bodies are not likely to be operating at large incdences
for low values of KL at low altitude, the maximum values of frequency parameter
will probably remain of the same order as those for the longitudinal pitching
oscillation.

The longitudinal behaviour of a hypersonic vehicle flying a ?-e-entry
path  has been found to be not essentially different from that of the same vehicle
in level flight and it is reasonable to suppose that the same result would  be
fauna for the lateral behaviour. The rate of decay of the lateral OsCilhtiOn
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will be affected by a stabilislng  influence from the rate of increase of air
density and a destabillsing  influence from the drag of the vehicle, as is the
case for the lon@tudinal  pitching motion.

3.3 Discussion and Conclusions

For hypersonic venicles  in level flight  max~~~um frequency parameters
are likely, in general, to be small, with values of the order O-01.  The rate of
deoay  of the pitching oscillation due to aerodynamic damping is low and artificial
augmentation of the damping is likely to be necessary and, as a result of this,
the aerodynamic damping of a vehicle is not likely to be a significant  design
criterion for normal operation.

For re-entry flight the position is similar. The frequencies of
pitching oscillation at a given altatude  are the same as those for level flight
at that altitude. The rate of decay can be greater or smaller, depending on the
specific case, since additional factors are brought into play, but for practical
vehicles it is small. The convergence factor K is unlikely to be negative
and the worst case ocours  when It is close to zero and CD 1s large - for this
case davergence  of the motion occur towards the end of the traJectory  but the
final amplitude is small (Figs. 32 and 34).

There are some qases  for which fairly  accurate values of aerodynamxc
dampAng  might be important. The most likely  oases are when it 1s necessary to
know accurately the motion of an uncontrolled re-entry vehicle because of
requirements of heat shielding or parachute deployment, and when it 1s necess
to design for emergency manual control of a vehicle. Since it has been shownw
that oscillatory motions  with low or even negative damping can be manually
controlled, emergency manual control appears to be a feasible  design obJectlve.

APPENDIK IV/
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APPENDIX IV Review of Flutter of Kivpersonio  Vehicles

Differences between the flutter behaviour of vehicles flying at
hypersonic speeds and the behaviour at lower speeds will be due to changes in
the nature of the air flow at hypersonic speeds and the changes in the
stiffnesses Of the vehicle  structure which result from heating of the structure.
This report is mainly concerned with the effects of changes in the nature of
the flow but the importance of the second factor should be borne in mind and
is illustrated in a general way by Fig. 35(a),  (b) and (c) from Ref. 55.
In Fig. %(o)  the lower line represents the value of the speed parameter U/&o,
along the flight profile, and the upper line represents the values of U/bw,
at which flutter could occur. Its importance is emphasised by the fact that
for sMne flight profiles the maximum heating rate can be combined with the
maXimum ValUe  of dynamic pressure on the trajectory - as in the case of the
SUperCirOdar  lifting re-entry trajectory shown in Fig. 4.

4.1 Types  of Flutter and Values of Flutter Frequency Parameter

The types of flutter than can tse expected on hypersonic vehicles are
discussed in Refs. 5 and 6. These discussions and the conclusions presented
here can, of course, only be deductions from the likely structures of the
vehicles based on general technical considerations. On this basis, flutter
involving vibration modes of the main structure IS likely to be met only on
slender vehicles for hypersonic cruise,
high L/D and, if it occurs,

and lifting re-entry vehicles having
it seems likely to be of a form involving the

longitudinal bending modes of the body, even for the winged vehicles. The
slenderness of the wing, and the degree of integration of wing and body, make
it unlikely that vibration of the ting can be considered in isolation from the
response of the body. Simple bending-torsion flutter could occur for certain
types of control surface. Panel flutter could occur on lifting surfaces, heat
shields, and in inlet and propulsion ducts for power units, where panels are
heavily loaded, aerodynamically and thermally. Membrane flutter and large
amplitude distortions could be met if lightweight structures are used to give
lift or drag in re-entry. It is suggested in Ref. 12 that, for slender bodies,
using representative values of the overall structural frequencies, an upper
limit of 3000 rad.ft/seo  can be set on the product wb where w = %f, b is
a representative length and f is a frequency, so that at M = 5,
UC 5000 ft/sec,  the maximum value of frequency parameter will be about 0.6,
but values are likely to be much lower than this in most practical cases.

For bending-torsion flutter of control surfaces it seems likely,
again using representative frequencies, that the maximum value of ob will be
around 600 rad.ft/sec,  giving maximum frequency parameters around O-1. And, in
a similar way, it can be deduced for panel flutter that frequency parameters
based on a representative length of the order of the wavelength of the panel
mode, will be in the range of values up to 0.5.

4.2 Flutter Investigations

Most of the reports of analytical and experimental work on flutter
at hypersonic speeds that have been published have been concerned with the
standard basic ease of flutter of a two-dimensional section with pitching and
plunging flexibilities, or the closely comparable  case of flutter of a rigid
half sing with root flexibility in pitching and plunging or flapping, both of
which are related to the bending/torsion flutter Of wings. There has been a
much smaller amount of work on flutter of low aspect ratio wings with chordwise-
bending as well as torsional and spanwise-bending modes of vibration, and with

flutter/
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flutter of slender bodies. NO information has been found on panel flutter at
hypersonic speeds, but it seems reasonable to assume that, because the
deflections involved ~3.11 remain very small, the values of the hypersonio
similarity  parameter M66 will be small and, consequently, tentative conclusions
about hypersonic panel can be drawn on the basis of extrapolations from results
at lower Mach numbers. NO  relevant information has been found on membrane
flutter.

, 4.2.1 Bending-torsion flutter of wings

Chawla56 has used piston theory to third-order terms in the steady
dxsplaoements  and to first-order terms in flutter hsturbances  to carry  out a
parametric survey of the flutter of the typical sectIon  at supersonzc  speeds.
He presents the solutions of the flutter determinant In a way which enables
the effects of a number of parameters to be distinguished. The results are for
Mach numbers less than 5, but the trends shown should continue to apply up to
Mach numbers at which piston theory becomes invalid.

Morgan, Runyan and Hucke157 start with a general discussion of the
methods for predicting unsteady alrloads  in flutter calculations at high Mach
numbers. They investigate the effect of thickness  m some detail through
comparisons between linear and nonlInear  theories an& show the effects of
frequency ratio, centre of gravity and elastic a& posItions, and aerofoil
shape. Finally, they consider refinements to the aerodynamic analyses to allow
for strong shook waves, changes in specific heats and other real  gas effects,
and to provide a means to deal with blunt-nosed bodies.

Runyan and Morgan 58 .give comparisons between theoretxsl  and experimental
flutter results for two rigid rectangular wings with  a root mounting giving.
pltohing  and flapping flexlbillties, and some results showing  the effect of '
aerodynamic heating on the flutter of a solid wmg.

Zartarmn  and Hsu26 have used third-order piston theory to investigate
the flutter of the typlcsl  section about a non-zero mean incidence, and the
effects of aerodynamlo  nonlinearitles  on flutter of the section at zero  mean
incidence.

Hanson5' .eves the results of an extensive experimental investigation
of thickness and nose bluntness effects. Many of the results are for Mach
numbers below those considered in this report, but they are useful here because
they show the trend of the flutter altitude parameter with  Mach number, and
enable the values at high Mach number to be canpared  mth the values in the
critical trsnsonlo  flutter condition. The thickness effects are compared with
piston theory results.

Goet36o extends the experimental investigation  of bluntness effects
in Hanson's report to a Mach number of 15, and compares the results with
predictions by Newtonian piston theory%  and Newtonian theary.

Y o"ng6' gives the results of an experimental investigation of the
effects of thickness and mean inoldence. These investigations show that there
are a number of aerodynamic  parameters affecting the flutter Of the seotion.

Chawla56 derives  the following expressions for the flutter speed and
frequency using piston theory:

vy .
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. . . (4.4)
For simple harmonic motion,  and piston theory aerodynamics
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and, taking a double-wedge section as typical,

(y+l)
G4 = I+- EW,Y+  04S)=l

4

G = (I-23
c

(y+l)
1 + -

4
[(Ma3)2  + (Ms)2  1

3

(y+l)
- - @as)

4

$ = 4+x(l+q
c

(y+l)
1 + - [(MaJ2  + (MS)"]

3

(y+l)
- 2(1-9 - (~6)  . . . (4.6)

4 4

where 6 is the thickness ratio of the section, and cz3 is the mean incidence.
These results show three aerodynamic parameters: IJM, an altitude parameter;
Mb, a thickness parameter, and Mar,, a mean lncldence  parameter. This result
is specifically for a double-wedge section, but Chawla shows that the results
are the same for more general sections, though the thickness parameter applies
only within a family of shapes, of course. The slgniflcance  of Id6 and Ma,
is in agreement with the results of hypersonic small-disturbance theory (Appendix II)
and of experiment, which show that these are similarity parameters for hypersonic
flows.

Besides the parameters from Chawla's  analysis, other factors have been
found  to be significant. These are profile shape, the effeot  of strong leading-
edge shock waves, leading-edge bluntness, and aercdynamlc  nonlinearities. The
effects of changes of @d, M6, Ma, and these other parameters on flutter of the
section will now be discussed.

(W
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(i) Altitude  parameter. IJM

Fzgs. 36 and 37, reproduced from Ref. 56, show the relatIonships
between flutter speed, frequency ratio and altitude parameter (9) for a
flat plate, twc-dimensional section. The dependence of flutter speed on
altitude is obscured III  some degree by the form of the parameter @, since
M is dependent on Vf. The relationship is a little  clearer if the fl is
re-expressed *a

. . . (4.7)

Then, from the graphs, it is clear that, for a given altitude (P and p
fixed) and frequency ratlo,  there will be a unique flutter speed and, since
@d increases  with altitude independently  of any change m the,flutter speed
(because of the changes III P and p), the flutter speed itself must also
increase with altitude. The relationsiiip  of flutter speed and altitude can
be expressed more explxitly,in  an approximate form, by making use of tpe
fact that, u Fig. 36, Vf can be,shown to vary  approximately as (pap.
Using this relatlonship  I+ 1s possible to write, for the flutter speeds at
two altitudes

. . . (4.8)

and, if equation (4.8) 1s squared, and the following substitutxons  are made:

vf POcb
Id=--;p=- . . . (4.9)

* P

whcrc  suff'ix  o refers  to B reference altxtude,

v f
then 2 = (4p1)

Vfi (aapa)
. . . (4.10)

M f
and

>=($Pi)  h

(a: pz) = ii- *
. . . (4.11)

Mf1

If, then, the changes of p and .e with  altitude are known, ourves
of flutter speed and Mach number against altitude can be plotted. Such curves
are shorn  in Fig. 38(a) and (b). In Fig. 38(b) use is made of the fact that,
for 35 330 ft < h < 105 000 ft, .%/a, c 1, and

VA Mf Pi
= 2 = _. . . . (4.12)

The/
____________________----------------------

*This  result can also be seen from equation (4.1) since
- -

@[2x, L - L(l-ga)]  >> (-i&C2 +z) for fl large.
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The thcorctlcal  deduction that @! u a parameter affecting flutter
has not been directly investigated,  but some confirmati

al of it can be found
UI the results of the experiments  by Hanson59 and Goetz . These results are
given  in Figs. 42 and 51. They show that, far a given aerofoil at a given Mach
number, the results at widely different values of p
values of the parameter bwcrda at flutter.

and 2 show the same
Since

b+i "m,J-v  Mf
- = . . . (4.13)

a Vf
the constancy of this parameter is equivalent, for a fsxed  Mach number, to the
re1ats.on

vf cc -/p . . . (4.14)

found by Chawla  (equation (4.8)).

Fig. 44, derived from the results of both Hanson and Goetz, for
pointed leading-edger sections, shows that the use of the parameter
Vf '- - correlates results from models of different thickness at different
bwa' PJ'
Mach numbers, but having the same value of M6, provxled M > 2, which is a
normal lower limit for the use of piston theory, m any case. This  figure ~11
be dsscussed agaxn III a later sectlon, but It seems to support quite well the
theoretical result for the significance  of fl.

(ii) Thxkness parameter M6

The paper by Morgan, Runyan and Huckel 57 .gives  a ccmpar~son  between
measurements of the lift and centre of pressure position on a % thick double-
wedge aerofoil m steady flow at M = 6.86, and calculations by linear theory,
which does not include thxkness  effects, and by third-order  piston theory and
a second-order solution due to Van Dyke for flow round an oscillating
twc-dimensional aerofoil, whxh  do include these effects. The results are
reproduced in Fig. 39. There is little difference III the lift coefficient  up
to an incidence of about 12 degrees, but there is a considerable error in the
prediction of the centre of pressure position by linear theory. Since the
centre of pressure position is an unportant  flutter parameter (see, for example,
Ref. 62, Section 6.5~)  it IS to be expected that the thxhess of an aerofoil
may have an important influence on its flutter behaviour at high Mach numbers.

The effect of thickness is shown by the theoretxal  flutter boundaries
of Fig. 40, taken from Ref. 57, from which a comparison can be made between
those theories that take account of thickness and linear theory which does not.
For the particular value of bending-pitching frequency ratio the influence of
thictiess  is destabilssing. The effect of thickness  depends, to some extent,
on frequency ratlo and on the positions of the elastic axes and centre of
gravity positions - this 1s shown in Fig. 41(a)-(d),  also from Ref. 57, but, in
general, for a&e the influence of thxkness  1s found to be
destabilising. Ch&lz56'gives  similar results.

These theor  txal predxtlons  are supported by the experimental reSUltS

of Hanson59  and Young%I , which are shown in Fig. 42. The two sets of results are

plotted/
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plotted together only for convenience; strictly, the results of Young are not
comparable with those of Hanson since Young's measurements were made on a rnng
of aspect ratio 2.9 with pitching and plunging freedoms, whereas Hanson's
measurements were on a wing of aspect ratio 1-O with pitching and. flapping
freedoms, and parameters like frequency ratio and axis position were significantly
different for the two sets.

Runysn and Morgan58 .Gve experimental evidence  of the inadequacy of
linear theory In results for the flutter of a double-wedge wing and a thin plate
wing with root flexibility. The results are given in Fig. 43. They show
clearly that three-dimensional  linear theory, whxch  takes account of tip effects,
is quite inadequate to predxt the experimental results.

All of these results show the destabilising  effect of increaslng
thickness for particular conditions. Chawla's  analysis suggested a general
relationship between flutter speed, Mach number, and thickness since  the result
of his analysis using pxton theory showed that, If other parameters in the
problem were the same, the flutter speed depended dzrectly  on the product M6.

ted experimentally for M > 2 by the results
~t~no~~~~~~~~5~nr;eG~~~pS. The models in these tests were constructed so
that they mere identical 111  mass and mass distribution. and in axis position;

7
only the wedge thickness varies. VfIn Fig. 44 the parameter -

4
- is

bw CrM
plotted against MS. Since Chawla has shown that Vf 13 prop%rtlonal  to 43,
the effect of this variable should be eliminated from the flutter speed parameter
u s e d . It can be seen that the results do collapse quite well on to a single
curve, confirming the slgnlficance  of both parameters MS and $d.

(iii) Incidence

Chawla56 investigates  theoretically the effect of the incidence
parameter Ma, on flutter of a double-wedge section. Sene results are given
in Fig. 45. Under the conditions given  m the figure,  Pnth  M6 = O-25, an
Initial angle of attack giving  Ma, = O-25 has a small stabxlxlng  effect for
0 < wh/aa < I.0 and a small destabilising effect for &I& > 1.0. For a zero
thickness aerofoil,  Chawla found that an initxal  angle of attack reduces the
flutter speed by a constant amount: for Ma, = O-25  the multiplying factor
IS 0.982.

Zartarian and Hsu2 6 investigate theoretxally  the effect of initial
incidence  at considerably greater values of Ma3 for a wing with 6 = O-05.
The result is shown in Fig. 46. Up to Mu, = O-25, the value of the flutter
velocity parameter is reduced by a factor of about O-99; for Ma, = O-50, whxh
represents only a moderate incdence  even at M = 5, there is a reduction by a
factor of O-95.

of Young6'
These  results receive confxmation  from the experimental  inVeStig*tion

from which Fig. 47 is reproduced. Both theory and experiment show a
decrease i: the flutter speed parameter with lncdence  and show agreement on
the amount. The results indicate some effect of thickness: for Ma9 = 0.10 and
M6 = 1.1, the theoretical reduction factor is about O-93; for Ma, = 0'10  and
M6 = l-5, the factor is O-95.

The good agreement on the effect of incidence  on flutter Sped  between
theory sd experiment in Ref. 61, is not repeated for the effect on flutter

frequency./
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frequcnoy. Theoretical calculations show slight increases with Mo,s, but
experimental results show slight reductions.

(iv) Profile

The effects of profile shape were investigated in Ref. 57  by
calculating the stability boundaries at $4 = 5 for four aerofoils: a 4% thick
symmetrical double wedge; a 4% thick NACA 65  A004 profile;
and a 4$ thick single wedge.

a flat plate;
The results are reproduced in Fig. 48. The first

two profiles have almost coincident boundaries at high values of frequency
ratio, but they diverge below wh/tia  w 1'0: thickness in these oases 1s
destabilising  in comparison with the flat plate except above @h/ma z l-2. The
single wedge  is less stable than the flat plate throughout the I&Q+,  range but
the boundary curve is very similar to that for the flat plate.

(v) Local flow conditions

The third-order piston theory, and Van Dyke's seoond-order  theory
used in Ref. 57,  assume isentropic conditions. They do not take account of the
presence of strong shock waves, of entropy variations, and of effects of high
temperature such as the reduction of the ratio of specific heats. It is
suggested in Ref. 57  and by Miles'5  that, for a small displacement motion like
flutter, account could be taken of these effects by applying piston theory for
the unsteady displacements in the local flow conditions found by a steady flow
analysis. The effect of trying to take local flow conditions into account in
this way is not clear from the evidence available. In Ref. 57  the flutter of
a 4% thick double-wedge aerofoil is considered, using standard shock wave
relations to calculate the local Mach number, density, and velomty: the
reSUlts  are ShQWn  1n Fig. 49. In this case, the effect of the local flow
conditions is stabilising;
wdwa  9

the size of the effect depends on the values of
and increases with Mach number. On the other hand, a similar calculation

carried out for the conditions of the experiments of Ref. 61, showed no
significant differences from third-order piston theory results. There is no
obvious explanation for this difference. The frequency ratios in Ref. 61 are
close to 0.4, and a ratio of 0.4 in Fig. 45  shows large differences between
"local flow" and third-order piston calculations; the only difference in the
conditions lies in the axis position which, for Ref. 58, is at mid-ohord, and
for Fig. 45 1s at 4L$ chord.

(vi) Bluntness

It was pointed out in Appendix II that, under hypersonic flow conditions,
even small degrees of blunting can have significant effects on the flow over a
body and that large degrees of blunting are likely to be used on the noses of
vehicles and the leading edges of lifting surfaces to reduce the rate of heating.
In Ref. 57  an attempt is made to assess the effect of nose blunting on the
flutter of an aerofoil by using Newtonian impact theory to calculate pressures
over the blunt nose region up to the point where the surface slope becomes small
enough for piston theory to be applicable, and using piston theory over the
remainder of the surface. The results are shown in Fig. 50, where they are
compared with a calculation by,piston theory. It 1s seen that Newtonian piston
theory usually predicts greater stability than does piston theory alone. Piston
theory is inapplicable, strictly, to,the  blunt nose region of the section, and
this result indicates that it is liable to give conservative results when used
on au empirxal  basrs  for calculations on blunt-nosed bodies.

Experiments/
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Experiments indicate that, up to certain limits of bluntness and Mach
number, nose  blunting can have a stabilulng  effect on a simpl
on the effect of'nose blunting are given in Hanson59 and Goets~0sec~~~.5,Results

summarises  the results from both papers for one set of mo&els. The signifxant
thickness effect in these tests is assumed to be related to the thickness/chord
ratio of the basic pointed wedge section,  which has been subjected to blunting.
All the seCtIons  used in the tests have the same chord, so that the thlchess
and chord of the wedge section on whxch the section is based increase with
blunting (see sketch, Fig. 51). Up to about 10, nose blunting is stabilising
up to a nose radius of at least % chord. For a nose radius of 6% of the chord
divergence was met at values of the altitude parameter greater than,the  flutter
values for the % aerofoil. There is a marked increase m the altitude parameter
when the blunting is increased from 1% to % at M = 15-4.

Go&z gives theoretical calculations by NewtonIan theory, and by
Newtonian-piston theory, for flutter at M = 15.4. Both calculations predxt
satxfactorily  the xncreased  stablllty  for a nose radius  of 1% as compared with
a sharp edge, and the decrease of stability when the radius  1s further increased
to %. The theoretIca  calculations are shown compared with the experimental
results in Fig. 52. The greater measure of agreement of the Newtonian theory
calculation  with  experunent  for nose radzi  of 1% and 3% seems likely to be
fortuitous, since the error that the calculation shows for a nose radius of zero
indicates that it does not satisfactorily predxt the pressure distribution on
the flat surfaces of the aerofoil.

The experiments also show a reduction in the flutter frequency with
mcreasing  nose radius. Thu 1s small for the increase to I%, but large for
the increase from 1% to %. This effect is not found in any marked degree in
the theoretical results.

(vii) Aerodynamx  non-linearlties

Most of the flutter analyses that have been discussed so far have
used piston theory to third order in the steady displacements, but only to first
order in the unsteady displacements, so that the flutter equations were linear.
This means that allowance is made for the effects of mean incidence and thickness,
but that it 1s assumed that bcdy surface slopes due to the oscillatory motions
are much less than those due to thichess  and mean inculence,  and that Mao << 1.
Since, at large Mach numbers, the condition Mu0 << 1 may not apply even for %
very  small, it 1s important to investigate how the flutter of a section  is altered
when aerodynamic nonllnearities  are considered for the OsClllatory  displacements.

Zartarian  and Hsu2 6 investigate the effect of aerodynamlo  non-1inearitle.S
by carrying out a flutter analysis on a two-dimensional  section with third-order
puton  theory applied to the flutter duplacements. It 1s assumed that the
actual displacements are still small, so that structural non-linearit~es  do not

The flutter equations  are then obtained xn the form (terms allowing fW
ZfEEio  mean incrdence  are included.):

where/
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wiierc  h and au are the flutter displacements in plunge and pitch, and the
? a

primes denote the operator - -. The coeffxients  Z& involve the characteristics
w at

of the section, the mean incl ence, Mach number, and frequenoy  parameter: there8
arc two sets of coeffuSxdx,one for the plunge equation, the other for the
pitch equation. These non-linear equations are first simplified under the
assumption that, if the non-linearities are small ! information on the orders of
magnitude of terms can be obtained from the solution  of the linearized problem,
and certain terms in the non-linear equations can then be neglected because of
their smallness. It is also assumed that the mean incdence  is zero. An
approximate analysis of the simplified equations is then carried out. It is
assumed, first, that if the section is flying at a speed close to the flutter
speed predicted by a linearized analysis, and is subjected to a disturbance,
It will stabilize to a finite periodic motion and that this motion can be
represented. by

m

h, =
T

hneinwt b = 0; hBn = h;
*=-ccl

a u = r a* eirwt a, = 0; a-* = a;
*=-co

. . . (4.15)

where 19 and afi
e

are the complex conjugates of hn and an. h and a
allowd o be complex so that it is possible to diow phase anglesnbetween the

are

aegrecs of freedom, but h, and au fan be shown to be real. For simple
harmonic motion (single frequency) Ihn/ and IanI are equal to one half of
the corresponding  amplztudes.

It is then assumed that the fundamental harmonic of the two component
motions dominant in the flutter motion, and. the equations are found which ensure
that these components are balanced. Finally, if it is further assumed, on the
basis of a linearized analysis, that the phase angle between the hu and au
motions is very small, the equations for the motion become

where the coefficients Zn are given below.

h,, motion/
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A "flutter" speed and frequency can then be found from these equations
in the usual way if a value is assumed for a,. It oan be shown that
equations (4.16) are the same as the linearized equations  for flutter abwt  .s
large mean incxdence  as if a, is replaced by as. Since q is, in fact,
one half of the amplitude  of the motion, it follows from this analysts  that the
flutter speed and frequency for an oscillation of large amplitude are the same
as for the linearxzed  flutter about a mean angle of attack as = q. Fig. 46,
then, shows a boundary for the non-linear flutter case, es well as for the large
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mean incidence case; but, for t'he non-linear case, it represents not a speed
above which small disturbances will grow, but the size of the a,
s.n unstable limit cycle dscillstion  for the corresponding speed.

component of
If the section

is flying at a speed corresponding to some horizontal line of the figure and
is subjected to a disturbance, the resultant motion of the wing will grow if the
amplitude of the initial disturbance is greater than the value of a, given by
the curve (and b), but it will decay if it is less.

There has been no direct experimental investigation of the results of
this non-linear analysis. In Ref. 61, where the values of Mach number would
make non-linear effects likely, some cases of limited-amplitude flutter after
a slow initial growth were experienced, and there were other oases where
finite-amplitude  initial  disturbances were necessary before flutter occurred, but
this behsviour could be the result of friction or structural non-linearities.

Ccmparxon  of Theory and Experiment

The results available suggest that piston theoryffor  sharp-nosed
sections may give predictions of flutter .ss  adequate as other methods up to

M6 and Ma; this is suggested especially by the results
!?G:$gt ~$%6~fwhere ~6~ z 1.5 and ~a, et 1.7.

For blunt nose sections, it can be concluded from Goeta's results 60

that Newtonian theory may be adequate to predict flutter speed, but it can be
used only on an empirical basis; and that the Newtonian-piston theory,suggested
in Ref. 57, is likely to be no more adequate than Newtonian theory in the
simple form proposed - possibly this is because it does not take account of the
effects of the strong shock wave set up by the blunt nose, since attempts to
take account of such effects (Ref. 57 and. Fig. 49) suggest that they reduce the
flutter speed. Both theories e.re  conservative in their predictions.

One point emerges from this review which is not strictly relevant to
its purpose, but which it may be useful to make. This is, that it is difficult
to assess the adequacy of aerodynamic theories for flutter analyses from
comparisons between experimental results and theoretical. predictions of flutter
speed and frequency, because of the structural uncertainties in the experimental
conditions. Greater  attention needs to be paid to defining these conditions.
Such uncertainties are shown most clearly in Hanson's repor@,  where the choice
of structural modes to be used in the analysis has e. considerable effect on the
agreement between theory and experiment, but it is no clear which choice is
more appropriate structurally; and in Young‘s report k, , where the level of
structural damping assumed in the analysis made a very large difference to the
agreement of theory and experiment on flutter frequency.

4.2.2  The flutter of slender configurations

It was pointed out earlier that flutter of the main structure of a
hypersonic vehicle was likely to involve chordwise  bending modes of the dings,
and bending modes of the body. Information on flutter of these kinds is meagre.
The general forms of the equations involved are established in Ref. 62: for
slender bodies they are considered in Chapter 7 and for low aspect ratio lifting
surface flutter with chordwise  bending modes in Chapter 8. But the aerodynamic
problems involved tare not examined. What can.be  established. from the available
references is that chordwise bending modes can be important in the flutter of
low aspect ratio surfaces, o theories must provide adequate
pictures of the pressure and that the free-free flutter of a
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slender delta involving  predominantly lengthwise modes, is possible65 . And some
information can be found on the adequacy of available  theories giving the
aerodynamic load's on slender bodies  for flutter analysu from experiments on,.3
the flutter of slender rigld  cones on pitching and plunging flexible  supports .

(i) Low aspect ratio wings

Ref. 65 exarmnes  the flutter of rectangular low aspect ratio cantilever
wings with bending and torsion modes, and one chordwise deformation mode of
vibration, using piston theory. The report considers the cases of a solld
bxonvex section  and a section of the same shape built up to have a uniform mass
distribution. The results of the analyses are summarlsed  in Figs. 53 and 54 -
they show clearly the importance of the chordwise  mode. For the built-up wing
the critical value of the flutter speed parameter, and the adequacy of an analysis
using only bending and torsion modes,
ratio fs/fs.

depend very much on the chordwise frequency
The two-mode analysis is markedly unconservative for values of

the frequency ratio less than l-4; for values of the ratio between i-4 and 2.5
the two-mode analysis is conservative. For the solid sectlon  wing the variation
of the speed parameter with frequency ratio 1s less marked, and an analysis
using only bending and torsion modes is unconservative throughout the range of
chordwise  frequency ratios.

Ref. 64 describes a method for the flutter analysts  of a low aspect
ratio wing which includes camber deflections. The method uses piston theory. ,
In Fig. 55 (Ref. 58) results using this method are compared with theoretical
predictions neglecting camber deflections, and with experiment. As might be
expected from the results of Ref. 65, the comparison suggests that the
importance of including camber modes of deflection depends on the particular
conditions; for the 60' leading-edge sweep model the accuracy of the theoretical
prediction using camber modes is no greater than for a two-mode analysis; but
for the 45" model, the two-mode analysis shows much larger errors.

Ref. 65 also gives a much simplified analysis of a slender delta wing
in free-free flutter: the delta wing was a flat plate with uniform mass
distribution and only longitudinal bending modes were included. The analysis
was generalised  to include a range of apex angles using piston theory and
slender body theory: piston theory was assumed to apply in the range 2 < M d 7
for supersonic leading edges for which M 3 coseo  E, where a is the semiapex
angle of the delta; and slender body theory was applied for semiapex angles up
to ME < o-5. There was no simple theory that could be applied for the range
0.5 < ME < 1. The first three longitudinal elastic modes were used in the
analysis. The fact that the mass distribution was uniform meant, in the piston
theory analysis, that there was no coupling between the rigid body modes of
pitching and plunging and the elastic modes; and for the slender body theory
analysis, that coupling occurred only in the virtual Inertia  terms, which were
negligible for large enough values of the density ratio parameter. Throughout
the range of the analysxs  by slender body theory, divergence was found to occur
before flutter; for the piston theory analyses flutter was found in all cases,
and the predominant mode in the instability depended on the density ratio. For
small  values of density ratio the predominant mode was the fifth mode (the third
elastic mode); for large values of the density ratio, it was the fourth mode
(the second elastic mode). The results of the analyses are summarized in Fig. 56
for large values of density ratio. & is an effective stiffness based on the
frequency of the second elastic mode and the mass per unit area of the plate.
The piston theory analyses show values of Critical  dynamic pressure Parameter
that are constant with apex angle at a given Mach number down  to an apex angle
given by M sin E = 1; and values of critical pressure parameter that increase
with Mach number. The slender body analyses show values of critical  dynamic
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pressure both for divergence and for flutter (if it could occur) that decrease
w1t.h apex angle. The marks on the curves show the limits of application of
slender body theory at t6e Mach number shown, from the criterion ME < 0.5.

Ref. 65 goes on to discuss the extension of the analyses to cases with
spanwise  deformations, and to wing body combinations. It points cut that, for
these cases, the modes and frequencies will be dependent on the semiapex  angle
E and that, for low values of E the mode frequencies ~111  be cl&e together,
which would make It necessary to &de a greater number of modes  in the
analysis.

(ii) The flutter of slender bodies

It has been shown in Refs. 66 and 78 that a feasible technique can be
developed for measuring the aerodynamic stiffness and damping on flexible slender
models oscillating in longitudinal bending modes, and it is shown in Ref. 67
that flutter tests on such models are also possible using admittance techniques.
The tests in these references were all carried out at Mach numbers less than 3,
and consequently do not provide information relevant to this review, but they
are noted because the techniques are relevant to the flutter problems being
discussed.

The only information related to the flutter of slender bodies at
hypersonic speeds ccmes  from analyses and experimental results on a support
giving fledbillty  in plunging and pitching. These results have direct, relevance
to the possible use of slender cones as control devices mounted at the wing tips
of hypersonx  vehicles, and also provide a simple test of the use of available
aerodynamic theories.

Ref. 57 considers the flutter of a 15' conical shell with pitching and
plunging flexibilitles. The aerodynamic forces for the analysis are found
assuming quasi-steady conditions  and using a theory due to van K&s& . The
forces on each section of the cone are assumed to be those on the corresponding
section of a continuous cone with overall downwash, w, equal to the downwash
at thf!  section, and the forces on this corresponding ccne are found by the
van I&man  theory. Since  the thecry  is only valid for w/a < 1, where a is
the speed of sound, the calculation is limlted to M < 7'5. The results are
shown in Fig. 57.

Ref. 63 gives the results of experiments on a series cf models of a
7-5' semIangle  conical shell. The models had variations of axis position, c.g.
position, and frequency ratio, and measurements were made ever the range
M = 1.6 to 15-4. The majority of the results are for Mach numbers of i-6 2.0
and. 3.0, but the experimental and theoretical results suggest that this kind  of
flutter may be relatively independent of Mach number. This ccnclusion  is
suggested most clearly by Fig. 58, which shows the results of tests on one
model and. a ccmparlscn  of the results with theoretical predictions. The
experimental results for the low Mach number tests are seen to group quite
closely together and the single  result at M = 15-4  falls in closely with
them (the fact that the test medium 1s helium for the high Mach number should
not be very significant  for this comparison, as the pressure distrlbuticn  is
likely  to be the same as for air. The theoretical curves from  Van Dyke's second-
order slender body thecry68,  and for Newtonian theory, also agree closely.
Van Dyke's theory must be applied in a quasi-steady manner, but it appears to
give closer agreement with experiment  than other theories used in the report,
for the low Mach number tests; NewtonIan theory should give satlsfactcry
results on a cone shape at M = 15.
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The conclusion drawn from Fig. 58 is supported by the results shown
in Wg. 59 for a.geometrically similar cone mth different axis Position and
c.g. position, at M = 2, 3 and 6.83. There is rather more scatter of the
experimental points, but there is still .e strong suggestion that the flutter of
the cone is not greatly affected by Mach  number. Calculations by Newtonian
theory and by shock expansion theory were made for the M = 6.83  ease, but only
poor agreement was obtained. The shock expansion result is not shown in Fig. 58.

The failure of the analysis using shock expansion theory in Ref. 63
may be related to the fact that the flow is predominantly conical, despite the
unsteady oomponents, and such flows  violate a condition for the use of shock
expansion theory for three-dimensional bodies.

For the flutter cases in both Figs. 58 and 59 the analysis was found
to be affected by the inclusion of e factor from the drag  of the cone. The
qualitative effect of this is shown by one curve in each Figure.

The large variations of flutter parameter shown in Fig. 57 for axes
around the mid-length are not shown in Figs. 58 and 59. This may be related
to the particular theory used since the results of applying van Karman s theory
in Ref. 63 also showed a dependence of critical flutter parameter on Mach number.
But direct comparisons are not possible because of the different characteristics
of the cones used: the frequency ratio of &ma = 0.5, used in the investigations
.for  Fig. 57, was not investigated in Ref. 63 and, in fact, Figs. 58 and 59 suggest
that flutter would not have been possible at a frequency ratio of O-5  for the
models used in those investigations.

4.2.3 Panel flutter

There appear to be no published results of investigations of panel
flutter at hypersonic speeds but, since it can be assumed from structural
considerations that displacements will remain very small, the hypersonic
similarity parameter for the displacements, M6, will remain small, and
consequently It is reasonable to draw tentative conclusions about panel flutter
at hypersonic speeds by extrapolation from experiments and piston theory analyses
for lower Mach numbers. This is the basis on which this section has been
written. Surveys of information on panel flutter at lower M&ch numbers are given
in Refs. 74 and 76.

(i) Flat panels

Analyses for Mach numbers between 2 and 5 indicate that the effects
of changes in the fluid dynamics of a perfect gas due to increased Mach number
do not cause a significant change in the critical thickness ratio for flutter
This is illustrated by Figs. 60 and 61, from Refs. 69 and 70, for a buckled
two-dimensional panel clamped front and rear, and for B rectangular panel simply
supported on all four edges. These results show, for Mach numbers greater than
about  1.2, a small increase in critical thickoess  with increasing Mach number.
But there are two effects occurring in real flight situations  which cald  make
panel flutter B significant  problem at hypersonic speeds. These effects are the
large increases of dynamic pressure which can ocour  in the local  flow  conditions
on vehicles, especially on the lifting surfaces of vehicles  at large angles of
attack and in intake ducts; and aerodynamic heating effects, which would lower
the elastic stiffness and could set up OODpreSSive  stresses  in Panels,  or even
oause  buckling.  'Pyplcal  local  flow con&Cons  which could occur are shown  In
Fig. 62 from Ref. 71. The significance  of the conditions can be gauged from the
critical dynamic Pressure parameter h found by Hedgepeth in Ref. 70:
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w3 12(1-l?)
.h = -.

q/MA-1
. . . (4.17)

Et?

where, for a panel of given shape and loading conditions, h has a fixed value.
It follows that:

t3
( >

9 e 9-
cs dz'

or -
ca ( 18" "ii

for M large. . . . (4.18)
orit crit

Then from Fig. 62, at M = 20 and a = 27' (as an example) it can be
seen that the local q/M can be as much as 20 times the free-stream value.
Theoretical predictions of the effect of compressive stress on the flutter of
panels confirm a reduction in flutter dyna
up to the point at which the panel buckles4T79

ressure  with compressive stress
.

At low supersonic Mach numbers above M= l-4 the boundary layer does
not appear to have very much effect on the flutter characteristics75 but the
very thick boundary layers at hypersonic Mach numbers may have a greater
influence.

(ii) Cylindrical shells

Early analyses had suggeste
46

that large thicknesses were needed to
prevent flutter of cylindrical shells and that the flutter critical thickness
increased quite rapidly with Mach number.

Practical experience has suggested that these results were pessimistio
and this has been confirmed by recent theoretical and experimental work. Early
theoretical investigations, which had not included the effects of material
damping or of damping effects from the boundary layer, had found that the
critical mode of flutter of a finite cylinder was one with no circumferential
nodes. But more recent results published in Ref. 74 show that this mode of
flutter is strongly affected by both material damping and aerodynamic damping and,
as a result, the critical mode becomes one with  circumferential nodes and the
critical thickness and dependence on Mach number are considerably  reduced. These
results are illustrated by Figs. 64 and 65. The results were confirmed by the
results of experiments reported in Ref. 74.

It can be concluded, then, that for cylindrical shells, as for flat
panels, the perfect fluid dynamic effects of high Mach number are not likely to
cause any important changes in the flutter conditions, but there will be
important effects in practice from heating of the structure causing reductions
in material properties and compressive stresses, from the local flow conditions,
and from the influence of the thick boundary layers. It seems likely that the
effect of the thick hypersonic boundary layers will still be stabilising  but
some investigation of this i‘s  needed.

4.3 Discussion and Conclusions

From the information which has been collected in this review, it seems
likely that the principal causes of any degradation of flutter behaviour on
vehicles operating at hypersonic speeds will be the degradation of the stiffness
properties of the structure and the high local values of dynamic pressure, rather
than any large changes in fluid dynamic behaviour.
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Most of the informatIon  relates to the pitching and plunging flutter
of a twc-dimensional section, or the similar problem of the bending-torsion
flutter of a cantilever  wing. There is still a need, in this field, to
investigate the use of theories applicable to Mach numbers higher than the
piston theory range, and to find an adequate method for estimating the
aerodynamic forces on a sectlon  with a blunt leading edge; experimentally,
there is a need for studies that explicitly  take account of possible  non-linear
behaviour,  and for further studies on the effects of incidence. But this kind
of flutter is likely to be of comparatively minor importance for hypersonic
vehicles, and there is a great need for more analytical and experimental work
on the flutter of low aspect ratio wings and slender bodies, on panel flutter,
and on membrane behaviour.

Work on slender bodies and low aspect ratio wings is likely to be
analytically complex. For pointed slender bodies and wings with supersonic
leading edges, shock expansion theory should give suitable estimates of the
aerodynamic forces but Its use in flutter analyses may be ocmplicated. For
blunted nose bodies an adequate aerodynamic analysis does not exist (Appendix I
Experimental work on these bodies  and wings could include tests on rigd  bodies
flexibly mounted to give a simple check on theories, but would need to be
extended to the use of flexible mcdels.

In the case of panel flutter, a theoretical investigation of the use
of piston theory in a steady flow field with large entropy gradients would be
useful since these are the conditions which usually apply downstream of the
strong nose shock on a hypersonic vehicle, and experiments would need to be
carefully planned to show what fluid dynamic effects, if any, require special
investigation.

All the experimental results which have been reviewed show clearly
the need in fiture  experimental flutter studies for very careful control of the
experimental conditions if reliable and precise information is to be obtained
on the merits of aerodynamic theories used in flutter analyses.

Finally, the point should be made that the values of aerodynamic
damping coefflclents  at hypersonic speeds tend to be low, flutter frequency
parameters tend to be small, and the density ratios  at which flight takes place
are high. In these conditions the importance of aerodynamic damping in flutter
analyses may become negligible (Ref. 62, Section 6-6) and it would then be
possible to use quasi-static air forces and the calculation of these forces
would be correspondingly slmpllfled. Clearly, this is a matter which should be
investigated.

I).
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a

a,

A

b

c

cD

CL

%l

%I

c%

CQ%

C
mq

CP

d

E

Ez

f

fi

Nomenclature

(Some terms are not included III this index if
they are used only locally)

local speed of sound

free-stream  value of speed of sound

aspect ratlo  of wing (span/mean chord)

representative length of a body($  for a wing, 8 for a body)

mean chord of a wing

drag coefficient of a body [Drag&@S]

lift coefficient  of a body [Lift/&U'S]

rate of change of lift coefficient with angle of attack: X+/&x

pitching moment coefficient

rate of change of pitching moment coefficient with angle of
attack: acdaa

rate of change of pitching moment coefflczsnt  with time
irb

rate of change of angle of attack parameter, - : %I
U eoJ)

rate of change of pitching moment ccefflclent  with pitching
Ob a%velocity parameter, - :
IJ a(db/b)

P - P,
pressure coefflcvent

&JJ"

maximum body diameter

Young's Modulus

effective stiffness based on frequency of second elastic mode

frequency of oscillation

frequency of natural mode : i = 1 for first mode, etc.

gravitational constant

structural damping factor

altitude
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h

iB

IB

k

X

xcrit

x
Y
c

c

Lb

Li'Li
m

m

m

m

Y

%

%

Idi’M!. I
n

%

P

&.a

displacement of section in plunge (flutter)

non-dimensional form of I B :-pSbs

pitching moment of inertia of a body about its centre  of gravity

frequency parameter - I
U

convergence factor for pitching oscillations  of a vehicle flying
on a re-entry path defined by equation (3.12)

critical value of X in equation (3.14)

CL m
- + -
2 PSR

pitching radius of gyration of B body about its oentre of gravity

body length

panel length - in flutter studies

ratio of lift to drag

see definitions of derivatives (i = 1 to 4)

mass of vehicle - Appendix III

mass per unit span of two-dimensional section

mass of wing or cone

I

Appendix IV

mass/unit area  Of panel

free stream or flight Mach number U/s,

flutter Mach number

Mach number of boundary layer in approximate calculation of
boundary layer damping in Figs. 64 to 65.

see definitions of derivatives (i = 1 to 4)

number of circumferential nodes in the flutter of a cylindrical
shell

mid-plane stress in panel (Fig. 63)

local pressure .

free-stream static pressure
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AP

9

P

r

'b
Fa

B

%
R

%

Be

Rex
s

9

s

t

t'

x

P

t

T

'$0

Ta

P
non-dimensional pressure: p = (equation (2.24))

fdJ ssin'a

amplitude of oscillatory  non-dimensional pressure at body

surface: pb (Fig. 9
3PG

and equation (2.63))

incremental pressure

fluid velocity in variational method (equation (2.42))

dynamic pressure q = &p,JJ’

radial cc-ordinate (Fig. 7)

local radius of body (Fig. 7)
-T-

radius of gyration of a wing section in semi-chords: ';, =
d

2%
mba

radius of flight path from oentre of earth

initial value of radius in re-entry problem 1 Appendix III

cylindrical shell radius - Appendix IV

radius of spherical cap nose - Fig. 7

Reynolds number based on U and 4,

Reynolds number based on distance from leading edge

distance along flight path in re-entry problem

entropy - Appendix II

representative area of vehicle - Appendices III and IV

time

transformed quantity (equation (2.13))

non-dimensional value of t, (equation (2.23))

transformed quantity (equation (2.36))

thickness of panel or shell - Appendix IV

local temperature (OR)

free-stream temperature

stream temperature immediately behind shook wave

Appendix II
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u

u’

i;

u

u

U

li

ui

%
v

v

v

vf
w

xP
xa

?
8

disturbance velocity in x-direction or in &-direction

transfomed  quantity (equation  (2.7))

non-dimensional value of u (equation (2.24))

horizontal component of vehicle velocity in re-entry problem

ratio of u to dpR,, the circular orbital speed at radius Ri

free-stream velocity or flight speed

u/(gR+

initial flight speed at re-entry

"iA gBi+

disturbance velocity cconponent in y-direction or in ~-direction

non-dImensiona  value of v (equation (2.24))

disturbed volume of fluid in variational problem (equation (2.42))

flutter speed

downwash  velocity at surface

disturbance velocity component in z-direction or in t;-direction

non-dimensional value of R (equation (2.24))

weight of vehicle

co-ordinate axes (Fig. 5)

transformed quantity (equation (2.7))

transformed quantity (equation (2.13))

nonwdised  co-ordinate x/C or x/X

norsdised  co-ordinate x/(nqse  length)

&l,$tance,in  chord lengths, that the elastic axis of a section
lies behind the leading edge

value of X at centre  of pressure

distance, in chord lengths, that the c.g. of a section lies
behind then  elastic axis

dimensionless amplitude  of shock displacement %?h
'p amplitude  of displacement + curvilinear co-ordinates
(Sig. 7 and equation (2.64))
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Y

Y

yi
6

F

A

K

instantaneous angle of attack

amplitude of oscillatory angle of attack

mean angle of attack

4iFT

ratio of specific heats

flight path angle to local horizontal

1

Appendix III

flight path angle at start of re-entry

quantity specified by the largest of the thickness ratio, mean
incidence of body or surface, and the dimensionless amplitude
of the time-dependent motion - Appendix II

the thickness ratio of aerofoil section - Appendix IV

apparent boundary layer thickness - wall to 9% free-stream
velocity point (Figs. 64 and 65)

prefix denoting a small variation of a quantity in the variational
problem (Appendix IV)

semi-apex angle of delta wing

density ratio across shock wave

cc-ordinate axis (Fig. 6)

non-dimensional value of c (equation (2.23)) 3
Appendix II

= oh/wf (AppendFx  IV)

co-ordinate axis (Fig. 6)

non-dimensional value of q (equation (2.23))

steady surface slope measured fran chordline  or body axis

value of 8 at the nose

order of magnitude of perturbations

relative density of vehicle (equation (3.1))

mass ratio of wing

= m/4bap  for tnc-dimensional sectionj m is mass per
unit span b = g/2

= &basp  for a wingi  m is mass of wing b = z/2
s = span of wing

local viscosity

viscosity of free stream
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Poisson's ratio - Appendix IV

co-ordinate axis (Fig. 6)

non-dimensional value of E (equation 2.23))

transformed value of g (equation(2.36))

density

free-stream density

non-dimensional value of p (equation (2.24))

vehicle density

natural unit of time (equation(j.9))

velocity potential

angular co-ordinate in Figs. 7 and 18

viscous interaction parameter in equation (1.2)

circular frequency radians/se0  = 2xf

circular frequency of the ith mode

circular flutter frequency

o WcxfJ
oiroular bending or plunging frequency

circular torsional frequency

Definitions of flutter parameters

yf- dimensionless flutter speed
baa

b",Ji;
flutter altitude parameter

a

flutter speed/altitude parameter

Definitions/



- 68  -

Dcfmitions  of derivatives

"BL, = -

& = Ee - 4kaeg')

2k=

La =& for piston theory

"Bk = --
k

~ _ _ (me - 4ka$

k=

Ma = kb for piston theory

2m6& = --
k

where Lift = 4p, U, b k2euut
. r

and pitching moment = -4+%J~  bakae iwt h
[

- 04 + NJ') + %(M, + w
b I

The quantities L&, G, &, Mi, &, & refer to the leading-edge axis (x0 = 0).
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