C.P. No. 916

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Low Speed Wind Tunnel Tests on a Series of Rectangular Wings of Varying Aspect Ratio and Aerofoil Section

by

G. G. Brebner, L. A. Wyatt and Gladys P. llott

at the state of the state E a green and a second and a se

LONDON: HER MAJESTY'S STATIONERY OFFICE

1967

PRICE £1 3s Od NET

U.D.C. No. 533.693.6 : 533.6.048.2 : 533.6.048.1 : 533.6.013.12/13 : 533.6.013.152 : 532.526.3

C.P. No. 916* October 1965

LOW SPEED WIND TUNNEL TESTS ON A SERIES OF RECTANGULAR WINGS OF VARYING ASPECT RATIO AND AEROFOIL SECTION

by

G. G. Brebner L. A. Wyatt Gladys P. Ilott

SUMMARY

To provide experimental evidence on the loading and pressure distribution of low aspect ratio wings and on the variation of aerofoil section characteristics with aspect ratio, wind tunnel tests were done on a series of rectangular wings with aspect ratios varying from 4.0 to 0.5 and three different aerofoil sections. Two of the sections were cambered and all had the RAE 101 thickness distribution, t/c = 0.10. The tests comprised balance measurements of lift, drag and pitching moment, pressure measurements at the centre section (which have been integrated to obtain local forces and moments) and boundary layer transition observations.

A limited analysis has been done of the local and total forces and moments, comparisons being made with the methods of Küchemann and Weber for calculating load and pressure distribution. The experimental pressure distributions offer scope for considerably more analysis.

^{*} Replaces R.A.E. Tech. Report No.65236 - A.R.C. 27889

3

ı

	CONTENTS	Page
1	INTRODUCTION	7
2	DESCRIPTION OF MODELS AND TESTS	8
3	RESULTS AND DISCUSSION: WINGS WITH SYMMETRICAL SECTION	10
	3.1 Pressure measurements at zero lift	10
	3.2 Balance measurements	10
	3.3 Pressure measurements with lift	14
4	RESULTS AND DISCUSSION: WINGS WITH CAMBERED SECTIONS	15
5	FURTHER WORK	16
Append	lix A Modification to Küchemann loading method	17
Append	lix B Approximations for the height of a tip vortex sheet	18
Tables	s 1-49	19 - 96
Symbo]	.5	97
Refere	ences	98
Illust	crations	Figures 1-28
Detach	able abstract cards	

J

,

TABLES

1 Summary of wings tested 2 Pressure measurements, wing AP/1 ŧ 3 ŧŧ wing AP/2 wing AP/3 Ħ 4 11 11 11 wing AP/4 5 6 51 11 wing AP/5 Local force and moment coefficients from integrated pressure. 7 measurements, wing AP/1 Local force and moment coefficients from integrated pressure 8 measurements, wing AP/2". Local force and moment coefficients from integrated pressure 9 measurements, wing AP/3 Local force and moment coefficients from integrated pressure measurements, wing AP/4 10 Local force and moment coefficients from integrated pressure measurements, wing MP/5 11 Balance measurements of lift, drag and pitching moment, wing AF/1 12 1f 11 Ħ 11 11 11 tt. Ħ wing AF/213 11 ** 11 -11 wing AF/3 14 11 11 51 11 11 tt wing AF/4 11 11 15 Ð 49 11 ŧŧ. 11 11 Ħ 16 Ħ wing AF/5 Boundary layer transition position at centre section: A series wings 17 Calculated and experimental total lift slopes: A series wings 18 Prossure measurements, wing BP/0 19 11 11 wing BP/1 20 11 wing BP/2 21 " tł wing BP/3 22 t1 ** wing BP/4 23 11 wing BP/5 24 Local force and moment coefficients from integrated pressure measurements, wing BP/0 25 Local force and moment coefficients from integrated pressure measurements, wing BP/1 26 Local force and moment coefficients from integrated pressure measurements, wing BP/2 27 Local force and moment coefficients from integrated pressure measurements, wing BP/3 28 Local force and moment coefficients from integrated pressure measurements, wing BP/4 29 Local force and moment coefficients from integrated pressure measurements, wing BP/5 30

TABLE

TABLES (CONTD)

Balance	measurements	of	lift,	drag	and	pıtchir	ng moment:	wing	BF/1	31
tt	11	**	11	18	11	**	11	wing	BF/2	32
31	11	11	11	tī	11	F1	tt	wing	BF/3	33
**	11	11	в	11	11	17	11	wing	BF/4	34
tt	t7	11	11	11	tt	51	11	wing	BF/5	35
17	H,	**	11	17	11	17	11	wing	CF/1	36
Ť	11	**	11	11	"	n	11	wing	CF/2	37
11	31	ŧ	11	17	ti	11	† †	wing	CF/3	38
ţ1	11	11	11	11	11	11	11	wing	CF/4	39
11	11	tt	11	11	17	**	11	wing	CF/5	40
Boundary	layor trans:	itic	on posi	ition	at	centro s	action:	B seri	les wings	41
Boundary	layer trans:	itic	on posi	ltion	at	centre s	section: (C ser:	les wings	42
Calculat BF and	ed and export CF series	imer	ntal ze	ero l:	ift a	nngle:	complete w	vings	of	43
Calculat wings	ed and exper: of BP series	imer	ntal zo	ero l:	ift :	angle:	centre se	otion	of	44
Calculat wing /	ed pressure (LP/1	coef	ficier	nts or	n wi	ngs of s	symmetrical	l sect	ion:	45
Calculat wing /	ed pressure (P/2	coef	ficier	nts or	n wi	ngs of s	symmetrical	L sect	ion:	46
Calculat wing /	od pressure o P/3	coef	ficier	nts or	n wil	ngs of s	symmetrical	L sect	ion:	. 47
Calculat wing /	ed pressure o F/4	coef	ficier	nts or	ก พบ	ngs of s	symmetrical	L sect	ion:	48
Calculat wing /	od pressure (P/5	coof	ficier	nts or	n wi	ngs of s	symmetrical	L sect	ion:	49

4

TABLE

ILLUSTRATIONS

	<u>Fig</u> .
Sketch of models	1
Method of correcting incidence for tunnel pitch and datum line error	2
Zero lift pressure distribution at the centre section of AP wings	3
Experimental and calculated spanwise lift distribution on a thin rectangular wing of aspect ratio 6	4
Calculated spanwise lift distributions on two thin rectangular wings	5
Lift v incidence, wing AF/1	6
Lift v incidence, wing AF/5	7
Pitching moment, wing AF/1	8
Pitching moment, wing AF/5	9
Drag due to lift and boundary layer, wing AF/1	10
Drag due to lift and boundary layer, wing AF/5	11
$\bar{c}_{N}^{2} v \bar{c}_{T}$, wing AF/1	12
$\overline{C}_{N}^{2} v \overline{C}_{T}$, wing AF/5	13
Local lift at centre line v incidence, wing AP/1	14
Local lift at centre section v incidence, wing AP/5	15
Local pitching moment at centre section, wing AP/1	16
Local pitching moment at centre section, wing AP/5	17
Local drag due to lift and boundary layer, wing AP/1	18
Local drag due to lift and boundary layer, wing AP/5	19
C_N^2 v C_T at centre section, wing AP/1	20
C_N^2 v C_T at centre section, wing AP/5	21
\overline{C}_L v α , and experimental zero lift angle: BF series	22
\overline{C}_{L} v α , and experimental zero lift angle: CF series	23
$C_N^{\rm v} \alpha$, and experimental zero lift angle: BP series	24
Pitching moment v lift, wing BF/1 ·	25
Pitching moment v lift, wing BF/5	26
Pitching moment v lift, wing CF/1	27
Pitching moment v lift, wing CF/5	28

.

1 INTRODUCTION

This report presents the results of a series of wind tunnel tests on rectangular wings with different aspect ratios and aerofoil sections. The purpose of the tests was to provide experimental evidence about some aspects of wing loading calculation methods, particularly about the effect of reducing the aspect ratio on the characteristics of symmetrical and cambered profiles. One aim was to study the effect of aspect ratio on the pressure distribution associated with the wing thickness distribution. Therefore an uncambered aerofoil section was chosen (RAE 101, thickness/chord ratio = 0.10) for which detailed experimental results in two dimensions were available⁶.

Again, there are theoretical indications⁴ that the loading on cambered wings behaves differently from that on uncambered wings as the aspect ratio is reduced, and another aim of these tests was to provide an experimental basis for further theoretical work.

Rectangular wings were chosen in order to avoid complicating the analysis with taper and sweep effects, but any conclusions drawn about sectional* aerofoil characteristics or spanwise load distribution would be relevant to wings of more general planform.

The experimental results are presented in tabular form to facilitate subsequent analysis. Most of the tests were done at two Reynolds Numbers, 1.6×10^6 and 3.2×10^6 . To keep the number of tables as small as possible, pressure plotting results are included at the higher Reynolds Number only, except in those cases where only the lower Reynolds Number was tested. However, for anyone who wishes to study or analyse them, the results at R = 1.6×10^6 are available from the authors.

Only a small amount of comparison between theory and experiment is included, and the conclusions are of a tentative nature. The theoretical methods used were those of Kuchemann¹ and Yeber^{2,3,4} for calculating the loading and pressure distribution on wings of moderate and small aspect ratio, and that of Brebner⁵ for cambered wings. Since this work was dono the increased availability of electronic computers has reduced the interest in developing accurate methods simple enough for desk computation. Nevertheless it is hoped that this limited analysis will be relevant to the continuing search for physically meaningful mathematical models.

^{* &}quot;Sectional" properties (e.g. sectional lift slope, $\partial C_{I}/\partial \alpha_{\Theta}$) are associated with bound vorticity only and not with trailing vorticity. This does not mean they are independent of aspect ratio, since the distribution of bound vorticity changes with aspect ratio.

The wings with symmetrical profiles are discussed separately from those with cambered profiles. In Section 2 all the models and tests are described and the results and analysis of the symmetrical section wings are given in Section 3. Some cambered wing results are briefly analysed in Section 4.

2 DESCRIFTION OF MODELS AND TESTS

Three different streamwise profiles were included in the set of wings tested, the thickness distribution of each being RAE 101, thickness/chord ratio = 0.10. The mean lines were a straight line and two camber lines of the family derived in Ref.5, those designated by m = 0.5 and m = 0.8, where m is a parameter related to the chordwise position of the maximum ordinate. The wings with symmetrical profile are designated by the letter A, those with the m = 0.5 and 0.8 camber lines by the letters B and C respectively. Section B had 2% camber and section C had 1% camber.

Each series of finite wings comprised five different aspect ratios, 4.0, 2.5, 1.4, 1.0 and 0.5. There were three series of balance models (one each of Sections A, B end C) on which lift, drag and pitching moment were measured; and two series of pressure-plotting models (one each of Sections A and B), on which the pressure distribution on the centre line was measured. The balance models were denoted by the letter F and the pressure-plotting models by the letter P. The aspect ratios were numbered in sequence from 1 (A = 4.0) to 5 (A = 0.5). This facilitates concise reference to any wing, o.g. BP/3. In addition results for a two-dimensional wing with Section A are available in Ref.6, and wing BP/1 was fitted with faired extensions and measured as a two-dimensional wing spanning the tunnel vortically. These wings are designated AP/0 and BP/0. The complete series of wings is set out in Table 1.

All the models were made of laminated teak and, except for BP/0, were suspended on wires, the balance models from an overhead balance, the pressure models from the tunnel roof. The largest aspect ratio of each series was progressively cut down to the other four aspect ratios. A sketch of the planforms is given in Fig.1, showing the suspension points. On the three smallest aspect ratios the main suspension points were at the ends of steel bars running through the wings at their maximum thickness positions. The wings had rounded tips. The area used in calculating the force and moment coefficients is that of the rectangle defined by span x centre line chord. The pressure models had 29 flush holes at the centre section, equally distributed on both surfaces. The chordwise positions of the holes are given in Fig.1. The pressure tubes (1/32" inside diameter at the surface) were taken out of the wing at two positions, 4 inches on either side of the centre line, towards the rear of the wing. This was to simplify the work of cutting

8

down the wings to the next smaller aspect ratio. Each group of tubes was arranged in a flat sheet parallel to the stream direction to minimise their effect on the flow. On the cambered wings of the BP series the tubes were led out of the "flatter" surface which is conventionally regarded as the lower surface of a cambered wing. This served to define the "lower surface" on the AP series as the surface from which the pressure tubes emerged.

Each model, both balance and pressure plotting, was tested in two attitudes, called "normal attitude" and "inverted attitude". (Exceptions are noted in Table 1.) In the normal attitude the "upper surface" was lowermost in the tunnel, as is normal with models suspended on a wire rig. In the inverted attitude the "upper surface" was uppermost in the tunnel. The reason for doing both cases was to eliminate any pitch angle in the tunnel flow by comparing the two sets of results. In the case of the symmetrical wings it was also possible to eliminate any error due to model asymmetry or inaccurate positioning of the incidence datum line. This was not possible for the cambered wings since the zero lift angle was not known beforehand. These corrections to the incidence are shown diagrammatically in Fig.2. The incidence sign convention is such that, in the normal attitude in the tunnel, positive incidence is nose down and in the inverted attitude positive incidence is nose up. With some balance models the incidences tested in the normal and inverted attitudes were the same, or nearly so, and mean values of the forces and moments in the two attitudes are quoted for those incidences. With the pressure plotting models the results for normal and inverted attitudes are presented soparately.

The tests were done between 1953 and 1957 in the No.2 $11\frac{1}{2}$ ft $\times 8\frac{1}{2}$ ft wind tunnel at R.A.E. Farnborough and the 13 ft \times 9 ft tunnel at R.A.E. Bedford. The wind speeds were 125 ft/sec and 250 ft/sec, giving Reynolds numbers of 1.6 $\times 10^6$ and 3.2 $\times 10^6$ based on the 24 inch chord of the wings. Relevant corrections were applied to incidence, lift, drag, pitching moment and pressure coefficient to take account of tunnel constraint, blockage, streamwise pressure gradient, asymmetry in pitch of the tunnel flow, and rig drag and pitching moment.

In addition to the balance and pressure measurements, some observations were made of the movement of the transition position on the balance models, using the simple paraffin evaporation technique.

Acknowledgement

The authors are indebted to many colleagues at Farnborough and Bedford for their assistance in experimental work and computing during the series of tests.

3 RESULTS AND DISCUSSION: WINGS WITH SYMMETRIC/L SECTION

The pressure measurements at the centre section of the wings of the AP series are tabulated in Tables 2 to 6, and the local force and moment coefficients obtained by integration in Tables 7 to 11. Some of the pressure holes suffered either temporarily or permenently from blockages and leaks and these readings are omitted from the tables. The lift, drag and pitching moment coefficients from the measurements on the balance models of the AF series are tabulated in Tables 12 to 16, and the transition observations in Table 17.

For comparison with the experimental data the pressure distributions at the centre section of these wings have been computed by the method of Weber³ for several values of the effective incidence α_e , and these calculated values are given in Tables 45 to 49, along with the local normal force coefficient, C_N , obtained by integration.

3.1 Pressure measurements at zero lift

The pressure measurements at the centre sections of the AP wings are directly comparable with the results calculated by Weber's method³, and the comparisons are shown in Fig.3. The experimental points plotted are the mean values of the pressure coefficient, C_p , on both sides of the wing at both attitudes at both Reynolds Numbers (where available). (Interpolation is necessary where zero incidence was not actually measured.) For wing AP/3 of aspect ratio 1.4 further data was available from the results of Peckham⁷ on a similar planform with 12% RAE 101 section: the velocity increments have been scaled down linearly for comparison with the present results.

It is clear from Fig.3 that the theory of Ref.3 correctly predicts the qualitative reduction in peak suction and its forward movement as the aspect ratio is decreased, but that quantitatively the amount of this reduction is slightly underestimated. This discrepancy is due to the linearising assumption of the theory whereby the boundary conditions are satisfied on the chordline instead of on the wing surface. Fig.13 of Ref.3 shows that, for low aspect ratio ellipsoids with t/c = 0.10, the ratio of the exact theoretical velocity increment (and hence C_p) at the midpoint of the centre section to the linearised theory value is the same as the ratio of experimental to calculated peak suctions for wings AP/4 and AP/5.

3.2 Balance measurements

To obtain a theoretical comparison for the total lift and pitching moment results on the AF series of wings, it is necessary to calculate the spanwise load distribution and then integrate over the span. If the total lift and spanwise load distribution are calculated for a given incidence, the "effective incidence" $a_e = a - a_1$ is known everywhere and thus the chordwise pressure distribution at the centre section can be calculated. Therefore, to be able to calculate accurately the pressure distribution ab initio, it is necessary to have an accurate method for estimating the spanwise load distribution. In practice the calculation of the chordwise pressure distribution may be related to the local normal force or lift coefficient rather than to a_e (i.e. a_e has to be chosen to give the required C_N or C_L on integrating the pressures) and this means that it is the shape of the spanwise load distribution rather than the actual calculated values of C_X/α which is important.

As the aspect ratio is reduced, non-linear effects become more prominent in the aerodynamic characteristics. This is due to the effect of the tip vortex sheet which induces lift near the tips, mainly towards the rear of the wing. On small aspect ratio wings this non-linear lift becomes apparent at low incidences. Therefore in these cases loading calculations by linear theories such as that of Küchemann¹ or Multhopp⁸ are directly applicable only for predicting the lift slope near zero incidence. The non-linear effects can be estimated by using the tip end plate methods of Mangler and Rotta⁹ and Küchemann and Kettle¹⁰, and this is done in the present analysis.

As no experimental spanwise load distributions are available for the present wings, comparisons with linear theory can only be done through the total lift slope \bar{C}_{I}/α , pitching moment \bar{C}_{m} and drag \bar{C}_{D} . For further consideration, Fig.4(a) shows some unpublished electrolytic tank results by Redshaw and Temple for the spanwise C_{τ} distribution on a thin rectangular wing of aspect ratio 6. Although a large number of pivotal points is represented in this method, its accuracy is not necessarily assured because the singularities around the edges cannot be properly allowed for. These results are compared with a calculation by the Küchemann method¹ which appears to overestimate C_1/α , particularly near the tip. A modification to the Kuchemann method has been introduced here to take account of the known fact that towards the tip of a rectangular wing the chordwise loading changes shape slightly, the load being concentrated rather nearer the leading edge (excluding non-linear tip vortex effects). The details of this modification are given in Appendix A, and the plotted curve in Fig.4(a) shows better agreement with the tank results. In Fig.4(b) the shape of the spanwise loading curve from the tank tests is compared with a calculation by the Multhopp method and the agreement is good when 4 chordwise points are taken. On this evidence the modified Kuchemann method is tentatively accepted as sufficiently accurate for moderate aspect ratios, but this opinion may be modified in the light of the present tests. The Kuchemann method has the advantage over the Multhopp

method that corrections to take account of wing thickness and boundary layer can be incorporated without difficulty. Figs.5(a) and 5(b) show calculated spanwise load distributions for the two extreme aspect ratios, 4.0 and 0.5, of the present series, using the modified and original Kuchemann methods and the Multhopp method with 4 chordwise points. The wing is assumed to be thin.

Table 18 compares the experimental lift curve slopes at zero lift of two of the AF series of wings with calculations by the original and modified Kuchemann methods, with and without a correction to take account the loss of lift due to the boundary layer. The latter took the form of a factor k = 0.92 applied to the sectional lift slopes $a = \partial C_{\rm L}/\partial \alpha_{\rm e}$, the numerical value 0.92 having been previously found to be appropriate both to a 45° sweptback wing with 12% RAE 101 section¹¹ and a two-dimensional wing with 10% RAE 101 section⁶ (wing AF/0). The wing thickness is allowed for in all cases by a factor $(1 + 0.8 \times t/c)$ applied to the sectional lift slopes. It is, of course, not known whether it is permissible to allow for the boundary layer on a wing of finite span in the same way as on a two-dimensional aerofoil section. Nevertheless, one would expect the values obtained with k = 0.92 to be more realistic than those with k = 1.0.

The lift curves for these wings, AF/1 and AF/5, arc plotted in Figs.6 and 7 and estimates of the non-linear lift increment from the tip vortex effect are also shown. The main difficulty in this estimation is to calculate the height of the vortex sheet, h, in terms of the span b, and three approximations are given for this in Ref.1. These are quoted in Appendix B. The simplest approximation gives the best agreement with the present tests, which is gratifying in that the other two approximations require some knowledge of the shape of the lift curve and are therefore not suitable for an ab initio calculation.

The non-linear lift acts towards the rear of the section and therefore causes a nose-down pitching moment. Figs.8 and 9 show the pitching moment results for wings AF/1 and AF/5 along with the calculations by linear theory. The pitching moment due to the non-linear lift is estimated assuming this lift to act at 75% chord as suggested in Ref.1. The linear estimate is simply based on the parameter n (see Ref.1) at the centre section of the wing and takes no account of boundary layer and thickness effects. These tend to counteract each other and this simple thin wing estimate is in quite good agreement with the linear part of the $\overline{C}_{\rm m} \times \overline{C}_{\rm L}$ curve for both wings. The choice of approximation 1 (see Appendix B) in calculating the non-linear lift implies that the latter starts as soon as the incidence is non-zero and this is clearly wrong. However this approximation plus the assumption that the non-linear lift acts at 75% chord

12

gives a reasonable picture of the general behaviour of the pitching moment, although this aspect of the problem requires far more work.

From the spanwise loading, the induced drag or vortex drag, \bar{c}_{Di} , can be calculated. At any spanwise position the local vortex drag $C_{Di} = C_L \times a_{io}$ where a_{io} is half the downwash induced far downstream by the trailing vortex system. a_{io} is related to the downwash angle a_i at the wing by the factor $\omega = \frac{a_i}{a_{io}}$. If the effect of the viscous boundary layer is omitted from the calculation (k = 1.0),

 $a_e = a - a_i$.

If the boundary layer is assumed to reduce the incidence by an amount a_B , thereby causing a loss of lift,

$$a_e = a' - a_i - a_B,$$

. a' being different from a above. For the same C_L in the two cases a_e is the same and the shape of the spanwise loading does not depend much on k so that a_i is the same. Therefore $a = a' - a_B$ i.e.

$$\frac{a_{\rm B}}{a^{\rm t}} = 1 - \frac{a}{a^{\rm t}} ;$$

 $\frac{a}{a}$ is the ratio of the local lift slopes; with (in this case) k = 0.92 and k = 1.0, a_B can be found. The boundary layer drag $C_{DB} = C_L \times a_B$, analogous to the vortex drag can then be added to C_{Di} . By integration over the span the total lift-dependent drag can be calculated.

The comparisons between calculation and experiment for wings AF/1 and AF/5 are shown in Figs.10 and 11. For wing AF/1 the values of $\bar{C}_D - \bar{C}_{D0} = \bar{C}_{D1} + \bar{C}_{DB}$ given by the two calculation methods (original and modified) are very similar, though in fact the spanwise distribution of C_{D1} is very different in the two calculations. The agreement with experiment is not very good for wing AF/1, the actual drag being higher than the estimated drag. For wing AF/5 the two calculation methods give the same answer, the spanwise distribution of C_{D1} being similar in both. The agreement with experiment is good. All that this indicates, however, is that with small aspect ratio wings the near-elliptic spanwise loading is not sensitive to quite large changes in the calculation method.

In Figs.12 and 13 the total tangential force \bar{c}_{T} is plotted against \bar{c}_{N}^{2} , the square of the total normal force, for the same two wings AF/1 and AF/5. The experimental $\bar{c}_{T} \vee \bar{c}_{N}^{2}$ curve does not pass through the origin because of the effect of viscosity on the zero lift pressure distribution. Thus only the experimental and calculated slopes near zero lift are comparable. As shown in Ref.1 $C_T/C_N^2 = -\frac{1}{a}$ where these are local values at any spanwise position, and so the ratio $\overline{C}_T/\overline{C}_N^2$ should define an average value of a for the whole wing. In the original Küchemann loading method a is constant over the wing and the $C_T \vee C_N^2$ line corresponding to this theoretical value is drawn in Figs.12 and 13. In the modified method, a varies over the span and $\frac{1}{a}$ lies in the range indicated by the shaded area.

The comparisons of Figs.10-13 show that the main trend in the initial slopes is correctly represented; they favour the original version of the calculation method rather than the modified version, so that despite the evidence of Table 18 and Fig.4 their relative merits are by no means established. Further analysis would seem desirable, especially of the non-linear effects.

3.3 Pressure measurements with lift

This section deals only with local force and moment coefficients obtained by integrating the pressure distributions at the centre sections of wings of the AP series. No analysis has so far been undertaken of the detailed pressure distributions except at zero lift as described in Section 3.1. Figs.14-21 for wings AP/1 and AP/5 correspond to Figs.6-13 for the AF series. The two lift slopes in Figs.14 and 15 differ less than the total lift slopes in Figs.6 and 7, since the two spanwise loading curves are most nearly the same at the centre section. Agreement with experiment over the linear range is good. Although it has not been done in the analysis so far, it is possible to estimate the spanwise distribution of non-linear lift as described in Ref.1.

The local pitching moments are plotted in Figs.16 and 17. The experimental soatter for wing AP/1 is considerable and points have been plotted for both attitudes. The calculated curve is in fair agreement with the mean experimental points. For AP/5, however, agreement between experiment and calculation is less good. As far as the centre section pitching moment is concerned there is no difference between the original and modified calculation methods.

The local drag due to lift and boundary layer in Figs.18 and 19 shows greater differences between the two calculation methods than the total coefficient shown in Figs.10 and 11. In both cases the original method gives better agreement with experiment. In contrast with the total force measurements, however, the agreement is better for the higher aspect ratio than for the lower one.

Finally in this section, the local values of C_T and C_N^2 are plotted against each other in Figs.20 and 21, and the theoretical estimates of the slope

251

(the same by both methods) are in fair agreement with the linear part of the experimental curve.

4 RESULTS AND DISCUSSION: WINGS WITH CAMBERED SECTIONS

The pressure measurements at the centre section of the wings of the BP series are tabulated in Tables 19 to 24, and the local force and moment coefficients in Tables 25 to 30. The lift, drag and pitching moment coefficients from the measurements on the balance models of the BF and CF series are given in Tables 31 to 40, and the transition observations in Tables 41 and 42.

No analysis has been done of the pressure plotting results for the BP series other than finding the local zero lift angle at the centre line, and this section contains only a very brief discussion of the balance measurements of the two cambered series. In Figs.22 and 23 the total lift coefficient $\overline{c}_{\rm L}$ is plotted over a small range of incidence for all 10 wings in order to determine the zero lift angle. Experimental scatter makes this derivation rather uncertain. Assuming that the value of the parameter n at the centre section of a wing of given aspect ratio does not depend on the camber, and that this value represents the behaviour of the whole wing, the zero-lift angle of each wing can be estimated from the charts of Ref.5*. This estimate must be regarded as highly tentative, as there is no self-evident connection between the two problems considered. Table 43 gives the calculated and experimental values of the zero lift angle, $a_{\rm o}$, for the wings of the BF and CF series. The agreement is good for the higher aspect ratios, but whereas the theory predicts a steady increase in the magnitude of $a_{\rm o}$ as the aspect ratio decreases the experiments show the opposite tendency.

Similarly in Fig.24 the local normal force coefficients at the centre sections of the BP series are plotted against a and the experimental and calculated zero lift angles are shown in Table 44.

There is a more rigorous treatment of thin cambered wings of small aspect ratio by Weber⁴. This has as yet not been applied to the present shapes of camber line. The variation with aspect ratio of the zero lift angles is less than would be expected from the results quoted by Weber⁴ for other camber lines.

Finally, in Figs.25-28 the total pitching moment coefficients are shown for the extreme aspect ratios of the BF and CF series. The calculated variation of \tilde{C}_{m} with \tilde{C}_{L} is also plotted, again on the assumption that n has the same value

*In these charts the parameter $\lambda \phi$ is related to n by the equation

$$n = \frac{1}{2} \left(1 - \frac{\lambda \varphi}{\pi/2} \right)$$

as on an uncambered wing. In all cases \vec{C}_{mo} is overestimated, but the slopes $\partial \vec{C}_{m} / \partial \vec{C}_{t}$ are in good agreement over the linear range.

5 FURTHER WORK

Considerable analysis of the pressure distributions is possible, particularly as regards the verification for small aspect ratios of approximations which are justifiable in calculations of high aspect ratio wings, and the methods of combining incidence thickness and camber terms in the formulae. Non-linear effects also require further consideration.

The modification to the Küchemann method for calculating the spanwise load distribution, which appears justified by comparison with electrolytic tank results, is by no means justified by the results of the present series of tests and further evidence on this point is needed.

16

Appendix A MODIFICATION_TO KUCHEMANN LOADING METHOD

In the original Küchemann method for calculating spanwise load distribution the aspect ratio is reflected in a parameter in which governs the shape of the chordwise load distribution, and n is assumed to be constant over the whole span for an unswept wing. It is defined by

$$n = 1 - \frac{1}{2 \left[1 + \left(\frac{a_0}{\pi A}\right)^2\right]^{1/4}},$$

where a is the two-dimensional lift slope of the section and A is the aspect ratio.

In the modified method, n at any spanwise position is obtained as the mean value of two parameters n' and n" which are based on the proximity of the section to the two tips. For example, on a rectangular wing of aspect ratio 4 the section half-way out along the span is assumed to behave in relation to the nearer tip as though it were the centre section of a wing of aspect ratio 2: and in relation to the further tip as though it were the centre section of a wing of a wing of aspect ratio 6. These two aspect ratios define n' and n" and the resultant $n = \frac{n^{1} + n^{n}}{2}$.

This modification causes n to increase towards the tips which is in qualitative agreement with observed effects in the absence of a marked tip vortex sheet. The sectional lift slope will also vary over the span of a rectangular wing. The value of n at the centre section remains as in the original method.

Appendix B

APPROXIMATIONS FOR THE HEIGHT OF A TIP VORTEX SHEET

Approximation 1:-
$$\frac{h}{b} = \frac{a}{2} \frac{c_T}{c} \frac{1}{A}$$
.
Approximation 2:- $\frac{h}{b} = \frac{a - a_s}{2} \frac{c_T}{c} \frac{1}{A}$
Approximation 3:- $\frac{h}{b} = a \frac{a - a_s}{a_m - a_s} \frac{c_T}{c} \frac{1}{A}$

where h = height of vortex sheet

b = span

 $c_{\eta} = tip chord$

c = mean chord

a = incidence

 $a_s =$ incidence at which separation starts from the tip

 α_m = incidence at which separation starts from the leading edge.

 $\frac{h}{b}$ is related to a factor k (see Ref.9) which then enables the non-linear lift to be determined from equation (39) of Ref.1.

Table 1

SUMMARY OF WINGS TESTED

	В	alance models		Pressur	e models
Aspect ratio	Symmetrical section	m = 0.5 mean line, 2% camber	m = 0.8 mean line, 1% camber	Symmetrical section	m = 0.5 mean line, 2% camber
00	-	-	-	AP/0 (Ref.6)	BP/0
4.0	AF/1	BF/1*	CF/1	AP/1 [¢]	BP/1
2.5	AF/2	BF/2 ⁺	CF/2	AP/2 [¢]	BP/2 [‡]
1.4	AF/3	BF/3	CF/3	AP/3	BP/3
1.0	AF/4	BF/4	CF/4	AP/4	BP/4
0.5	AF/5	BF/5	CF/5	AP/5	BP/5

- * Tested only at $R = 1.6 \times 10^6$, normal attitude.
- + Tested only in normal attitude.

= No test at
$$R = 3.2 \times 10^6$$
, inverted attitude.

 ϕ Tested only at R = 1.6 x 10⁶.

đ

.

Т

		Y -	T			1	ſ	1						
h∠z*0=	≤02*0=	62.0%	820°0	780*0	080+0	110.0	690°0	790*0	†790* 0	190*0	د•0 4	†50°0	9 50* 0	056*0
971-0-	760*0-	601°0	901*0	£60°0	920*0	£50°0	250*0	0.000	0*0S6	£10*0	†700*0	10000	600°0-	058°0
17000-	800 0-	671*0	051.0	621.0	0*115	£90*0	0*025	070*0	0°058	£10*0	900*0-	610*0-	050-0-	052.0
710-0-	£10*0	251-0	051.0	0*150	680°0	6£0*0	600*0	520 0-	-0*050	£70*0+	790°0-	080°0#	201-0-	0 59* 0
1780°0-	7€0*0−	901*0	660°0	1750°0	100*0	750-0-	101 *0-	-0+155	521.0-	-0*503	-0*552	-0*551	1/2*0-	00S*0
550°0	890°0	£81 °0	521*0	211-0	27000	££0*0-	~0*0 3 5	991*0-	661*0-	-0*535	-0-572	912*0=	055.0-	007*0
0110	0*155	0*539	0*550	651.0	\$90* 0	££0°0-	711.0-	-0*509	-0*529	-0°200	052.0-	£07°0-	5740-	005.00
0*525	SS2.0	782.0	125-0	0*577	821.0	850*0	† 50*0∞	941*0-	-0*532	-0*56	295°0-	621*0-	875*0-	0*500
1170	6L7°0	0* 632	0*950	1150	185*0	0*521	120.0	701 0-	961*0-	-0*583	£6£*0-	667*0-	L69°0-	001*0
2950	695*0	SEL O	522.0	719*0	£87*0	٤!£' 0	271*0	920*0-	191*0-	-0*562	165.0-	915*0-	872°0-	520°0
269°0	969°0	048.0	298 •0	852*0	0£9*0	ረካካ*0	0*560	0*053	L60*0-	-0*527	-0-372	155.0-	L£8*0=	0 € 0*0
0*832	958-0	186*0	116.0	806*0	L6L*0	£19*0	017*0	551.0	••0*050	841*0-	L95•0=	£25°0-	996°0-	0£0°0
046*0	\$96* 0	056*0	L\$6*0	£66*0	696°0	LL80	859*0	0*362	£81*0	600*0+	-0*533	915*0-	070*1-	≤10 *0
826*0	856*0	0*354	115.0	LOL*0	126*0	000°L	156.0	789°0	767*0	SLZ*0	-0*051	685.0-	-1*125	≤00 *0
	I	I	1	1	1	900	1 1.111 <i>0</i> .1040	1						
	1	1	1	1	t		julig uv=v	1	T 1	l	1 1	1	ı 1	l
														0000
-	-									•		-		0560
222.0-	287 0-	020-0-	720-0-	0.020	910-0-	200-0-	900-0	910-0	120-0	520-0	070-0	750-0	920-0	058-0
755"0-	555-0-	601-0-	001*0=	501-0-	280-0-	990-0-	790-0-	550-0=	-0-022	600-0-	600-0	010-0	טיטאר	052-0
	-									-			1000	099-0
755-0-	£59*0=	517-0-	617-0-	005-0-	52F_0=	-0-206	252-0-	00210	902-0-	821-0-	27100	111°0*	290-0-	009*0
175-0-	089*0*	825-0-	185"0-		827-0-	807-0-	21/2 000	901-0-	992-0-	052-0	201-0-	ηsι-0=	180-0	00770
025'0	009 0	918-0-	118-0-	OzL U	599	295 0	081 0	201 0	81/2-0-	002-0-	196°0-	000	10010	002 0
615-0-	902-0-	550"1"	610-1	000	908°0	699 0	0/2 0	Control		902.0	966 0	931 0	250.04	006 0
£05-0-	270-0-	£05"3=	787-1-		810-1-	008-0-	029-0=	Comeo-	09210=	996*0=	121-0-	990.0		
0-205	999°0=	282-3-	192*1=		12C*1=	50010		30(*0-	7000	550*0*	271°0=	250.0	591-0	920-0
667-0-	19950	921-0	811-0	908 1-			918 0-		00000	2001-0-	580 0-	0,050	(LC U	050 0
619-0	889 0	258-0-	962 0		YLL V	355 1	020-0-	1150	892.0	991 0	600.0	921-0	10000	CLO U
855-0-	269-0-	802-2-	219-2-	268 0		785 1-	860.0	C2C10	1920	100-0-	981.0	285-0	299-0	
857.00	509-0	570-9-	1718"9=	G1+C-	501 12 -		960-1-	CCO+O	10690	01521	90' 1'0	202°0	920-0	500 0
COL 0-	002 0-	100 9	1 098 ·F	3.18 2-	102 10	0910-	092 0	338 0	190 0	200 1	1.120.0	218 0	1720	0
		1				906	ipper surf	ถ	•					
		 	<u> </u>	<u> </u>	+	<u> </u>	 	<u> </u>	┼───┤		<u> </u>			
0 ^{6•51}	0 ^{0•51}	13•52 ₀	o ^{0•} ٤١	0 ⁶ 01	°7•8	^{6•9}	o ^{52•7}	5*5 ₀	₀ ۴•۲	°0	0 ^{L*L-}	-5*5 ₀	₀∽€€**7=	x/c a
L		1				+		1						

Table 2 (contd)

Wing AP/1, inverted attitude

с_р

 $V = 125 \text{ ft/sec}, R = 1.6 \text{ x } 10^6$

a X/C	4•7°	2 . 5°	1.45°	0 .35 °	-0.75°	-1.850	-4.0°	6.2 ⁰	-8.4°	-10.55°	-11.65°	-12.75°	-13.4°	-14•5°	-14•85°
	,			[··· · ·]			Upper Su	rface		1	1			ļ — — ,	[
0	0.331	0.830	0.964	0,995	0.962	0.851	0,190	-0.550	=1-8/5	=3.576		-5.1.76	-6.261	-0 1 01	-0.219
0.005	-1.127	-0.383	-0.035	0.253	0.485	0.675	0.925	0.995	0.9/2	0.769	0.552	0.116	0.28/	-0.405	0.978
0.015	-1.040	-0.508	-0.246	-0.023	0.176	0.361	0.653	0.854	0.969	1.001	0.977	0.957	0.939	0,000	0.956
0.030	-0.954	-0,556	-0.323	-0,170	-0.006	0,145	0.420	0.627	0.799	0,909	0.953	0.969	0.993	0.839	0.822
0.050	-0,843	-0.540	-0.381	-0,229	-0,099	0,023	0.253	0.369	0.623	0.761	0.822	0.863	0.893	0.699	0.679
0.075	-0.759	-0.517	-0.390	-0,268	-0,162	-0,055	0,148	0.320	0.481	0.617	0.690	0.733	0.762	0.57	0.559
0.100	-0,688	-0.501	-0.390	-0,287	-0.191	-0,100	0.084	0.236	0.382	0.517	0.585	0.631	0.660	0.484	0.473
0,200	-0,576	-0,457	-0,384	-0.314	-0,247	-0.194	-0.061	0.050	0.167	0,278	0.337	0.377	0.405	0.261	0.247
0,300	-0.514	-0.431	-0.379	-0.321	-0,277	-0.230	-0.131	-0.051	0.048	0.141	0.191	0.233	0,256	0.116	0.101
0.400	-0.375	-0.339	-0,294	-0.255	-0,221	-0.194	-0.108	-0,048	0.033	0,103	0.146	0.178	0,195	0.064	0.050
0.500	-0_ 289	-0.234	-0_23 7	-0,201	-0.172	-0.150	-0.085	-0.036	0.024	0,079	0.121	0.142	0,158	0,031	0,007
0.650	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-
0.750	-0.085	-0.066	-0.049	-0_038	-0,022	-0.009	0	0.019	0.059	0.087	0.096	0,121	0,127	-0.036	-0.077
0.850	=0,027	-0,016	-0,006	0,001	0,008	0.017	C.047	0.031	0.059	0.081	0.095	0,106	0.107	-0,087	-0.142
0.950	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
├ ───┤															
		· ·	•		'	l I	Lower Su	rface	ł	ł	1	1	6		
0.005	0.935	0.699	0,503	0,258	-0.021	-0.363	-1-133	-2,096	-3-124	-4.580	-5.741	-6-570	-7-395	-0.77	-0.504
0.015	0,656	0.381	0.193	-0.020	-0.236	-0.498	-1.035	=1.676	-2.750	-2.890	-3.//58	-3.778		-0.713	-0.508
0.030	0.408	0.148	-0,016	-0.186	-0.360	-0.563	-0.963	-1.662	-1.834	-2.415	-2,670	-2,885	-3,100	-0.695	=0.501
0.050	0,258	0.040	-0.095	-0.232	-0.375	-0.532	-0.829	-1.140	-1-510	-1.870	-2.088	-2.223	-2.314	-0.678	0.1.80
0.075	0.145	-0.047	-0.157	-0,268	-0.382	-0.512	-0.745	-0.981	-1.267	-1.540	-1.701	-1.794	~1.886	-0.664	-0.480
0.100	0.071	-0.094	-0.194	-0,292	-0.390	-C.498	-0,693	-0.905	-1.126	-1.351	=1.474	-1.554	-1.630	-0.664	-0-482
0.200	-0.049	-0.167	-0,229	-0.294	-0.359	-0.435	-0.523	-0,670	-0,801	-0,928	-1.080	-1.016	-1.083	-0,682	-0.498
0,300	-0,116	-0,208	-0,251	-0,299	-0.353	-0.403	-0,476	-0.581	-0.672	-0.751	-0.871	-0,808	-0.840	-0.689	-0.504
0.400	-0.095	-0,162	-0,198	-0,237	-0,267	-0.315	-0.349	-0.429	-0.487	-0.548	-0.572	-0,587	-0.583	-0.687	-0.504
0.500	-0.099	-0.147	=0.174	-0,205	-0,231	-0,225	-0.274	-0.319	-0.351	-0.373	-0.382	-0.386	-0.390	-0.635	-0,504
0.650	0.002	-0, 030	-0.023	-0.045	-0.066	-0.089	-0,114	-0,150	-0,178	-0,200	-0,209	-0.211	-0,221	-0,588	-0,508
0.750	0.043	0.035	0.021	0_001	-0.008	-0_026	-0,038	-0,072	-0_090	-0.104	-0.107	-0,110	-0.119	-0,529	-0.511
0.850	0,038	0.021	0.008	-0,001	-0,006	-0.019	-0.024	-0.045	-0,052	-0.059	-0.055	-0.054	-0.059	-0,475	-0.505
0.950	0.047	0.045	0.040	0,038	0,032	0.032	0_035	0.024	0,021	0,022	0.024	0,021	0.015	-0,397	-0.459
													_		

.

....

10000-0

24

at 112 1 1 1 100 1 1 1

....

.....

(Contd)	
Table 2	

Wing AP/1, normal attitude

°0 ¢

V = 125 ft/sec, R = 1.6 x 10⁶

	1				-2,2 ⁰ =1,1 ⁰
0		0	0	0 0	0 0 0
-1.013 -E.(6239	-0.021 -0.539	0.516 -0.021 -0.539	1.092 0.516 -0.021 -0.539
-0.834 -1.(6 . <u>1</u> 7	-0.012 -0.447	0.419 -0.012 -0.447	0.901 0.419 -0.012 -0.447
-0-649 -1-		-0.J48	0.012 -0.348	0.376 0.012 -0.348	0.689 0.376 0.012 -0.348
-0-525 -1.0		0 ,255	0,004 -0,255	0.287 0.004 -0.255	0.589 0.287 0.004 -0.255
1°0- 601°0-		0 •203	0,007 -0,203	0.244 0.007 -0.203	0.484 0.244 0.007 -0.203
-0- 652°0-		0.164	0.017 -0.164	0.222 0.017 -0.164	0.434 0.222 0.017 -0.164
-0.244 -0.		ŀ	0,003	0.141 0.003 -	0.283 0.141 0.003 -
0°188		2000	0,092	0*097 0 1-0*092	0.203 0.097 0 -0.092
0-1-0-		-0°067	0*005 -0*067	0.075 0.002 -0.067	0.162 0.075 0.002 -0.067
-0-04B	_	-0-0 <u>3</u> 3	0.05 -0.033	0.078 0.025 -0.033	0.110 0.078 0.025 -0.033
1	_	1	1	1 	1
-0-072 -0-		50.0	-0.022 -0.050	0.015 -0.022 -0.050	0.049 0.015 -0.022 -0.050
-0-014		60°9	0.02	0.036 0.022 -0.003	0.053 0.036 0.022 -0.003
1	_	t	•	* * *	1 1 1
410	۲ · ۲		0°00°		

	-14.85°	0	-1-482	-1-1404	1.33	-1.159	ef0 • 1 •		0. 715	6 605	-0.554	-0.511	1	12.0	-0. 363	1	
1.6 x 10 ⁶	-14.50	0	-1.168	-1,681	-1.663	-1.322	ES -	-1,238	-1.148	10.0	508°5	12.0	ı	-0,619	£61°0-	ı	
Bec, R =	-13.40	0	-7.679	ት ይ	1.093	-3.27	2.64B	062°3	-1.488	-1-096	84. °	-0.548	ł	-0.246	0.166	ł	
• 125 tul	-12.75°	0	-6.986	++-735	-3.854	-3.086	-2.527	ار. 195	-1.395	-1.041	5°-9	-0-528	ł	0.231	0,160	ŧ	
Å	-11-65 ⁰	0	-6°293		-3.632	2.910	-2.391	2.059	-1.417	-1-062	6. 718	0.503	•	-0-20J	0° 150	1	
	-10*55 ⁰	0	87. Y	-3.891	10X °	ନ୍ ଜୁଣ୍ଡ	e, 157	-1-868	-1+206	268 9	5.0	• 152	•	-0.191	0+1+0	•	
	-8.4 ⁰	0	-11-066	-3.719	- 2 . 633	e.133	-1.748	=1. 508	98 9	0~720	=0 <u>*5</u> 20	55.0	•	=0, 149	6. 11	1	
, e	-6 , 2 ⁰	0	-3,091	-2°530	କ ଜୁନ ଜୁନ	-1.509	-1.301	-1-141	-0.720	-0.530		-0.283	1	5.0	-0-076	1	
Δ0	-4+• 00	0	-6.058	-1.688	-1.383	=1.082	-0.893	-0-77	-0,162	-0.315	172*0-	-0.189	•	-0-038	•0°01	1	
	-1.85°	0	-1.038	-0.859	-0.708	-0.555	-0.457		-0,241	121.0	-0,121	50.0	•	-0-017	=0°036	1	
	=0.75 °	0	-0.506	-0.412	125.0	-0-276	82.0	-0.199	-0.112	-0°076	0.046	-0°059	I	0+014	-0-014	•	
	0°350	0	0,005	0,003	-0-016	00	0	50.0	0.020	20.0	0,018	10.0	t	6000	80	1	
- Second	1.45°	0	0.538	0°139	0.307	0,286	0.233	0.196	0 ° 155	0.128	960*0	0°03	ı	0*070	0.014	ŧ	
ted attitu	2.50	0	1.082	0.889	0.704	0.580	0-470	0.407	0.290	0°23	0.17	0.087	1	0.101	0.037	•	_
'1, invert	4.070	0	2.062	1.696	1.362	1.101	106-0	0.759	0.527	0.398	0.280	0.190	ł	0.128	0.065	l	
HING AP/	x/c d	0	0.005	0.015	0.030	0.050	0.075	0.100	0.200	0.300	0.100	0.500	0.650	0-750	0.850	0.950	

<u>[able]</u>

V = 125 [[/366, R = 1.6 x 10⁶

مى

Wing AP/S, normel stitude

1													
761*0-	671*0-	620*0	990°0	760° 0	780.0	880-0	£80°0	080*0	990 * 0	ħ20 * 0	890°0	890°0	056*0
720°0-	1770°0-	201*0	901*0	860*0	820°0	650°0	890*0	150*0	020*0	0*05ę	510*0	0	058.0
600°0	0*056	971*0	851.0	521*0	£80°0	990 0	270*0	850*0	0£0°0	610*0	900°0=	710*0-	0 57. 0
6 20 *0	240.0	171*0	551.0	801.0	ET0.0	170*0	110"0	610*0-	720*0-	950*0-	690°0-	060*0-	059*0
-	-	-	-	-	•	-	-	-	-	•	-	=	00 5°0
060*0	780*0	9/1.0	<i>LS</i> L*0	£01•0	S£0*0	-0*055	£70.0-	-0*157	881*0-	=0*528	-0*587	<u> ካደ*0-</u>	007°0
541.0	951.0	0.231	705.0	071*0	7 ⊆0* 0	510*0-	160*0-	191*0-	−0*53 ₽	-0*532	176.0-	044+0-	0 0⊊* 0
0*588	0*578	782.0	952*0	9L2*0	081.0	880.0	700°0-	860*0-	861.0-	-0-288	262°0 +	867 0-	0*500
105.0	787*0	159.0	†09 *0	905 0	88 2 •0	022.0	751.0	0	071°0-	-0*S80	157*0-	819*0-	001*0
109*0	872.0	072*0	012.0	719*0	£87*0	29£°0	0*512	890*0	760*0-	-0*559	£57°0-	159"0-	570.00
0*153	60L*0	168*0	0 ≤ 8°0	192*0	029*0	012+0	<u>ካካና*</u> 0	021.0	-0*050	-0*556	097*0-	91 / *0 -	0 ⊆ 0•0
L28.0	1778° 0	≤86 •0	696*0	516.0	<i>161</i> •0	0*682	00 ⊆ •0	605+0	S80.0	081.0-	<u>//</u> †*0-	118*0-	0£0•0
986*0	7/6*0	£56°0	126*0	500°L	726*0	1 706™0	571Z®0	755*0	90£ •0	750 .0 -	£85.0-	728 •0-	St0*0
<u></u>	£9 6 •0	605.0	<i>Lz</i> ħ*0	60L•0	916*0	\$66* 0	696 *0	858.0	LZ9*0	0*562	-0*513	£78°0−	500° 0
					-	808	ITUS Temo	า	,				•
	 	<u> </u>	<u> </u>	ļ	ļ	ļ		ļ	ļ	<u></u>	ļ	I	L
-	-	-	-	-	-	-	_	-	_	-	-	-	056*0
1917°0-	717*0-	010*0-	500°0	0*005	800°0	0	0*015	0*050	910*0	070*0	970*0	190*0	058.0
-0*235	66 7*0 =	LL0°0=	620*0-	690°0-	£90°0-	850°0-	970*0-	950*0-	-0°056	£00°0 -	£10*0	0*050	052.0
-	-	-	-	-	-	-	**	-	-	-	-	-	059*0
665*0=	199*0-	755-0-	-0*325	155.0-	112"0-	-0*589	-0*STP	-0"512	-0°502	991*0+	~0* 125	-0°035	0050
585.0-	SZ9*0-	015"0-	L05*0=	【27+0-	1910-	107*0-	-0*215	-0*590	-0*535	-0°553	-0*180	-0*151	007*0
655*0-	599*0-	-0*LtS	0£2.0-	789*0-	819*0-	=0"2_2_5	767°0-	6£71*0-	862-0-	-0*58J	-0*558	+0*12S	002.00
115*0-	179*0-	L86*0-	096*0-	948*0-	99L°0-	≤ 89*0-	695°0-	-0•148S	665*0-	6LZ*0-	-0*195	060°0-	0*500
287*0 -	765°0-	ηημ. ι	882-1-	+1*SIF	210°I=	098 0-	929*0-	-0-572	757*0-	0*576	511.0-	2£0*0	001.0
084+0-	685*0-	-1*155	£59°1-	【竹1*1-	-1*503	600*1-	608 °0-	-0*621	197*0-	0-242	-0•08S	160*0	570.0
-0*rls	5250-	511.5-	-5°050	S71-1-	154.1-	ἡ51°ι−	126*0=	849*0-	897*0-	-0°503	600°0 -	£61 °0	050*0
<u>5/</u> 7*0-	085*0-	169*2-	2715°2-	021.5	257.1-	-1*255	-1*080	<u>972</u> •0-	197*0-	SJ1.0-	660*0	175-0	050.0
787*0 *	785*0-	<u>92.5</u>	-3*280	-5*726	-5°069	808-1-	-1*556	<u>Ш</u> •0 -	162.0-	0	0*305	<u>£</u> 25*0	SI0 0
-0*765	-0*265	926.9-	-6•233	68 / •7-	-3*536	-5.285	_1_1_7	592.0-	-0*5252	0*521	719*0	£98*0	500 *0
-0*516	ST2.0-	928•7-	-t+320	170°£-	622-1-	108-0-	S40.0	£65°0	768. 0	000+1	†06 *0	195*0	0
			,	1	r	908	pper Sur	ņ	J	t	I	, }	:
	1									.			2/1
¹ ² •9°2	oS.61	01"51	o ^{ŋ•ŋ} ፣	12•350	10"520	051-8	o ⁵⁰ 9	ο ^{0•η}	2°120	°0050	-S.05°	-رت ^ي 1 م	D

С_р

x/c a	4.55°	2.45°	0•35°	-1. 7°	-3.8°	-5.9°	-8.0 ⁰	-10.05°	-12,15 ⁰	-14.20	-15.25°	-16 . 1 ⁰	-17.45°
	T		1		I.		[]	Г			1	1
		•				Upp	er Surfac						
	0.577	0.007	. 027	0.005	0.577	0.015	-0.804	-2 032	-3 646		- 660	-0 106	-0.256
0.005	0.0//	0.907	0.273	0.617	0.949	0.000	-U-091	-2.052	0.71.6	0.1/75	0 306	0.060	0.972
0.015	-0.921	-0.1.01	-0.011	0.0015	0.559	0.760	0.00/	0.078	1 000	0.079	0.00	0.972	0.975
0.015	-0.761	-0.40	-0.140	0 101	0.346	0.517	0 700	0.926	0.015	0.978	0.940	0.895	0.855
	-0.600	-0 152	-0.205	-0.013	0,102	0 362	0.521	0.61.0	0 763	0.857	0.880	0.702	0.712
	-0.630	-0.452	-0.209	-0.085	0.097	0.211	0.378	0.504	0.618	0.718	0.760	0.582	0.591
0.100	-0 570	-0.1.35	-0.255	-0.117	0.030	0.160	0.203	0.143	0.519	0.621	0.663	0.1.91	0.509
0.200	-0.1.80		-0.201	-0.205	-0.100	0.009	0.001	0.18/	0.272	0.355	0.396	0.271	0.278
0.300	-0.407	=0.387	-0.305	-0.266	=0.169	-0.090	-0.025	0.050	0.124	0.198	0.229	0.124	0,129
0.100	-0.1.22	-0.303	-0.210	-0.203	=0.1/5	=0.097	-0.036	0.021	0.103	0.138	0.162	0.060	0_061
0.500	-0.213	=0.225	=0,181	-0.167	=0.105	-0.065	-0.001	0.025	0,113	0,119	0,137	0.040	0-031
0.650								-	-	-		-	-
0.750	-0-035	-0.040	=0-011	0.004	0	0-014	0-041	0-064	0,098	0.112	0.120	-0.005	-0.033
0-850	0-017	0.010	0.029	0.032	0.048	0.035	0.046	0.068	0.098	0.097	0.101	-0.052	-0.089
0.950	-	-		-		-		-		•		-	-
										1			
	1	i		1		1			ļ	1		1	Т
						Low	er Surface	•					
0.005	0.885	0.625	0.273	-0-222	-0.827	-1.575	-2-374	-3-228	-4-142	-6-174	-7-024	-0_639	-0.438
0.015	0.585	0.304	-0.003	-0.388	-0.822	-1.321	+1.87 /⊥	-2.637	-2.843	-3-572	-3,920	-0-594	-0.436
0.030	0.337	0.084	-0.169	-0.472	-0,798	-1-171	-1-596	-1.869	-2.302	-2.712	-2.916	-0.581	-0.434
0.050	0,205	-0.016	-0.212	-0-455	-0.705	-0.984	-1.191	-1.513	-1-803	-2,107	-2.239	-0.570	-0.427
0.075	0.096	-0.088	-0.250	-0_448	-0.638	-0.856	-1.034	-1.259	-1-471	-1.691	-1.791	-0,573	-0.431
0,100	0.032	-0.131	-0,274	-0.446	-0.604	-0.756	-0.935	-1.108	-1.276	-1-454	-1.534	-0.592	-0.436
0.200	-0.075	-0,188	-0.274	-0.386	-0.485	-0.557	-0,658	-0.766	-0.856	-0.947	-0,991	-0.611	-0.471
0.300	-0,128	-0,220	-0,276	-0,365	-0,425	-0.497	-0,557	-0,619	-0.678	-0.731	-0.754	-0,668	-0.504
0,400	-0.100	-0.174	-0,214	-0,279	-0,298	-0.363	-0.404	-0.443	-0.483	-0.517	-0.526	-0.664	-0.532
0,500	-0.061	-0,119	-0,152	-0,171	-0,210	-0,247	-0,278	-0.311	-0,337	-0.354	-0.359	-0,629	-0.550
0.650	0.007	-0.021	-0,028	-0.064	-0,081	-0.107	-0.124	-0.145	-0.154	-0.164	-0.168	-0.559	-0.553
0.750	0.076	0.041	0.029	0.005	-0,009	-0,030	-0.043	-0.054	-0.063	-0.070	-0_078	-0,492	-0.529
0.850	0.064	0.027	0.029	0,007	0	=0,008	-0.012	-0.027	-0.027	-0,026	=0.033	=0,424	-0.497
0,950	0.089	0,070	0,069	0.059	0,060	0.059	0.055	0.047	0.045	0,046	0.030	-0,316	-0.395
l		1			ł]		I	<u> </u>	l	<u> </u>	1	1

Table 3 (Contd)

Wing AP/2, normal attitude

$V = 125 \ tt/sec, R = 1.6 \ x \ 10^6$

1/C a	-4+1°	~2.05 °	0.05 °	2 .15 °	4 •0 ⁰	6 .05 0	8 . 1 5°	10 .25 °	12 .35 °	14+4 ⁰	15.1°	16•5°	17 . 65 ⁰
0 0.005 0.015 0.030 0.050 0.075 0.100 0.200 0.300 0.400 0.500	0 1.710 1.410 1.152 0.909 0.742 0.655 0.408 0.288 0.193	0 0,827 0,685 0,576 0,459 0,371 0,336 0,201 0,143 0,107	0 0.009 0.027 0.038 0.017 0.017 0.017 0.031 0.009 0.008 0.005	0 -0.852 -0.699 -0.543 -0.438 -0.357 -0.294 -0.201 -0.144 -0.104	0 -1.623 -1.331 -1.054 -0.848 -0.689 -0.572 -0.384 -0.278 -0.163	0 -2.396 -1.968 -1.580 -1.265 -1.024 -0.813 -0.565 -0.403 -0.269	0 -3.280 -2.712 -2.204 -1.664 -1.376 -1.130 -0.773 -0.557 -0.379	0 -4.152 -3.043 -2.550 -2.054 -1.686 -1.405 -0.946 -0.672 -0.472	0 -5.498 -3.731 -3.085 -2.504 -2.061 -1.720 -1.152 -0.824 -0.580	0 -6.649 -4.251 -3.511 -2.870 -2.363 -1.992 -1.316 -0.937 -0.664	0 -7.045 -4.718 -3.676 -3.004 -2.462 -2.075 -1.374 -0.973 -0.686	0 -1.555 -1.558 -1.424 -1.284 -1.167 -1.078 -0.919 -0.801 -0.759	0 -1.466 -1.470 -1.332 -1.195 -1.081 -0.988 -0.799 -0.701 -0.675 -
0.650 0.750 0.850 0.950	- 0.034 0.061 -	- 0.019 0.031	-0,022 9,014	-0.059 -0.046	-0.094 -0.031	-0.093 -0.056 -	-0,124 -0,059	- -0,146 -0,079 -	-0,194 -0,096	- -0.217 -0.111 -	-0.223 -0.117		-0.541 -0.390 -

Wing AP/2, inverted attitude

1

۵c

V = 125 ft/sec, R = 1.6 x 10⁶

x/c a	4•55°	2 . 45°	0 •3 5°	-1. 7°	-3.8 °	-5. 9°	-8.0°	-9.05°	-12.15°	-1 4•2°	-15.25 °	-16.1°	-1 7.45°
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.015	1.406	0.705	0.011	-0.672	-1.380	-2.081	-2,778	-3.615	-3.843	-4.550	-4.866	=1.566	-1.411
0.050	0.895	0.136	-0,007	-0.442	-0.897	=1.346	-1.712 -1.412	-2.162	-2.566	-2,958	-3.128 -2.551	=1.272	-1.139
0,100	0.611	0.304	-0,009	-0.329	-0.634	-0.916 -0.566	-1,-228 -0,-749	-1.521	-1.128	-2.075	-2.197	-1.086 -0.882	-0.945
0.300	0.329	0.167	0.029	-0.119	-0.256	-0.409	-0.532	-0.669 -0.464	-0.802	-0.929	-0.983	-0.792	-0.633
0.500	0.182	0.106	0.029	-0.024	-0.105	-0.182	-0.254	-0.336	-0.450	-0.473	-0.496	-0,669	-0.581
0.750 0.850	0.111 0.047	0.081 0.017	0.040 0	0_001 =0_025	-0.009 -0.048	-0.044 -0.043	-0,084 -0,058	-0.118	-0.161	-0.182	-0.198	-0.487 -0.372	-0.496 -0.407
0.950	-	-	-	-		-	-	-	-	-	•	-	•

25

<u>Table 4</u>

Wing AP/3, normal attitude

ပီ

V = 250 ft/sec; R = 3.2 x 10⁶

0 				•	0.3	<u>.</u>	(⁴)		1.4	, † * •9	8 . 4		<u>;</u>)))	
Ŏ							⁵	per sur	tace							
	-781 0.8	° 106	656	166-0	1.000	1*000	0.963	0.886	0°-760	0.409	-0*075	-0-678	-1.530	-2-440	82 Tre-	-t-
<u>ک</u> م	•73 0•6	2 2 2	556	0-120	0°269	0.107	60° 0	8.9	-0.535	520-1-	-1.612	•	1	1	1	I
15 0.	.466 0.3	0' 295	T T T	0.139	0.011	0.120	-0-271	021-0-	-0-595	-0-958	-1-332	-1.625	-2.070	-2.512	-2.982	-3.219
ہ ج	228 0.1	0 62	- 8110	-0-046	-0.149	-0-253	-0.367	-0-481	-0-611	-0-873	-1-158	-1.396	-1.709	-2,008	-2.309	-2+457
5 20	102 0.0	9 80 80	- 050	-0.126	-0.208	-0-274	-0-380	-0-166	-0.565	9 9	-0-893	-1-103	-1.324	-1.531	-1-70	-1-846
2 2	000	9 कू	.118 -	0.173	-0-247	-0.311	-0-38L	6777-0-	-0.528	-0.651	-0.797	516°0-	-1.108	-1.259	11411	1-487
9 8	-0-050	े ह	- 157 -	0.202	192.0-	-0.319	10.37	50 P	9614-0-	-0-618	T33		62.6-0-	-1.098	-1-218	-1-272
9 8 8	151 -0-1	85 6	8	0.251	-0.28 <u>t</u>	-0.318	-0.350	0 •382	-0-126	167-0-	-0.553	-0.615	-0.681	012.0-	-0-798	-0-826
์ 8	203 -0.2	8	245 -	-0.262	-0.288	115.0-	-0.332	-0.319	-0.341	69£.°0	921-0-	Sell-O-	-0-502	-0-545	-0-570	-0.586
9 8	.161 -0.1	9 7 7	- 198 -	0.206	-0.227	112.0	-0.218	-0-234	-0-254	-0-281	70%-0 -	-0.330	125.01	-0-37	-0-396	
9 8	124 0-1	9 5 5	- 72 -		-0.149	918	1.0	6.1.0	-0-191	-0.207	5°5	12.0-	-0.246	657 °	0.270	-0.274
<u>8</u>	•	•		\$	•	•	ŧ	1	•	•	•	ŧ	ı	8	•	ł
0 	000 0.0	9 5 5	98	0.003	0.008	2000	-0-01	-0-013	-0-017	0.020	8.0	980°0	80°0-	-0-033	-0-035	0 ,036
° 8	0.0 1100,	<u>ੇ</u> ਜੂਨੂ	020	17£0*0	0.031	0.030	0.030	0.031	0€0*0	0.030	0.032	0.031	0.031	0.032	0.032	0*031
ع	•	-		•	•	•	1	•	•	8	ł	•	1	1	•	•
				# .				OWEL SUI	face					1 1 1		
- <u>5</u>	•	-	-	 1	•	•			1	•		1-009	0*952	0.835	0.656	0.547
15	585 -0•L	37	- 162	0-154	-0.019	0.101	0.195	0.345	0.453	0.642	6°-73	0.903	0 • 978	1-01	1.010	1.005
์ ค ค	·615 -0-5	9 50	- 395	0.280	-0-178	198°0	120-0	0.123	0.218	0.395	0.531	0.678	0.733	0.879	1416°0	0•967
: ጽ	•	•		ł	•		ł	•	6	1	I	ŧ	1	1	1	ı
<u>к</u>	1-0- 613	و ا	- 565	0-324	-0-261	0.212	-0-130	-0.066	0,002	0.129	0.231	0.353	0•465	0+559	0.647	0.686
9 8	502 -0-4	- - - -	- 262	0.334	220	83. 9	-0-17	-0.116	-0-057	0.055	0.148	0.255	0.358	0"11"0	0.533	0.580
ง 8		9 19	- 6£5	-0.313	-0.281	-0.250	-0-213	-0.165	-0-140	-0-067	0.002	0*072	0.147	0.287	0.285	0.319
9 8	- <u>3</u> 06 -0-2	<u>6</u>	266	0,296	-0.283	-0.2K2	-0-235	0.156	-0-187	17:00	20°0	8	0.032	0.068	0.145	0.17
9 8	252 -0.2	ې ۲	- 83	0.212	-0-205	-0.193	9-1-9-	-0-157	-0-114	-0.112	-0-076	860*0	0*007	6 ¹⁰ 0	0•095	0-118
9 8	11-0- 9511	48 -0.	- 621.	0.124	-0.115	-0-108	-0-097	-0.092	120.0-	-0-051	-0-025	0•003	0•031	0.048	0,080	660°0
9 	0.8 -0.0	9 13	, ou 3 -	0.035	20.0	8	0.022	-0.016	600 ° 0	0,005	0.02	6£0*0	0•061	0.078	0•098	0-112
° 8	,019 0.0	ہ 8	120	0.027	620°0	0.030	0.035	6£0*0	0.043	150-0	0°065	0.080	960*0	0.110	0.119	0.129
° 8	0,11 0.01	tJ 0.	041	0.047	0•047	0,010	0.052	0.056	0.057	0.063	22000	0.082	†160°0	0.107	0.120	0.129
ै - 	,09.5 0.0	-0 96	36	0,098	260-0	0.169	660°0	101-0	0•101	0.101	0.106	0-110	0.115	0.121	0.131	0.128

Table 4 (Contd)

Сp

V = 250 ft/sec; R = 3.2 x 10⁶

Wing AP/3, inverted attitude

														• · · · · ·			
	и с	5•15 ⁰	4•15 ⁰	3 •15 2	2•1 ⁰	1•15 ⁰	0 .1 0	-0.9 ⁰	-1.95°	-2.95 ⁰	-5.0°	-7.0°	-9.05°	-11.050	-13•1°	-15•1°	-16.1°
								ι	lpper sui	face	·						
	0	0,706	0.839	0.933	0.985	0.882	0.997	0.975	0.925	0.821	0.498	0.022	-0.616	-1-414	-2.395	-3.494	-4.201
	0,005	-0.615	-0.385	-0,175	0,008	0,197	0.347	0.497	0.623	0,738	0.902	0.992	1.013	0.985	0.898	0.750	0.644
	0.015	-0.667	-0.500	-0.346	-0,209	-0,061	0.064	0•193	0.308	0,420	0.610	0.763	0.877	0.959	1.004	1.013	1.005
	0.030	-0.659	-0.533	-0.418	-0.313	-0-199	-0_099	0,005	0.102	0.199	0.372	0.523	0.652	0.769	0.861	0.929	0.957
	0,050	-0,604	-0.512	-0,423	-0.343	-0.255	-0.175	-0.090	-0.011	0.071	0.220	0.354	0.477	0.593	0.695	0.781	0.820
	0.075	-0,560	-0_489	-0.419	-0.364	-0.287	-0.222	-0.153	-0,088	-0.021	0.106	0.225	0.335	0.443	0.543	0.631	0.675
	0.100	-0.525	-0.466	-0.408	-0.365	-0.300	-0,-245	-0.187	-0-132	-0.076	0.035	0.139	0.238	0.338	0.431	0.516	0.560
	0,200	-0.447	-0-415	-0.373	-0,346	-0.312	-0.279	-0.243	-0,208	-0.171	-0.099	-0.029	0.043	0.118	0.190	0,260	0.297
	0,300	-0,366	-0.344	-0.339	-0,310	-0_280	-0.261	-0.239	-0.216	-0.194	-0.148	-0-103	-0_054	0.003	0.061	0.118	0.149
I	0 • 400	-0.275	-0.259	-0.241	-0.238	-0.223	-0.210	-0.194	-0.179	-0.161	-0.124	-0.087	-0.047	-0.009	0.026	0.071	0.095
1	0.500	-0.209	-0,201	-0.191	-0.187	-0,184	-0.170	-0.159	-0.151	-0.137	-0.111	-0.085	-0.055	-0.018	0.014	0.050	0_068
	0.650	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
I	0.750	-0,036	-0.036	-0.033	-0.034	-0.031	-0.029	-0.025	-0.021	-0.016	-0.006	0.004	0.016	0.035	0.046	0,066	0.075
ļ	0.850	0.009	0.008	0.007	0,005	0,006	0.005	0.005	0,006	0,006	0.007	0,006	0,006	0.009	0.007	0,006	800.0
l	0,950	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		_						L	.ower sui	face							
i	0.005 (- 1	1 - 1	-		- 1	-	í -	- 1	i – i	- 1					i - 1	-
l	0.015	0,490	0,389	0.292	0,183	-0.076	-0_085	-0.229	-0-373	-0-528	-0-876	-1-251	-1-649	-2-059	-2-503	-2-963	-3.264
l	0.030	0.248	0.159	0.077	-0+016	-0.107	-0.227	-0.339	-0.456	-0.573	-0.823	-1.097	-1.360	-1-646	-1-950	-2,229	-2.1.34
l	0.050	-	-	-	-	•	-	-	-	-	•	-	-	-	-	-	
I	0.075	0.022	-0.040	-0.096	-0.156	-0,228	-0,280	-0.357	-0.415	-0.493	-0_638	-0-775	-0-921	-1_080	-1-232	-1.388	-1-1.71
ł	0,100	-0.039	-0.096	-0.143	-0.194	-0.254	-0.306	-0.363	-0.421	-0.481	-0.597	-0.771	-0.827	-0.954	+1.071	-1.193	-1.256
l	0.200	-0.124	-0+146	-0.192	-0.227	-0.263	-0.297	-0.311	-0.343	-0.375	-0.437	-0.506	-0.567	-0.627	-0.689	-0.747	-0.780
I	0.300	-0.166	-0.152	-0.222	-0.247	-0.271	-0.294	-0.262	-0.283	-0.300	-0.344	-0.386	-0-427	-0.459	-0-497	-0.533	-0.553
Ì	0.400	-0.131	-0.147	-0.173	-0.192	-0.208	-0.219	-0.222	-0.233	-0.242	-0.271	-0.297	-0.321	-0.344	-0.360	-0.381	-0.393
l	0.500	-0.090	-0.088	-0.114	-0.103	-0.105	-0.122	-0.139	-0.148	-0.156	-0.175	-0.189	-0.205	-0.213	-0,228	-0.242	-0.252
ł	0.650	-0,003	-0,008	-0.009	-0.018	-0.026	-0.033	-0.038	-0.043	-0.045	-0.056	-0.064	-0.072	-0.074	-0.082	-0.091	-0,098
ļ	0.750	0.051	0.044 ·	0.044	0.037	0,030	0.026	0.023	0.018	0.019	0.011	0,005	-0.002	-0.003	-0,009	-0.017	-0.025
l	0.850	0.058	0,053	0.051	0.046	0,042	0.040	0.038	0.036	0.037	0.033	0.028	0.026	0.026	0.022	0.018	0.011
ł	0.950	0.087	0.079	0.082	0.077	0,076	0.074	0.076	0.073	0.077	0.075	0.073	0.075	0.073	0.072	0.066	0.058
r		•		-													

Wing AP/3, normal attitude

∆c_p

V = 250 ft/sec; R = 3.2 x 10⁶

V = 250 ft/sec; R = 3.2 x 10⁶

x/c a	-3.75°	-2.7°	-1.7 ⁰	-0.7°	0.3°	1•35 ⁰	2 . 35 ⁰	3.35°	4•35°	6ملو ⁰	8 . 4 ⁰	10•45 ⁰	12•5°	14•5 [°]	16•55 ⁰	1 7. 55 ⁰
0	0	0	a	0	0	0	0	0	0	0	0	0	0	0	0	0
0.005	-	-	-		-	-	-		-	-	-	-		-	-	-
0.015	1.051	0.799	0.548	0.293	0.030	-0,221	-0.466	-0.765	-1.048	-1.600	-2.105	-2.528	-3.048	-3.523	-3.992	-4.224
0.030	0.843	0.644	0.443	0.234	0.029	-0.172	-0.391	-0.604	-0.829	-1.268	-1.689	-2.074	-2.502	-2.887	-3.253	-3-424
0.050	-	-	-	-	-	-	- 1	-	-	+	-	-	-	-	-	-
0.075	0.525	0.399	0.275	0.145	0.014	-0.099	-0.254	-0.383	-0.530	-0.780	-1.028	-1.295	-1+573	-1.818	-2.058	-2.173
0,100	0.452	0,346	0.236	0.132	0.018	-0.090	-0.206	-0.316	-0.439	-0.673	-0.881	-1.106	-1.337	-1.538	-1.751	-1.852
0.200	0.243	0.176	0.119	0.062	-0.003	-0,068	-0.137	-0.217	-0.286	-0.424	-0.555	-0.687	-0.828	-1.027	-1.083	-1.145
0.300	0.103	0.063	0.021	0.034	-0,005	-0.049	-0.097	-0,163	-0,154	-0,255	-0.344	-0.436	-0.534	-0.633	-0.715	-0.761
0.400	0.091	0.064	0.031	0.006	-0.022	-0.051	-0.042	-0,077	-0.110	-0.172	-0.231	-0,292	-0.361	-0.426	-0.491	-0.522
0.500	0,032	0.017	0,005	-0.020	-0.034	-0.054	-0.074	-0.087	-0.114	-0.156	-0.196	-0.237	-0.277	-0.307	-0.350	-0.373
0.650	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
0.750	-0.013	-0.021	-0.027	-0,030	-0.037	-0.042	-0.046	-0.052	-0.060	-0.074	-0.087	-0,106	-0,125	-0.143	-0.154	-0.165
0.850	-0,007	-0.009	-0.011	-0.013	-0.016	-0.019	-0,022	-0.025	-0.027	-0.033	-0.040	-0.051	-0.063	-0.075	-0,088	-0.098
0.950	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-

Wing AP/3, inverted attitude

μc	5.15 ⁰	4-15 ⁰	3.15 ⁰	2.10	1.150	0.10	-0.9°	-1.95°	-2.95°	-5.0°	-7-0 ⁰	-9.05°	-11.050	-13.1°	-15.1°	-16.15 ⁰
0	0	0	0	0	0	0	0	o	0	o	o	0	o	0	0	0
0.005	-	-	-	-	-	+	-	-	-	-	-	-	-	-	•	-
0.015	1.157	0.889	0.638	0.392	-0.015	-0.149	-0.422	-0.681	-0.948	-1.486	-2.014	-2.526	-3.018	-3.507	-3.976	-4.269
0.030	0.907	0.692	0.495	0.297	0.092	-0.128	-0.344	-0,558	-0.772	-1.195	-1.620	-2.012	-2.415	-2.811	-3-158	-3.391
0.050	-	-	-	-	-	-	-	-	-	-	•	-	- 1	-	-	-
0.075	0.582	0.449	0.323	0.208	0.059	-0.058	-0.204	-0.327	-0.472	-0.744	-1.000	-1.256	-1.523	-1.775	-2.019	-2.146
0.100	0.486	0.370	0,265	0.171	0.046	-0,061	-0.176	-0.289	-0.405	-0.632	-0.910	-1.065	-1.292	-1.502	-1.709	-1.816
0,200	0.323	0.269	0.181	0.119	0.049	-C.018	-0.068	-0.135	-0.204	-0.338	-0.477	-0.610	-0.745	-0.879	-1.007	-1.077
0,300	0,200	0.192	0.117	0.063	0.009	-0.033	-0.023	-0.067	-0.106	-0.196	-0.283	-0.373	-0.462	-0.558	-0.651	-0.702
0.400	0.144	0.112	0.068	0.046	0.015	-0,009	-0,028	-0.054	-0.081	-0.147	-0.210	-0.274	-0.335	-0.386	-0.452	-0.488
0.500	0.119	0+113	0.077	0.084	0.079	0.048	0,020	0.003	-0.019	-0.062	-0.095	-0.150	-0.195	-0.242	-0.292	-0.320
0.650	-	-	-	-	-	-	-		-	-	-	-	-	-	- 1	•
0.750	0.087	0.080	0.077	0.071	0.061	0,055	0.048	0.039	0,035	0.017	0.001	-0,018	-0.038	-0.055	-0.083	-0.100
0.850	0.049	0.045	0.044	0.041	0.036	0.035	0.033	0.030	0.031	0.026	0.022	0.020	0.017	0.015	0.012	0.003
0 .950	-	-	-	-	•	•	•	-	-	-	-	-	-	-	-	-

∆c_p

Table 5

сp

Wing AP/4, normal attitude

x/c	-5.75°	-3.75°	-2.75°	-1.75°	-0.75°	0.3 ⁰	1.30	2.30	3.3°	4 . 3°	6 . 35 ⁰	10 .35⁰	14+4 ⁰	18.4 ⁰	20 . 45 °	21.45°
	1	1	I	1	1	1	1	1	1	-		1	1	1		1
							Upp	er Surfa	ce							
0	0.583	0.833	0.915	0.971	1.002	1.011	1.007	0.980	0.927	0_849	0.614	-0-185	-1-387	-3_032	-4-029	-4.566
0.005	0.817	0.732	0.642	0.539	0.418	0,285	0.144	-0.009	-0.179	-0.358	-0.757	-1.713	-3.022	-4.702	-1.810	-5.161
0.015	0,581	0.419	0.329	0.234	0,129	0.019	-0.094	-0.217	-0,342	-0.472	-0.754	-1.386	-1.936	-2.714	-3.131	-3.335
0.030	0.342	0.199	0.120	0.044	-0.044	-0.133	-0.220	-0.312	-0.410	-0.506	-0.713	-1.151	-1.535	-2.207	-2,288	2.414
0.050	0.193	0.071	0,006	-0.056	-0.125	-0,197	-0.264	-0.334	-0.408	-0.480	-0.632	-0.889	-1.210	-1.546	-1.725	-1.814
0.075	0.084	-0.017	-0.070	-0.120	-0.179	-0.233	-0.286	-0.341	-0.398	-0.453	-0.571	-0.775	-1.004	-1.242	-1.371	-1.436
0,100	0.017	-0.069	-0.114	-0.155	-0.203	-0,248	-0.293	-0.339	-0.383	-0,427	-0.517	-0.694	-0.869	-1.049	-1.145	-1.195
0.200	-0.106	-0.159	-0.187	-0.212	-0.239	-0,265	-0.291	-0.314	-0.340	-0.357	-0,403	-0.496	-0.577	-0,662	-0,709	-0.740
0 .300	-0.168	-0,202	-0,222	-0,236	-0,256	-0,270	-0,286	-0.302	-0.310	-0.298	-0.327	-0.378	-0.417	-0.459	-0.527	-0.502
0.400	-0.141	-0.164	-0.179	-0.187	-0,201	-0,212	-0,223	-0.205	-0,203	-0.212	-0.233	-0.264	-0,282	-0.310	-0.333	-0.341
0,500	-0,108	-0.125	-0.135	-0.142	-0.131	-0,126	-0.135	-0.142	-0.148	-0,152	-0.165	-0.180	-0,189	-0,206	-0,228	-0,234
0.650		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.050	0.005	0	-0,002	-0.002	-0.005	-0.005	-0.006	-0,006	-0,006	-0,006	-0.009	-0.011	-0.014	-0,028	-0.048	-0.054
0.050	0.000	0.035	0.055	0.056	0.054	0.037	0.056	0.036	0.037	0.037	0.037	0,037	0,038	0.027	0.009	0.005
0.920	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1		<u>}</u>	┢────			<u>.</u>		ļ		· · · ·				ļ	
							Low	er Surfa	ce							
0.005	1-0 808	-0 385	1_0_100		0 170	0.004	1 0 100		1000	0.000		ا مىم				1
0.015	-0.709	-0.511	-0.378	-0.217	-0.125	-0.005	0.103	0.200	0.309	0.10	0.070	1.010	0,958	0.721	0.520	0,411
0.030	-0.766	-0.556	-0.157	-0.359	0.265	-0.170		0.00	0.095	0.167	0 311	0 6 94	0,790	0.070	0.075	0.974
0.050	-0.100							0.004		0.10/	0.514	0,501	0./09	0.950	0.975	0.990
0.075	-0.573	-0.476	-0-420	-0-361	-0.308	-0-251	-0,199	-0.1/13	-0.088	=0.035	0.066	0.270	0.1.60	0.626	0.700	0.732
0.100	-0.536	-0. <u>1.11.</u>	-0.407	-0.361	-0-315	-0.268	-0.227	-0.178	-0.135	-0.088	-0.001	0.180	0.356	0.512	0.587	0.621
0.200	-0.392	-0.350	-0.327	-0.316	-0.293	-0.267	0.212	-0.216	-0.191	-0.156	-0.108	0.013	0.1/1	0.266	0.328	0.356
0.300	-0.323	-0.294	-0.283	-0.268	-0.284	-0.269	-0,256	-0.238	-0.220	-0.182	-0.167	-0.079	0.024	0.126	0.178	0.204
0.400	-0.233	-0.217	-0.210	-0,201	-0,207	-0,206	-0.197	-0.185	-0.173	-0.150	-0.138	-0.075	0,005	0.015	0.127	0.147
0.500	-0.153	-0.144	-0.140	-0.134	-0.128	-0,119	-0.114	-0,120	-0,125	-0,106	-0,101	-0.055	0.007	0.003	0.107	0.123
0.650	-0.039	-0.034	-0.034	-0.030	-0.030	-0.027	-0.025	-0.021	-0.022	-0.020	-0.005	0.009	0.048	0.096	0.121	0.132
0,750	0.022	0,026	0.026	0.029	0.026	0.029	0.029	0.032	0.032	0.032	0.040	0.063	0,089	0.118	0.138	0.146
0.850	0.042	0.044	0.044	0,045	0.044	0.044	0.044	0.045	0.045	0.047	0.048	0,062	0.092	0,118	0.131	0.137
0 .950	0.093	0.093	0.091	0,093	0.090	0.092	0.091	0.091	0.090	0.091	0,087	0,092	0.107	0.119	0.114	0.115
								1	i		i -	1 .				

 $V = 250 \text{ ft/sec}, R = 3.2 \times 10^6$

-<u>Table-5</u>-(Contd)-

 $\mathbf{c}_{\mathbf{p}}$

x/c a	6.85 ⁰	4.85 ⁰	3•85 ⁰	2.85°	1.850	0.850	-0,2 ⁰	-1. 2 ⁰	-2.2 ⁰	-3.2°	-5.2°	-9.25°	-13.3°	-17.3°	-19•35 ⁰	-21.35	-23.35 ⁰	-24.44	-25.4°
								U	lpp er su	face									
, o	0.547	0.813	0.902	0.962	1.000	1.011	1.008	0.988	0.938	0.863	0.633	-0.194	-1.514	-3.342	-4.448	-5.634	-7.033;	-7.608	-5.754
0.005	-0.853	-0.427	-0.243	-0.080	0.083	0.237	0.379	0.489	0.602	0.702	0.856	1.008	0.977	0.774	0.594	0.371	0.098	-0+014	-0.174
0.015	-0.817	-0.524	-0.390	-0.270	-0.146	-0.023	' 0 .09 3	0.187	0.293	0.388	0.556	0.816	0.967	1.012	0 .99 7	0.955	0.884	0.846	0.799
0.030	-0.760	-0.546	-0.446	-0,358	-0,262	-0.168	-0.075	. 0.004	0.089	0.169	0.320	0.581	0.783	0,922	0.967	0.998	1.011	1.011	1.010
0.050	-0.667	-0.512	-0,438	-0.371	-0.297	-0.225	-0.151	-0.091	-0,022	0.045	0.175	0,405	0.607	0.839	0.835	0.893	0.940	0.955	0.971
0.075	-0,596	-0,479	-0,423	-0.371	-0.315	-0.256	-0+198	-0.149	-0.094	-0.040	0.067	0,269	0,455	0.618	0.689	0.758	0.817	0,842	0.866
0,100	-0.535	-0-449	-0.403	-0.362	-0.317	-0,269	-0,222	-0.175	-0.134	-0.089	0,001	0.179	0,348	0.504	0.575	0.715	0.710	0.737	0.763
0,200	-0.413	-0.371	-0.354	-0.333	-0.307	-0,280	:-0.253	-0,229	-0.204	-0.175	-0.118	0,001	0.109	0,248	0.311	0.373	0.434	0_463	0.489
0,300	-0.333	-0,007	-0.295	-0.012	-0.299	-0,284	1-0.205	-0.252	-0.235	-0.217	-0.176	-0.090	0.004	0.104	0.158	0,204	0.253	0.295	0.518
0.400	-0.200	-0,223	-0.212	-0.204	-0.235	-0,220	, -0.210	-0.199	-0,190	-0.170	-0.149	-0.088	-0.019	0.060	0,105	0.148	0.190	0.219	0.209
0.500	-0.104	-0.100	-0.004	-0.149	-0.142	-0.133	, -0,132	· -0+148	1 -0.140	i =0•135	-0,115	-0,071	-0.019	0.044	0.002	0.118	0.158	0.100	0.194
0.050	-0.001	_0_005	-0.005	_0_006	-0.006	-0.007		-0.007			0.000	0.007	0.074	- <u>-</u>	0.000	-	0.176	0.151	0.157
0.950	0.046		0.0U3	0.039	0.017	0.035	. 0.071	-0.031			0.070	0.042	0.051	0.035		0 107	0.10	0 135	0 136
0.950	, 0.040	- veute						0.051	1 VeU29	0.030	0.052	U.ULZ					0.124		00150
			·			· · ·	1										•	-	_
								L	,ower sur	face									
0.005	0.904	0.766	0.677	0.585	0.469	0,336	0.187	0 _04 4	-0.133	-0.318	i -0.729	-1.718	-4.100	-4.576	-4.939	-5.148	· -5.942	-6.242	-6.591
0.015	0.601	0.432	0.338	0.251	0.144	0.033	-0.088	-0.198	-0.331	-0.463	-0.745	-1.388	-1.940	-2.841	-3.243	-3.638	-4.094	-4.244	-4.379
0,030	0.349	0.193	0.113	0.037	-0.050	-0.141	-0.235	-0.321	-0.422	-0.520	-0.727	-1.204	-1+605	-2.137	-2.374	-2.608	-2,890	-2.969	-3.022
0.050	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	-	-	-	-
0.075	0.093	-0.016	-0.071	-0,120	-0.176	-0.233	-0.289	-0.340	-0.398	-0.453	-0.552	-0.785	-1.014	-1.257	-1.376	-1.471	-1.617	-1.656	-1.688
0,100	0.022	-0.071	-0.118	-0.162	-0.206	-0.255	-0.303	-0.344	-0,390	-0.426	-0.517	-0.698	-0.876	-1.062	-1.149	-1.215	-1.333	-1.365	-1.406
0.200	-0.090	-0.142	-0.176	-0.205	-0.230	-0.257	-0,284	-0.305	-0.320	-0.340	-0.382	-0.479	-0.561	-0.647	-0.683	-0,702	-0.773	-0.795	-0.827
0.300	-0.151	-0.177	-0.189	-0.229	-0.247	-0.264	-0.280	-0.283	-0.276	-0.290	-0.316	-0.370	, -0,416	-0.464	-0.485	-0.510	-0.531	-0.533	-0.551
0.400	-0.126	-0.145	-0•155	-0.173	-0.191	-0.202	-0.214	, -0.198	-0.207	-0.212	-0.227	-0.260	, -0. 282	-0.312	-0.328	-0.354	-0.363	-0.366	-0.383
0.500	-0.091	-0,102	-0.108	-0.119	-0+113	-0-119	-0.124	· -0-133	-0.138	-0.140	-0.148	-0.167	-0,180	-0.204	-0.215	-0.233	-0.249	-0.253	-0.269
0.650	0.004	-0.017	-0.022	-0.023	-0.027	-0.028	-0.030	-0.033	-0.035	+0.034	-0.038	-0.047	-0.054	-0.077	-0.090	-0.107	-0.127	-0,131	-0.147
0.750	0.047	0.034	0.030	0.029	0.029	0.026	0.025	0.024	0.023	0,024	0.023	0 .014	0.007	-0.016	-0,030	-0.045	-0,064	-0.068	-0.085
0.850	0.056	0.049	0.046	0.044	0 .04 4	0.043	0,042	0.043	0.042	0.042	0.041	° 0₊037	0.031	0.015	0.005	-0,006	-0.019	-0,022	-0.036
1 A.95A	0.103	0.101	0.100	0.098	0,099	0.098	0.096	0.096	0.005	i 0.096	E 0.096	0.09/1	0.085	0.072	0.061	0.052	0-039	0 035	0.0161

30

 $V = 250 \text{ ft/sec}; R = 3.2 \text{ x } 10^6$

<u>Table 5</u> (Contd)

-

 $V = 250 ft/sec; R = 3.2 \times 10^{6}$

Wing AP/								-								
.α x/c	-5.70	-3.5°	-2.750	-1.75°	-0.750	0•3 ⁰	1.30	2.30	3.30	4+30	6•35°	10•35 ⁰	14.40	18.4 ⁰	20°7150	21.45°
0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.005	1.685	1.117	0.841	0.562	0.279	900.0	-0.276	-0.550	-0.825	-1-096	-1.635	-2.723	-3.980	-5-423	-5-330	5.572
0.015	1.380	0.630	202.0	0.481	152.0	0.024	-0.197	0-126	-0.650	-0.87	-1.319	-2.212	-2.911	-3.728	4.127	-4.309
0.030	1.108	0.755	0.577	Co1-0	چ	0.037	-0-136	-0.316	-0-495	-0.673	-1-027	-1-732	-2.323	761.6-	-3.263	-3.404
0.050	•	•		•	•	•	1	•	1	•	ı	1	ĩ	•	1	•
20°0	0.657	0.459	0-350	0.241	0.129	0.018	-0-087	-0.198	010-0-	-0.418	-0.637	-1.045	191-1-	-1.868	-2.071	-2.168
0.100	0.533	0.375	0.293	0.206	0.112	020.020	-0.066	-0-161	-0.248	-0.339	-0.516	-0-87	-1-25	-1-561	-1-732	-1.816
0.200	0.286	0.191	0.140	0.104	0.054	0 - 002	0.049	9.098	-0.149	500	-0.295	605.0-	9 - 7 9	-0-928	-1-037	-1-096
000	0.155	0.092	0.061	0.032	0.028	0.01	0.030	198° 0	6.90	-0.116	-0-160	52.0	1 1 1 1 1 0	-0-585	SQ Q	80.00
001400	0*092	0.053	0.031	0-014	0.006	98.0	-0-026	80.0	0.030	0,062	-0,095	6 1 8	-0.257	522.0	0.160	-0-488
0•500	0.045	0.019	0°05	8.0	6°8	-0.007	5° 9	80.0	6.83 -	-0.046	190.0-	-0-12X	-0-136	602. 9	-0.335	-0.357
0.650	1	1	•	•	•	•	•	•	1	ı	1	•	\$	•	•	•
0.7.0	-0-017	-0.026	-0-028	-0-0 <u>-</u> 0	-0.032	160.0-	-0.035	-0.038	-0-038	-0-038	610.0-	120.0	-0.103	-0-146	-0.186	-0.500
0.850	-0-057	-0-058	-0-058	-0-057	-0-056	-0-055	-0-055	-0.055	-0-053	0.054	-0 <u>*05</u> 0	5°°°	690 ° 0	-0-092	6.105	-0-110
0*950	1	•	•	1	•	8	•	1	•	1	I	•	•	1	•	t

Wing AP/4, inverted attitude

Δc₀

V = 250 ft/sec; R = 3.2 x 10⁶

	-25+40	0	217-9-	5:18	-4.032	1	-2.554	-2.169	-1.316	58.0	-0.622	-0-463		-0-242	-0-172	
	-24.40	0	6.228	-5-090	-3.980	I	2-198	-2.102	-1.258	9 88 9	•0•585	-0-133	L	0.219	-0-157	1
	-23.35°	0	-6.040	84.6.1-	-3.901	8	-2.434	-2.043	-1-207	122.0	-0.559	-0-407	•	0.200	-0.143	•
	-21 - 35°	0	-5-519	-4.593	-3.606	t	2.23	-1-930	-1.075	74.0-	-0.502	-0.351	4	-0.167	-0.113	1
	-19-35 ⁰	0	-5-533	1.240	-1.241		-2,065	121	166.0-	-0.643	-0-433	-0-297	•	-0.119	-0.086	•
	-17.30	0	-5.350	-3.853	-3.059	1	-1.875	-1.566	-0.895	-0.568	-0.372	-0.248	١	-0,082	-0.060	•
	-13.30	0	5.91	-2-907	-2.388	1	-1 -469	12	-0.670	0211-0-	-0-26J	-0-161	t	10°0	-0-027	•
	-9.25°	0	-2.726	-2.204	-1.785	ł	70-1-	-0.877	0.480	0.280	21.0	-0.096	ŧ	60°-0	-0-005	•
	-5.20	0	-1.585	-1-301	-1.047	ŧ	-0.619	-0-518	-0.264	-0-140	-0-078	-0.032	•	0.022	0.010	•
	-3.2 ⁰	0	-1-020	-0-851	-0.689	1	-0-413	-0-337	-0-165	620.0-	-0-036	-0,005	1	0.029	0.012	1
2	-2°5	0	-0-735	-0.625	-0.511	•	10, 0-	982.0	-0.116	0.041	210.0-	0.008	:	0.030	6.0.3	1
	-1+20	0	-0-115	-0.385	-0.325	6	-0.191	9 - 16	940.0-	-0°031	10°0	0.015		0.031	0.012	•
	-0.2 ⁰	0	-0.192	0.181	-0.160	•	5 9	180.0	0	-0-915	100.0	0.008	ŧ	0.033	110.0	•
	0•85 ⁰	0	660*0	0.056	0.027	ł	0.023	0-014	0.023	0.020	0.018	10-0	L	0.033	0.008	1
	1•85°	0	0.386	0.290	0.212	L	0.139	0.111	120.0	0*052	0.042	0_029		0.035	200.0	•
	2•85°	0	0.665	0.521	0.395	4	0.251	0.200	0.128	0.083	0-031	0.030	1	0.035	0.00	•
	3.85°	0	0.920	0.728	0.559	ł	0.352	0.285	0.178	0.106	0.057	0.024	I	0.035	0*005	•
	4.85°	0	1.193	0.956	0•7 3 9	•	0.463	0.378	62.0	0.1X	0.078	0.058	•	6(0.0	0.007	•
	6.85°	•	1.77	1.418	1.109	1	6 89°0	0.557	0.323	0.182	0.110	620.0	•	0.048	010-0	•
)	χς κς	0	0,005	0.015	0.030	0.050	20.0	0.100	0.200	00.00	0-100	0.500	0.650	0.750	0.850	0-950
													_			

6.20 420 -320 -2.20 -120 -020 -120 -320																			
L 0.911 0.956 0.930 1.005 1.005 1.005 1.005 0.974 0.974 0.937 0 0.4915 0.566 0.480 0.397 0.300 0.397 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.936 0.9376 0.937 0.937 <td>°.</td> <td></td> <td>4.20</td> <td>-3•2⁰</td> <td>-2.2</td> <td>-1-20</td> <td>-0.20</td> <td>0•8⁰</td> <td>1.8⁰</td> <td>2.8⁰</td> <td>3.8°</td> <td>5•8°</td> <td>7.85°</td> <td>9•85°</td> <td>13•85°</td> <td>17.85⁰</td> <td>21-85°</td> <td>23.90</td> <td>25•9°</td>	°.		4.20	- 3•2 ⁰	-2.2	-1-20	-0.20	0•8 ⁰	1.8 ⁰	2.8 ⁰	3.8°	5•8°	7.85°	9•85°	13•85°	17.85 ⁰	21-85°	23.90	25•9°
Ru 0.915 0.958 0.990 1.005 1.005 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.918 0.938 0.918 0.									็ก	pper suri	face								
772 0.64.3 0.569 0.4480 0.377 0.307 0.307 0.307 0.308 0.318 0.328 0.318 0.328 0.318 0.328 0.318 0.328 0.318 0.328 0.318 0.328 0.318 0.328 <th< td=""><td>1</td><td>ą</td><td>0.915</td><td>0.958</td><td>066*0</td><td>1.005</td><td>1.009</td><td>600</td><td>766*0</td><td>0-974</td><td>0.933</td><td>0.808</td><td>0.635</td><td>001-0</td><td>-0-235</td><td>-1.108</td><td>-2.163</td><td>-2.755</td><td>15.4.5-</td></th<>	1	ą	0.915	0.958	066*0	1.005	1.009	600	766*0	0-974	0.933	0.808	0.635	001-0	-0-235	-1.108	-2.163	-2.755	15.4.5-
(7) 0.4343 0.2276 0.0197 0.129 0.0281 -0.198 -0.230 -0.288 -0.231 -0.288 -0.231 -0.287 -0.236 -0.237	2	R	0.643	0°569	0.480	765.0	00000	0.202	0.084	8.0	-0.148	-0-412	689.0-	76°0	-1.677	-2.619	-J.88L	-3.956	1980
(3) 0.137 0.007 0.013 0.039 0.129 0.028 0.288 0.289 0.281 0.287 0.281 0.287 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0	7	R	545.0	0.276	0.197	0.129	0.050	-0.02B	0.118	-0.198	-0.288	270	-0.664	-0.866	-1-202	-1-637	-2.084	-2.275	-2.518
10 0.0021 -0.0022 -0.0173 -0.113 -0.159 -0.223 -0.227 -0.237 <td>2</td> <td>ß</td> <td>0.137</td> <td>CT0.0</td> <td>0.013</td> <td>660.0-</td> <td>0.18</td> <td></td> <td>-0.230</td> <td>-0.288</td> <td>156.0-</td> <td>-061-0-</td> <td>-0.621</td> <td>-0-761</td> <td>-0.980</td> <td>-1.251</td> <td>-1.528</td> <td>-1-642</td> <td>-1.768</td>	2	ß	0.137	CT0.0	0.013	660.0-	0.18		-0.230	-0.288	156.0-	-061-0-	-0.621	-0-761	-0.980	-1.251	-1.528	-1-642	-1.768
Zr 0.050 0.023 0.122 0.152 0.152 0.152 0.153 0.025 0.027 0.0260 0.0281 0.0273 0.0260 0.0273 0.0260 0.0273 0.0260 0.0273 0.0260 0.0273 0.0260 0.0273 0.0260 0.0273 0.0260 0.0273 0.0260 0.0273 0.0260 0.0273 0.0260 0.0273 0.0260 0.0273 0.0260 0.0273 0.0260 0.0273 0.0260 0.0273 0.0260 0.0260 0.0263 0.0260 0.0263 0.0260 0.0263 0.0260 0.0263 0.0260 0.0263 0.0260 0.0263 0.0260 0.0263 0.0260 0.0263 0.0260 0.0263 0.0264	7	10	0.021	0 ,022	120.0	-0.113	-0.159	-0.203	-0-255	-0-297	0.345	-0-112-	-0.533	-0-610	\$ 9	-0-953	-1-120	-1-203	-1.283
223 -0.087 -0.114 -0.114 -0.116 -0.171 -0.198 -0.224 -0.273 -0.2240 -0.253 133 -0.1173 -0.1173 -0.190 -0.2041 -0.201 -0.2010 -0.2010 133 -0.1123 -0.1173 -0.1173 -0.193 -0.1941 -0.201 -0.2010 -0.2010 111 -0.125 -0.1173 -0.1173 -0.1181 -0.1141 -0.1241 -0.1241 -0.1241 -0.1241 -0.2011 -0.1241 -0.1241 -0.1241 -0.1241 -0.1241 -0.1241 -0.1241 -0.1241 -0.2151	콧	8	0.050	6 .083	-0.122	-0.152	0.188	2. 9	-0.260	- 282	-0.326	966.0-	-0.458	764.0-	-0.628	-0.748	-0-854	700-0-	956.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>_</u> *	8	-0.087	0-114	-0.146	-17 -	-0.198	12 12 12	0.255	0.279	905-0-	-0-361	101-0-	6 [47]	-0.537	-0.618	9 . 688	12.0	0.75
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	113	-0.147	0.162	621.0-	0.190	-0.204	-0.216	-0.231	0.240	-0.253	-0-276	-0.292	-0.310	966.0-	-0.367	06(*0	-0-407	0-128
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~	132	0.153	-0.162	-0-1 Y	-0-177	-0.183		-0.196	-0.207	-0.203	-0.214	-0.223	-0-226	-0.238	-0.256	-0.279	-0-296	52.0
(387 -0.095 -0.098 -0.101 -0.100 -0.091 -0.018 -0.011 -0.091 -0.018 -0.011 <td>~</td> <td>III</td> <td>6.1X</td> <td>-0.129</td> <td>-0.135</td> <td>-0.136</td> <td>-0-139</td> <td>-0.110</td> <td>-0-141</td> <td>-0.140</td> <td>-0.139</td> <td></td> <td>-0-1-1-1</td> <td>-0.146</td> <td>0.153</td> <td>6.1 X</td> <td>602.0 P</td> <td>-0-234</td> <td>58.0</td>	~	III	6.1X	-0.129	-0.135	-0.136	-0-139	-0.110	-0-141	-0.140	-0.139		-0-1-1-1	-0.146	0.153	6.1 X	602.0 P	-0-234	58.0
001 -0.001 0 -0.015 0.015 0.015 0.015 0.018 030 0.030 0.030 0.035 0.036 0.012 0.015 0.018 1417 -0.181 -0.061 0.035 0.035 0.035 0.045 0.045 0.048 1417 -0.181 -0.061 0.059 0.176 0.283 0.478 0.637 526 -0.408 -0.273 0.176 0.283 0.478 0.558 0.637 536 -0.340 -0.253 -0.159 -0.159 0.017 0.019 0.017 537 -0.340 -0.280 0.159 -0.215 -0.159 0.164 0.109 537 -0.340 -0.280 0.026 0.017 0.019 0.019 537 -0.340 -0.280 -0.249 -0.215 -0.164 -0.191 -0.191 537 -0.340 -0.283 -0.249 -0.215 -0.159 -0.191 -0.191	~	683	-0-095	960.0-	-0.101	9.10	-0-104	-0.07	-0.095	100	-0.03	-0.032	000	500	9 5	-0.132		-0.206	0.242
001 -0.001 0 -0.001 0.003 0.005 0.012 0.015 0.015 0.016 0.0	1		•	•	•	•	8	B	•	•	•			1	•		•	8	•
(030 0.030 0.030 0.030 0.030 0.035 0.045	~	5	100.0-	0	-0-001	0.003	0.005	0.008	0.012	0.015	0.018	0.016	0-014	0.008	-0-018	-0.067	-0-12K	0.152	-0-213
Image: Non-1981 -0.0681 0.0069 0.176 0.2833 0.478 0.5558 0.637 526 -0.340 -0.253 -0.059 0.176 0.2033 0.478 0.5558 0.637 526 -0.408 -0.253 -0.059 0.0176 0.2033 0.478 0.5558 0.637 536 -0.408 -0.273 -0.0159 -0.076 0.0033 0.406 0.0306 537 -0.340 -0.283 -0.0215 -0.152 -0.032 0.0306 0.003 573 -0.344 -0.318 -0.283 -0.249 -0.215 -0.169 0.010 373 -0.326 -0.283 -0.249 -0.215 -0.159 -0.169 0.010 373 -0.326 -0.280 -0.280 -0.266 -0.169 -0.140 -0.114 284 -0.253 -0.280 -0.280 -0.280 -0.269 -0.169 -0.169 284 -0.144 -0.168 -0.266 -0.169 -0.169 -0.169 -0.169 284 -0.144 -0.144<	~	030	0.030	0.030	0.030	0.035	0.038	0.042	0.045	0.048	0.048	0.046	0.044	0.037	0.011	0 .033	68 9	-0-126	-0.167
IL. -0.181 -0.061 0.069 0.176 0.283 0.380 0.478 0.558 0.537 536 -0.408 -0.253 -0.176 0.0283 0.0380 0.478 0.559 0.597 536 -0.408 -0.277 -0.215 -0.152 -0.156 0.206 0.007 536 -0.318 -0.277 -0.215 -0.152 -0.159 -0.076 0.007 0.007 0.007 377 -0.318 -0.283 -0.152 -0.152 -0.179 -0.016 0.007 0.007 377 -0.318 -0.283 -0.215 -0.152 -0.169 -0.107 377 -0.326 -0.216 -0.213 -0.168 -0.107 -0.116 264 -0.166 -0.166 -0.169 -0.116 -0.116 -0.116 273 -0.281 -0.281 -0.281 -0.216 -0.169 -0.116 -0.116 264 -0.144 -0.166 -0.166 -0.	•		1	•	•	•	1	•		•	1	•	8			•	•	•	•
μμ -0.181 -0.061 0.069 0.176 0.280 0.478 0.558 0.637 526 -0.340 -0.253 -0.159 -0.076 0.026 0.036 0.0390 0.578 0.537 536 -0.340 -0.253 -0.159 -0.076 0.005 0.0165 0.236 0.309 536 -0.316 -0.231 -0.215 -0.152 -0.152 -0.192 0.050 0.091 773 -0.316 -0.216 -0.215 -0.152 -0.192 0.019 0.019 773 -0.318 -0.228 -0.219 -0.219 -0.019 0.019 773 -0.326 -0.216 -0.216 -0.197 -0.199 -0.011 264 -0.226 -0.226 -0.217 -0.169 -0.114 -0.109 264 -0.141 -0.123 -0.226 -0.226 -0.140 -0.116 -0.116 264 -0.141 -0.123 -0.147 -0.168 -0.16									L L	mer sur	face								
S21 -0.340 -0.253 -0.159 -0.076 0.005 0.165 0.236 0.309 536 -0.408 -0.346 -0.277 -0.215 -0.159 -0.070 0.009 408 -0.346 -0.277 -0.215 -0.159 -0.077 0.010 0.091 377 -0.318 -0.283 -0.249 -0.215 -0.199 -0.140 -0.019 377 -0.326 -0.280 -0.252 -0.213 -0.198 -0.109 -0.01 377 -0.326 -0.280 -0.252 -0.213 -0.198 -0.109 -0.10 264 -0.326 -0.280 -0.252 -0.213 -0.198 -0.10 -0.10 264 -0.261 -0.281 -0.213 -0.198 -0.10 -0.10 264 -0.144 -0.168 -0.140 -0.168 -0.114 -0.19 264 -0.144 -0.168 -0.144 -0.168 -0.141 -0.16 264 <td></td> <td>117</td> <td>-0-181</td> <td>-0-061</td> <td>690*0</td> <td>0.176</td> <td>0.283</td> <td>0.380</td> <td>84.14.0</td> <td>0.558</td> <td>0.637</td> <td>617.0</td> <td>0.870</td> <td>0*9H6</td> <td>1.012</td> <td>086.0</td> <td>0.845</td> <td>0•736</td> <td>0.598</td>		117	-0-181	-0-061	690*0	0.176	0.283	0.380	84.14.0	0.558	0.637	617.0	0.870	0*9H6	1.012	086.0	0.845	0•736	0.598
536 -0.408 -0.346 -0.217 -0.152 -0.092 -0.077 0.030 408 -0.318 -0.280 -0.280 -0.282 -0.197 -0.109 -0.07 377 -0.326 -0.280 -0.282 -0.280 -0.283 -0.199 -0.110 -0.109 377 -0.326 -0.280 -0.282 -0.283 -0.283 -0.199 -0.110 -0.109 378 -0.326 -0.283 -0.283 -0.283 -0.283 -0.199 -0.110 -0.103 364 -0.326 -0.283 -0.284 -0.213 -0.194 -0.109 -0.110 368 -0.201 -0.2147 -0.215 -0.198 -0.194 -0.164 308 -0.203 -0.203 -0.2047 -0.206 -0.164 -0.164 -0.164 304 -0.144 -0.1447 -0.162 -0.164 -0.164 -0.164 -0.164 308 -0.203 -0.204 -0.204 -0.064 -0.064 -0.164 304 -0.144 -0.144 -0.0144 </td <td>~</td> <td>ลี</td> <td>016.0</td> <td>-2<u>5</u></td> <td>-0.159</td> <td>-0°0-8</td> <td>0.05</td> <td>0.083</td> <td>0.165</td> <td>0.236</td> <td>606.00</td> <td>0-444</td> <td>0.561</td> <td>699°0</td> <td>0.847</td> <td>956-0</td> <td>1.007</td> <td>80</td> <td>666°0</td>	~	ลี	016.0	-2 <u>5</u>	-0.159	-0°0-8	0.05	0.083	0.165	0.236	606.00	0-444	0.561	699°0	0.847	956-0	1.007	80	666°0
408 -0.314 -0.283 -0.249 -0.215 -0.179 -0.109 -0.019 377 -0.326 -0.280 -0.252 -0.225 -0.197 -0.166 -0.140 -0.110 264 -0.326 -0.280 -0.252 -0.225 -0.197 -0.166 -0.140 -0.110 264 -0.302 -0.280 -0.252 -0.253 -0.215 -0.168 -0.140 -0.110 264 -0.251 -0.216 -0.215 -0.198 -0.169 -0.161 -0.161 208 -0.201 -0.198 -0.216 -0.167 -0.191 -0.161 208 -0.201 -0.167 -0.167 -0.162 -0.161 -0.161 2082 -0.038 -0.091 -0.092 -0.014 -0.162 -0.161 -0.161 2082 -0.031 -0.014 -0.016 -0.092 -0.014 -0.161 -0.161 2013 -0.031 -0.028 -0.032 -0.032 -0.021 -0.013 -0.014 2014 -0.014 -0.016 -0.016	~	536	-0-408	-0. Ju6	-0.277	*0 *215	-0-152	-0,092	-0.027	0.030	0*001	0.205	0.311	0.413	0.602	0.755	0.875	0•923	0.959
408 -0.344 -0.318 -0.283 -0.249 -0.215 -0.179 -0.144 -0.109 -0.071 377 -0.326 -0.302 -0.280 -0.252 -0.225 -0.197 -0.168 -0.140 -0.110 264 -0.253 -0.231 -0.256 -0.254 -0.215 -0.198 -0.164 -0.169 -0.154 208 -0.204 -0.201 -0.198 -0.256 -0.271 -0.168 -0.194 -0.184 1144 -0.145 -0.145 -0.147 -0.142 -0.157 -0.154 -0.194 -0.181 1144 -0.144 -0.145 -0.147 -0.142 -0.157 -0.154 -0.194 -0.181 1144 -0.144 -0.145 -0.147 -0.142 -0.215 -0.094 -0.194 -0.194 1144 -0.144 -0.145 -0.147 -0.142 -0.215 -0.094 -0.194 -0.194 1144 -0.144 -0.145 -0.147 -0.142 -0.015 -0.094 -0.194 -0.194 1144 -0.144 -0.145 -0.015 -0.016 -0.094 -0.194 -0.194 1144 -0.144 -0.145 -0.015 -0.016 -0.094 -0.194 -0.194 1144 -0.144 -0.145 -0.012 -0.015 -0.016 -0.094 -0.194 -0.194 1144 -0.144 -0.145 -0.012 -0.015 -0.016 -0.094 -0.194 -0.194 1144 -0.144 -0.145 -0.012 -0.015 -0.016 -0.094 -0.194 -0.194 1144 -0.144 -0.001 -0.002 -0.004 -0.008 -0.092 -0.094 -0.194 -0.194 1144 -0.014 -0.001 -0.015 -0.015 -0.016 -0.094 -0.018 -0.113 1144 -0.014 -0.001 -0.002 -0.004 -0.008 -0.002 -0.004 -0.018		•	•	8	8	8	ŧ	8	1	1		1	8	8	L	\$	•	8	ŧ
373 -0.326 -0.302 -0.280 -0.252 -0.252 -0.197 -0.168 -0.140 -0.110 264 -0.253 -0.243 -0.236 -0.215 -0.216 -0.191 -0.151 208 -0.204 -0.256 -0.226 -0.215 -0.198 -0.194 -0.191 208 -0.201 -0.198 -0.220 -0.215 -0.194 -0.191 208 -0.201 -0.147 -0.216 -0.191 -0.191 -0.191 2082 -0.208 -0.0147 -0.162 -0.157 -0.191 -0.191 2082 -0.008 -0.0147 -0.162 -0.191 -0.191 -0.113 2082 -0.039 -0.0147 -0.046 -0.092 -0.017 -0.161 2014 -0.016 -0.092 -0.015 -0.013 -0.017 -0.013 2033 0.031 0.028 0.032 0.0024 -0.028 -0.021 2034 0.037 0.031 0.031 0.031 0.023 0.023 0.028 -0.028 -0.028	~	801	112.0	-0-318	-0. 283	612.0-	-0-215	R - 9	11-0-		120.0	•	120 * 0	0.141	0.287	1년1-0	0.556	0.616	0.674
264 -0.253 -0.234 -0.234 -0.214 -0.169 -0.169 -0.169 -0.164 -0.016 <td>~</td> <td>54</td> <td>22</td> <td>8</td> <td>-0.280</td> <td>0.252</td> <td>52.0</td> <td>-0-197</td> <td>-0-168</td> <td>0110</td> <td>0.110</td> <td>610.0</td> <td>010*0</td> <td>120-0</td> <td>0.200</td> <td>88</td> <td>0 1 2 0</td> <td>0-510</td> <td>0.566</td>	~	54	22	8	-0.280	0.252	52.0	-0-197	-0-168	0110	0.110	610.0	010*0	120-0	0.200	88	0 1 2 0	0-510	0.566
208 -0.201 -0.198 -0.220 -0.215 -0.201 -0.194 -0.191 1144 -0.144 -0.145 -0.147 -0.147 -0.150 -0.191 -0.191 082 -0.046 -0.067 -0.157 -0.157 -0.150 -0.141 082 -0.086 -0.087 -0.097 -0.067 -0.0162 -0.141 082 -0.088 -0.090 -0.097 -0.092 -0.017 -0.113 082 -0.037 -0.027 -0.032 -0.016 -0.017 -0.113 083 -0.031 -0.027 -0.032 -0.013 -0.017 -0.113 093 -0.033 0.0213 -0.032 -0.021 -0.021 -0.021 033 0.033 0.033 0.033 0.023 0.024 0.023 034 0.033 0.033 0.023 0.023 0.023 0.023	~	ন্থ	-0.253	540	-0-236	120	-0-213	-0-198	-0-18t	0.169	121-0-	0-119	18 0 0	10.0-	0.041	0.13	۰. تک	0.282	0.330
144 -0.144 -0.145 -0.147 -0.162 -0.157 -0.154 -0.150 -0.144 0.082 -0.086 -0.090 -0.087 -0.086 -0.094 -0.108 -0.113 0.082 -0.086 -0.090 -0.067 -0.086 -0.094 -0.108 -0.113 0.013 0.033 0.031 0.028 0.031 0.021 -0.016 -0.113 0.033 0.033 0.033 0.028 0.021 -0.016 -0.017 -0.016 -0.113 0.033 0.033 0.033 0.028 0.028 0.021 0.029 0.021 0.028 0.021 0.028	~	8	102.0	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	-0-198	82.9	-0.215	88	102-0-	10-12	-0.1 83	-0-161	9.1.0	9 9 9	110.0	0.032	0.115	0.157	0.202
.082 -0.086 -0.091 -0.087 -0.086 -0.094 -0.108 -0.113 .004 -0.007 -0.0012 -0.013 -0.015 -0.016 -0.103 -0.016 -0.105 -0.016 -0.105 -0.016 -0.113 .001 -0.031 0.031 0.028 -0.013 -0.016 -0.017 -0.016 -0.024 0.023 0.023 0.023 0.023 0.023 0.023 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 <	~	i i i	1	-0-145	-0-145	-0-147	-0-162	-0-157	121.0	-0-150	0-144	0.130	0.120	8.9	-0,045	0.014	0_084	0.120	0.158
004 -0.007 -0.009 -0.012 -0.013 -0.015 -0.016 -0.018 -0.017 -0.016 033 0.037 0.031 0.028 0.027 0.026 0.025 0.023 0.024 0.028 0.036 0.037 0.035 0.033 0.034 0.030 0.030 0.028 0.027 0.028	~	8	-0-086	-0,088	060*0-	-0.087	980.0	0 •082	760*0-	-0.108	-0-113	960.0-	-0 -080	690.0-	0.030	0.000	0*080	0.112	0.148
033 0.033 0.031 0.028 0.027 0.026 0.025 0.023 0.024 0.028 038 0.037 0.035 0.033 0.034 0.030 0.030 0.028 0.027 0.028	2	ਡੋ	-0°07	8.0	-0-012	510.0	-0-015	-0-016	-0. 018	-0.017	91000	-0.12	0 •03	600 ° 0	6Z0*0	0,060	0.112	0.139	0.168
038 0.037 0.035 0.033 0.034 0.030 0.030 0.028 0.027 0.028	2	633	0.033	0.031	0.028	0,027	0.026	0.055	0.023	120.0	0.023	0.027	1160-0	바o*o	220.0	0.108	0.148	0.162	0.187
	2	860	0.037	0.035	0.033	11000	0.030	0.000	0.028	0.027	0.028	0.031	0.037	0.044	690°0	260*0	0.13K	0.156	0.12
and the provided t		88 100	0.084	0.084	0.082	0.083	0000	£0.0	0*076	120-0	0*072	K0.0	670 . 0	670 . 0	0.084	260*0	0•116	0.127	0.141

١

<mark>. Table 6</mark> C_D

,

Table 6 (Contd)

cp

γicα	6.5°	4•5°	3.5°	2.50	1.50	0.5 °	-0.5°	-1.5°	-2,5°	3.5°	-5.5°	-7•55°	-9.55°	-13.55°	-17.55°	-21.55°	-25.6°	-29.6°	-30.9°
														I		1			
								U	pper sur	face									
0	0.785	0.872	0.961	0,992	1.008	1.010	1.009	0.997	0.971	0.933	0.810	0.621	0,386	-0.315	-1.235	-2.421	-3.877	-5.488	-5.997
0.005	-0 . 4444	-0.185	-0.063	0.052	0.169	0.269	0.367	0.456	0.541	0.617	0.751	0.862	0.937	1.010	0.988	0.878	0.657	0.343	0.229
0.015	-0.501	-0.313	-0.230	-0.145	-0.055	0.024	0.102	0.176	0.249	0.319	0•448	0.569	0.667	0.839	0.950	1.006	1.003	0.941	0.911
0.030	-0.507	-0,369	-0.314	-0,251	-0.184	-0.123	-0,063	-0.004	0.054	0.110	0,220	0.329	0.423	0.606	0.755	0.873	0.958	1.003	1.008
0.050	-0.454	-0.354	-0,317	-0.272	-0.222	-0.178	-0.130	-0. 088	-0.040	0,005	0.094	0.183	0.264	0.431	0.613	0.710	0.822	0.908	0.929
0.075	-0.405	-0,335	-0. 308	-0.273	-0,237	-0.203	-0.168	-0.137	-0.099	-0.063	0.007	0.082	0.149	0.293	0.429	0.559	0.679	0.780	0,808
0.100	-0.370	-0.313	-0.293	-0,266	-0.238	-0.211	-0.184	-0.159	-0.129	-0.100	-0.042	0.020	0.079	0.205	0.327	0.449	0.568	0.674	0.705
0,200	-0,279	-0.258	-0.249	-0.239	-0.226	-0,213	-0,200	-0.188	-0.172	-0.156	-0.123	-0.086	-0.049	0.037	0,128	0.227	0,329	0.431	0.459
0.300	-0.219	-0.211	-0.209	-0.198	-0.200	-0-193	-0-187	-0.182	-0.173	-0.164	-0.143	-0.117	-0.093	-0.036	0.028	0.103	0.195	0,290	0.317
0.400	-0.147	-0.162	-0.146	-0.147	-0.147	-0.145	-0-144	-0.145	-0.140	-0.134	-0.122	-0.104	-0.085	-0.038	0.018	0.086	0.157	0.254	0.261
0.500	-0.094	-0.099	-0.098	-0.101	-0.102	-0.103	-0.104	-0.109	-0.105	-0.104	-0.096	-0.086	-0.075	-0.034	0.013	0.072	0.142	0.217	0,240
0.650				- -							-				-		-		
0.00	0.014	0.070	0.011	0.000	0.005	0.075	-0.002	-0.007	-0,000	-0.008	-0.008	-0.005	0.005	0.01.7	0.057		0.152	0.401	0,252
0.050	v₊uto	0.079	0.000	0.042	0.037	0,000	0.050	0.025	0.025	0.022	0.020	V+V21	0.025	0.045	0.005	0.094	0+1.59	0+191	0.200
0.950			-									-		-					
								Lo	wer surf	ace					•				1
0.005	0.792	0.626	0.595	0.516	0,420	0.329	0.224	0.115	-0_001	-0.120	-0.385	-0.691 (-0,989	-1-709	-2-454	-3-439	4.117	-lu-578	-4, 799
0.015	0.461	0.308	0.261	0.189	0.108	0.034	-0.050	-0.132	-0.218	-0.303	-0.187	-0.686	-0-877	-1.302	-1.601	-2,133	-2.61.8	=3.054	=3,151
0.030	0.221	0.093	0.051	-0.007	-0.072	-0.130	-0,193	-0.257	-0.319	-0.381	-0.513	-0.651	-0.780	-1.064	-1.299	=1.595	-1-871	-2.067	-2.086
0,050	-	-		-	-	-	-	-	-	-	-		-	-		•			-
0.075	0.012	-0.074	-0.095	-0.130	-0.168	-0.200	-0.236	-0.272	-0.301	-0.329	-0.397	-0.463	-0.517	-0.642	-0.760	-0.866	-0.965	-1.033	-1.024
0.100	-0.039	-0.103	-0.129	-0.157	-0.187	-0.214	-0.241	-0.269	-0,289	-0.313	-0.363	-0.409	-0.447	-0.540	-0.623	-0.694	-0.760	-0.813	-0.836
0,200	-0.112	-0.148	-0.163	-0.177	-0.193	-0.206	-0.219	-0.232	-0.235	-0.243	-0.261	-0,279	-0.293	-0.323	-0.354	-0.376	-0.408	-0.455	-0.492
0.300	-0.154	-0.176	-0.189	-0.197	-0,206	-0.211	-0.219	-0.202	-0.199	-0.200	-0.206	-0.212	-0.217	-0.228	-0.246	-0-265	-0-339	-0-352	-0. 468
0.400	-0.123	-0.143	-0.145	-0.150	-0.155	-0,158	-0.160	-0.145	-0.145	-0.144	-0.144	-0.144	-0.143	-0.148	-0.166	-0.194	-0.212	-0.299	-0.317
0.500	-0.089	-0.103	-0,106	-0.097	-0.083	-0.084	-0,087	-0.091	-0.088	-0.085	-0.083	-0.095	-0.080	-0.088	-0.117	-0.155	-0.211	-0.283	-0.298
0.650	-0.005	-0.023	-0.015	-0.017	-0.017	-0.015	-0.013	-0.013	-0.009	-0.008	-0.006	-0.005	-0,007	-0.026	-0.064	-0.109	-0.171	-0.252	-0.278
0.750	0.033	0.021	0.026	0.026	0.025	0.027	0.028	0.028	0.030	0.033	0,032	0.031	0.027	0.005	-0.032	-0.070	-0.127	-0.198	-0.220
0.850	0.040	0.029	0.035	0.033	0.033	0.035	0.037	0.037	0.038	0.042	0.039	0,037	0.032	0.014	-0,019	-0.048	-0.081	-0.130	-0.141
0.950	0.084	0.075	0,082	0.082	0.083	0.084	0,087	0.087	0.088	0.089	0.085	0.080	0.074	0.058	0.022	0.001	-0.020	-0.036	-0.037

 $V = 250 \text{ ft/sec}; R = 3.2 \times 10^6$

Wing AP/5, normal attitude

∆c_p

 $V = 250 \text{ ft/sec}; R = 3.2 \text{ x } 10^6$

xJC a	-6.2 ⁰	-4.2 ⁰	-3.2°	-2.2 ⁰	-1. 2 ⁰	-0.2 ⁰	0•8°	1.80	2.8 ⁰	3•8°	5•8°	7•85°	9•85 ⁰	13•85°	1 7. 85 ⁰	21.85°	23 • 9 ⁰	25 .9°
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ο	o
0.005	1.219	0.824	0,650	0.411	0,221	0.017	-0,178	-0.394	-0.581	-0.785	-1-185	-1-559	-1.940	-2.689	-3.599	-4.729	-4.692	-4.682
0.015	0.991	0.683	0.529	0.356	0.207	0.045	-0.111	-0.283	-0.434	-0.597	-0.920	-1.225	-1+535	-2.049	-2.593	-3.091	-3.277	-3.517
0,030	0.775	0.545	0.423	0,290	0.176	0.050	-0.068	-0,203	-0.318	-0 <u>-</u> 445	-0.695	-0.932	-1.174	-1.582	-2,006	-2.403	-2.565	-2.727
0.050	-	-	· -	🛏	-	-	-	-	-	-	-	-	-	-	-	, =	•	~
0.075	0.429	0.294	0.235	¦ 0₊161	0.097	0.027	-0.042	-0.116	-0.183	-0.253	-0.396	-0.529	-0_638	-0.915	-1.172	· -1 -410	-1.523	-1.630
0.100	, بابلات∎0	0.239	0.188	0.134	0.081	0,027	-0.027	-0.087	-0.139	-0,196	-0.312	-0,411	-0,520	-0.737	-0.944	-1.138	-1.233	-1.321
0,200	0.151	0,106	0.081	0.057	0.034	0.009	-0.018	-0.047	-0.071	-0.099	-0.157	-0,208	-0.266	-0.380	-0.499	-0.621	-0.689	-0.758
0.300	0.076	0+051	0.039	0.027	0.043	0.032	0+019	0.005	-0.013	-0.020	-0,053	-0.087	=0,118	-0.194	-0.286	-0.394	-0.453	-0.525
0.400	0,033	0.019	0.016	0.010	0.011	0,023	0.017	0.013	0,010	0.005	-0,014	-0.024	-0,052	-0.108	-0.189	-0.293	-0.354	-0,423
0.500	-0,005	-0,009	-0,010	-0.011	-0.013	-0.018	-0.015	-0.001	0.014	0,020	0.006	-0_008	-0.022	-0.071	-0.152	-0.255	-0,318	-0.390
0.650	- '	-	•		-	-	-	-	•	-	-	-	-	-	-	-	-	-
0.750	-0.032	-0.034	-0.031	-0.029	-0.024	-0.021	-0.017	-0.011	-0,009	-0.005	-0.011	-0.020	-0.034	-0.090	-0.175	-0.274	-0.314	-0.400
0.850	-0,008	-0.007	-0.005	, -0.003	0.001	0.008	0.012	0.017	0.021	0,020	0.015	0,007	-0.007	-0.058	-0.130	-0.225	-0.282	-0,346
0.950	-	-	-	! -	-	-	-	-	-	-	-	-	•	-	-	-	-	-

Wing AP/5, inverted attitude

∆c_p

V = 250 ft/sec; R = 3.2 x 106

x/c	6.5 ⁰	4•5°	3•5°	,2,5 ⁰	1•5 ⁰	0.5 ⁰	-0•5°	~1. 5°	-2.5°	- 3₊5 ⁰	-5.5°	- 7•55°	-9. 55⁰	-13.55°	-17•55°	-21.55°	-25.6°	-29.6°	-30 •9 °
0	0		. n	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.005	1.236	0.811	0.658	0.164	0-251	0.060	-0-143	-0-341	-0.542	-0.637	-1-136	-1-552	-1-926	-2.719	-3-142	-4-317	-4.774	-4-921	-5.028
0.015	0.962	0.621	0.491	0.234	0.163	0.010	-0.152	-0.308	-0.467	-0.622	-0.935	-1.255	-1.544	-2.141	-2.551	-3-139	-3.651	-3.995	-4.062
0.030	0.728	0.462	0.365	0.244	0.112	-0.007	-0.130	-0.253	-0.373	-0.491	-0.733	-0.980	-1.203	-1.670	-2.054	-2.468	-2.829	-3.070	-3.094
0,050	-	. •	. 🛥	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.075	0.417	0.261	0,213	0.143	0.069	0,003	-0.068	-0.135	-0.202	-0.266	-0.404	-0.545	-0.666	-0.935	-1.189	-1-425	-1.644	-1.813	-1.832
0.100	0.331	0.210	0.164	0.109	0.051	-0.003	-0.057	-0.110	-0.160	-0.213	-0.321	-0.429	-0.526	-0.745	-0.950	-1-143	-1.328	-1.487	-1.541
0.200	¹ 0•167	0.110	0.086	0.062	0.033	0.007	-0.019	-0.042	-0.063	-0.087	-0.138	-0.193	-0,-244	-0.360	-0.482	-0.603	-0.737	-0.886	-0.951
0.300	1 0 .065	0.035	0_020	0.001	-0.006	-0.018	-0.032	-0.020	-0.026	-0.036	-0.063	-0.095	-0.124	-0.192	-0.274	-0.368	-0.534	-0.642	-0,685
0.400	0.024	0.019	0.001	-0.003	-0.008	-0.013	-0.016	0	-0.005	-0. 010	-0.022	-0.040	-0,058	-0.110	-0.184	-0.280	-0.399	-0.533	-0.578
0.500	° 0₊005	-0.004	-0,008	0.004	0.019	0.019	0+017	0.018	0.017	0.019	0.013	-0.009	-0.005	-0.054	-0.130	-0.227	-0.353	-0,500	-0.538
0.650	, -	-	-	-	-	-	-	• 🖷	-	-	-	-	-	•	-	•	-	-	-
0.750	0.019	° 0₊011	0.015	i 0,018	0.020	0.026	0.030	0.035	0.038	0.041	0,040	0.034	0.023	-0.021	-0.089	-0.168	-0.279	-0,411	-0,452
0.850	-0,008	-0.010	-0.009	-0,009	-0,004	0	0.007	0.012	0.015	0.020	0,019	0.016	`0 <u>+</u> 007	-0.029	-0.084	-0.142	-0.220	-0.321	-0.349
0.950	, •	-	-	-	-	-	-	-	•	-		-	· •	-	-	-	l •	-	-

¥
.

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED PRESSURE MEASUREMENTS

Wing AP/1

- ----

 $V = 125 \, \text{ft/sec}, R = 1.6 \times 10^6$

a	C _N	с _т	С _г	с ^р	C _m
		Normal a	ttitude		
$ \begin{array}{c} - 4.35 \\ - 2.2 \\ - 1.1 \\ 0 \\ 1.1 \\ 2.2 \\ 4.35 \\ 6.5 \\ 8.7 \\ 10.9 \\ 13.0 \\ 13.25 \\ 15.0 \\ 15.9 \\ \end{array} $	-0.321 -0.179 -0.082 0.011 0.094 0.165 0.323 0.461 0.643 0.797 0.920 0.929 0.717 0.611	-0.0159 -0.0059 -0.0012 0.0014 -0.0015 -0.0042 -0.0154 -0.0347 -0.0621 -0.0979 -0.1431 -0.1501 0.0271 0.0374	-0.321 -0.179 -0.082 0.011 0.094 0.165 0.323 0.462 0.645 0.802 0.929 0.939 0.687 0.579	0.0105 0.0083 0.0008 0.0013 -0.0003 0.0011 0.0070 0.0150 0.0320 0.0495 0.0621 0.0608 0.2074 0.1994	-0.010 -0.002 -0.005 -0.005 -0.002 0.002 0.002 0.006 0.003 0.010 0.016 0.013 -0.089
15.9 4.7° 2.5° 1.45° 0.35° - 0.75° - 1.85° - 4.0° - 6.2° - 8.4° -10.55° -11.65° -12.75° -13.4° -14.85°	0.349 0.196 0.116 0.023 -0.060 -0.149 -0.298 -0.463 -0.630 -0.793 -0.871 -0.942 -0.983 -0.715 -0.576	Inverte -0.0167 -0.0052 -0.0003 0.0034 -0.0011 -0.0034 -0.0158 -0.0360 -0.0645 -0.0972 -0.1203 -0.1455 -0.1633 0.0244 0.0370	d attitud 0.349 0.196 0.116 0.023 -0.060 -0.149 -0.298 -0.463 -0.633 -0.633 -0.797 -0.877 -0.877 -0.951 -0.994 -0.685 -0.545	e 0.0098 0.0022 0.0019 0.0003 0.0002 0.0024 0.0071 0.0171 0.0321 0.0550 0.0635 0.0717 0.0749 0.2068 0.1914	-0.002 -0.005 -0.008 -0.006 -0.009 -0.014 -0.013 -0.012 -0.014 -0.016 -0.020 -0.019 -0.086 -0.073

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing AP/2

.

 $V = 125 \text{ ft/sec}, R = 1.6 \times 10^6$

æ	C _N	с _т	с _г	с _р	C	
		Normal a	ttitude			
- 4.1° - 2.05° - 0.05° 2.15 4.0° 6.05° 8.15° 10.25° 12.35° 14.4° 15.1° 16.5° 17.65°	-0.250 -0.125 0.005 0.133 0.240 0.362 0.491 0.603 0.740 0.844 0.876 0.701 0.654	-0.0109 -0.0048 0.0001 -0.0031 -0.0129 -0.0243 -0.0375 -0.0528 -0.0528 -0.0785 -0.1134 -0.1229 0.0293 0.0404	-0.250 -0.125 0.005 0.133 0.240 0.363 0.492 0.603 0.740 0.846 0.878 0.665 0.636	0.0086 0.0004 0 0.0011 0.0024 0.0119 0.0296 0.0516 0.0768 0.0949 0.1044 0.2231 0.2327	-0.012 -0.005 -0.005 0.007 0.007 0.012 0.015 0.019 0.019 0.020 -0.090 -0.092	
<u></u>	Inverted attitude					
4.55° 2.45° 0.35° - 1.7° - 3.8° - 5.9° - 8.0° -10.05° -12.15° -14.2° -15.25° -16.1° -17.45°	0.277 0.149 0.022 -0.106 -0.226 -0.355 -0.485 -0.606 -0.732 -0.840 -0.896 -0.678 -0.615	-0.0121 -0.0017 0.0022 -0.0034 -0.0132 -0.0262 -0.0417 -0.0564 -0.0753 -0.1061 -0.1269 0.0315 0.0399	0.277 0.149 0.022 -0.106 -0.226 -0.356 -0.486 -0.606 -0.731 -0.840 -0.897 -0.641 -0.573	0.0082 0.0037 0.0022 0.0005 0.0032 0.0126 0.0290 0.0540 0.0540 0.0849 0.1120 0.1189 0.2223 0.2258	0.001 -0.005 -0.008 -0.010 -0.017 -0.019 -0.020 -0.021 -0.025 -0.027 0.084 0.091	

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED PRESSURE MEASUREMENTS

Wing AP/3

 $V = 125 \text{ ft/sec}, R = 1.6 \times 10^6$

a	с _N	° _T	с _г	с _р	C m
		Normal	attitude		
$\begin{array}{r} - 5.75 \\ - 3.70 \\ - 2.70 \\ - 1.7 \\ - 0.65 \\ 0.35 \\ 0.35 \\ 2.35 \\ 3.40 \\ 4.4 \\ 6.45 \\ 10.5 \\ 12.5 \\ 14.55 \\ 16.55 \\ 18.6 \end{array}$	-0.234 -0.151 -0.109 -0.070 -0.035 -0.009 0.057 0.100 0.139 0.177 0.269 0.338 0.437 0.523 00.614 0.701 0.773	-0.0164 -0.0086 -0.0048 -0.0037 -0.0010 -0.0009 -0.0011 -0.0022 -0.0042 -0.0065 -0.0153 -0.0262 -0.0396 -0.0570 -0.0570 -0.0773 -0.1031 -0.1317	-0.234 -0.151 -0.109 -0.070 -0.035 -0.009 0.057 0.100 0.139 0.177 0.270 0.339 0.438 0.524 0.615 0.703 0.776	0.0104 0.0033 0.0019 0 -0.0001 -0.0008 -0.0005 0.0006 0.0021 0.0046 0.0112 0.0190 0.0344 0.0503 0.0708 0.0912 0.1108	-0.025 -0.017 -0.015 -0.013 -0.009 -0.011 -0.005 0.002 0.006 0.010 0.019 0.018 0.024 0.030 0.033 -
		Inverte	ed attitud	e	
7.35° 5.35° 4.3° 2.3° 1.8° 0.25° -0.75° -1.75° -2.75° -4.8° -6.85° -12.9° -14.95° -18.3°	0.299 0.223 0.171 0.135 0.095 0.047 0.010 -0.028 -0.070 -0.105 -0.184 -0.275 -0.378 -0.453 -0.453 -0.553 -0.640 -0.726 -0.776 -0.792	-0.0144 -0.0062 -0.0023 -0.0016 0.0011 0.0010 0.0019 -0.0008 -0.0018 -0.0039 -0.0114 -0.0208 -0.0351 -0.0511 -0.0511 -0.0722 -0.0926 -0.1196 -0.1376 -0.1426	0.299 0.223 0.171 0.135 0.095 0.047 0.010 -0.028 -0.070 -0.105 -0.184 -0.275 -0.379 -0.454 -0.554 -0.554 -0.641 -0.779 -0.795	0.0199 0.0115 0.0082 0.0043 0.0035 0.0014 0.0018 0 0.0014 0.0027 0.0066 0.0160 0.0289 0.0417 0.0610 0.0846 0.1076 0.1197 0.1242	0.007 0.002 0 -0.003 -0.007 -0.009 -0.013 -0.018 -0.018 -0.025 -0.030 -0.030 -0.035 -0.035 -0.038 -0.043 -0.043 -0.047 -0.046 -0.065

Table 9 (Contd)

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing AP/3

 $V = 250 \text{ ft/sec}, R = 3.2 \times 10^6$

a	C _N	° _T	с ^г	с _р	C m
		Normal a	attitude		
$\begin{array}{c} - 3.75^{\circ} \\ - 2.70^{\circ} \\ - 1.70^{\circ} \\ - 0.70^{\circ} \\ 0.30^{\circ} \\ 2.35^{\circ} \\ 3.35^{\circ} \\ 4.35^{\circ} \\ 4.35^{\circ} \\ 4.35^{\circ} \\ 6.40^{\circ} \\ 10.45^{\circ} \\ 12.50^{\circ} \\ 14.5^{\circ} \\ 14.55^{\circ} \\ 16.55^{\circ} \\ 17.55^{\circ} \end{array}$	-0.144 -0.101 -0.062 -0.025 0.014 0.053 0.094 0.143 0.186 0.273 0.357 0.435 0.521 0.612 0.692 0.720	-0.0045 -0.0030 -0.0019 -0.0011 -0.0012 -0.0011 -0.0033 -0.0054 -0.0085 -0.0160 -0.0270 -0.0409 -0.0591 -0.0816 -0.1049 -0.1178	-0.144 -0.101 -0.062 -0.025 0.014 0.053 0.094 0.143 0.186 0.273 0.357 0.436 0.522 0.614 0.694 0.723	0.0067 0.0031 0.0007 -0.0005 -0.0013 -0.0005 -0.0006 0.0012 0.0035 0.0112 0.0212 0.0334 0.0486 0.0669 0.0879 0.0959	-0.017 -0.014 -0.012 -0.007 -0.005 -0.006 0.002 0.004 0.005 0.012 0.015 0.014 0.017 0.023 0.023 0.023
	<u> </u>	Inverted	attitude	<u> </u>	······
5.15° 4.15° 3.15° 2.1° 1.1° -0.9° -1.95° -7.0° -7.0° -11.05° -13.1° -16.15°	0.216 0.172 0.125 0.091 0.042 0.003 -0.032 -0.076 -0.119 -0.206 -0.293 -0.377 -0.464 -0.549 -0.632 -0.677	-0.0092 -0.0045 -0.0025 -0.0011 -0.0006 0.0015 0.0002 -0.0010 -0.0023 -0.0087 -0.0192 -0.0310 -0.0455 -0.0627 -0.0859 -0.1064	0.216 0.172 0.091 0.042 0.003 -0.032 -0.076 -0.119 -0.206 -0.293 -0.377 -0.464 -0.548 -0.631 -0.679	0.0077 0.0059 0.0028 0.0011 -0.0004 0.0015 0.0011 0.0025 0.0053 0.0118 0.0202 0.0332 0.0501 0.0700 0.0897 0.0943	0.003 -0.002 -0.004 -0.005 -0.009 -0.011 -0.013 -0.018 -0.019 -0.024 -0.028 -0.029 -0.035 -0.041 -0.041 -0.041

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing AP/4

 $V = 125 \, \text{ft/sec}, R = 1.6 \times 10^6$

a	с _N	с _т	с _г	с _р	C m
		Normal s	ittitude		
$\begin{array}{r} - 5.75^{\circ} \\ - 3.75^{\circ} \\ - 2.75^{\circ} \\ - 1.75^{\circ} \\ - 0.6^{\circ} \\ 0.3^{\circ} \\ 2.3^{\circ} \\ 2.3^{\circ} \\ 3.3^{\circ} \\ 4.3^{\circ} \\ 6.35^{\circ} \\ 10.35^{\circ} \\ 14.4^{\circ} \\ 18.45^{\circ} \\ 20.45^{\circ} \\ 20.85^{\circ} \\ 21.05^{\circ} \end{array}$	-0.175 -0.119 -0.085 -0.054 -0.022 0.009 0.054 0.076 0.101 0.137 0.198 0.336 0.477 0.631 0.710 0.701 0.661	-0.0113 -0.0057 -0.0027 -0.0003 0 0.0005 0.0002 -0.0010 -0.0029 -0.0048 -0.0098 -0.0282 -0.0530 -0.0885 -0.1085 -0.1134 -0.0039	-0.175 -0.119 -0.085 -0.054 -0.022 0.009 0.054 0.076 0.101 0.137 0.198 0.336 0.477 0.628 0.705 0.621	0.0082 0.0034 0.0023 0.0019 0.0005 0.0004 0.0008 0.0013 0.0019 0.0041 0.0101 0.0292 0.0623 0.1091 0.1390 0.1362 0.2273	-0.025 -0.018 -0.015 -0.012 -0.009 -0.005 0 0 0.005 0.007 0.014 0.023 0.025 0.030 0.034 -0.028 -0.028
6.95° 4.95° 2.95° 1.95° 0.9° -0.1° -2.1° -3.1° -3.15° -13.2° -17.25° -19.25° -21.25° -21.55°	0.214 0.151 0.121 0.090 0.062 0.032 -0.008 -0.034 -0.068 -0.099 -0.167 -0.297 -0.455 -0.602 -0.682 -0.758 -0.771	Inverted -0.0121 -0.0065 -0.0039 -0.0018 -0.0006 -0.0008 -0.0010 -0.0006 -0.0021 -0.0021 -0.0093 -0.0259 -0.0259 -0.0538 -0.0894 -0.1123 -0.1328	attitude 0.214 0.151 0.121 0.090 0.062 0.032 -0.008 -0.034 -0.068 -0.099 -0.167 -0.297 -0.455 -0.601 -0.680 -0.753 -0.764	0.0117 0.0049 0.0033 0.0018 0.0009 -0.0007 -0.0009 0.0004 0.0012 0.0021 0.0021 0.0074 0.0248 0.0563 0.0993 0.1260 0.1580 0.1642	0.013 0.009 0.005 0.003 -0.001 -0.004 -0.008 -0.011 -0.015 -0.017 -0.022 -0.033 -0.042 -0.049 -0.051 -0.052 -0.054

Table 10 (Contd)

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing AP/4

 $V = 250 \text{ ft/sec}, R = 3.2 \times 10^6$

æ	C _N	° _T	с _г	с _р	С _т		
	Normal attitude						
$\begin{array}{c} - 5.75^{\circ} \\ - 3.75^{\circ} \\ - 2.75^{\circ} \\ - 1.75^{\circ} \\ - 0.75^{\circ} \\ 0.3^{\circ} \\ 1.3^{\circ} \\ 2.3^{\circ} \\ 3.3^{\circ} \\ 4.3^{\circ} \\ 6.35^{\circ} \\ 10.35^{\circ} \\ 14.4^{\circ} \\ 18.4^{\circ} \\ 20.45^{\circ} \\ 21.45^{\circ} \end{array}$	-0.180 -0.115 -0.081 -0.048 -0.024 0.006 0.039 0.069 0.098 0.132 0.194 0.333 0.472 0.601 0.707 0.736	-0.0108 -0.0048 -0.0025 -0.0020 0 -0.0006 -0.0009 -0.0016 -0.0032 -0.0047 -0.0101 -0.0265 -0.0529 -0.0897 -0.1084 -0.1181	-0.180 -0.115 -0.081 -0.048 -0.024 0.006 0.039 0.069 0.098 0.132 0.194 0.333 0.471 0.599 0.702 0.730	0.0090 0.0038 0.0022 0.0001 0.0005 -0.0005 -0.0005 0.0015 0.0015 0.0040 0.0095 0.0306 0.0615 0.0918 0.1386 0.1522	-0.021 -0.016 -0.014 -0.008 -0.004 -0.001 0.002 0.007 0.008 0.014 0.024 0.039 0.032 0.032 0.027 0.024		
		Inverted	attitude				
6.85° 4.85° 2.85° 2.85° 1.85° -0.2° -1.2° -2.2° -3.2° -5.2° -13.3° -17.3° -21.35° -23.35° -25.4°	0.213 0.147 0.102 0.083 0.052 0.020 -0.013 -0.036 -0.097 -0.165 -0.097 -0.165 -0.598 -0.668 -0.741 -0.823 -0.851 -0.895	-0.0114 -0.0058 -0.0020 -0.0025 0 -0.0003 0 -0.0023 -0.0037 -0.0092 -0.0278 -0.0278 -0.0543 -0.0543 -0.1015 -0.1183 -0.1486 -0.1600 -0.1480	0.213 0.147 0.102 0.083 0.052 0.020 -0.013 -0.036 -0.065 -0.097 -0.165 -0.313 -0.456 -0.595 -0.663 -0.732 -0.813 -0.839 -0.870	0.0122 0.0052 0.0014 0.0006 0.0001 -0.0001 0.0011 0.0009 0.0026 0.0075 0.0259 0.0565 0.1033 0.1318 0.1666 0.1979 0.2137 0.2584	0.014 0.009 0.011 0.005 -0.001 -0.003 -0.007 -0.011 -0.014 -0.017 -0.023 -0.023 -0.032 -0.040 -0.036 -0.032 -0.029 -0.024 -0.026		

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing AP/5

 $V = 125 \, \text{ft/sec}, R = 1.6 \times 10^6$

a	C _N	° _T	° _L .	с _р	C m
		Normal	attitude		
$\begin{array}{r} -5.8^{\circ} \\ -3.8^{\circ} \\ -2.8 \\ -1.8^{\circ} \\ -0.8^{\circ} \\ -1.2^{\circ} \\ 2.2^{\circ} \\ -2.2^{\circ} $	-0.095 -0.064 -0.041 -0.025 -0.011 -0.002 0.018 0.035 0.049 0.062 0.100 0.141 0.178 0.280 0.388 0.523 0.591 0.631 0.643 0.604	-0.0038 0.0002 0.0005 0.0018 0.0029 0.0024 0.0020 0.0018 0.0010 0.0003 -0.0026 -0.0063 -0.0101 -0.0224 -0.0355 -0.0549 -0.0672 -0.0757 -0.0757 -0.0765 -0.0172	-0.095 -0.064 -0.041 -0.025 -0.011 -0.002 0.018 0.035 0.049 0.062 0.100 0.141 0.177 0.277 0.381 0.506 0.566 0.605 0.615 0.552	0.0068 0.0051 0.0024 0.0028 0.0031 0.0024 0.0022 0.0028 0.0032 0.0042 0.0072 0.0125 0.0198 0.0442 0.0838 0.1420 0.1751 0.1945 0.2019 0.2460	-0.020 -0.015 -0.009 -0.007 -0.003 0.002 0.006 0.010 0.013 0.016 0.020 0.022 0.019 0.009 -0.002 -0.012 -0.012 -0.018 -0.019 -0.028
				`~	<u></u>
7.0° 5.0° 4.0° 2.0° 1.0° -1.0° -3.0° -5.0° -7.0° -7.0° -13.0° -17.05° -23.05° -25.05° -27.05° -28.3° -29.05°	0.109 0.076 0.048 0.031 0.015 -0.001 -0.033 -0.050 -0.080 -0.159 -0.259 -0.259 -0.362 -0.481 -0.556 -0.626 -0.699 -0.740 -0.652	Inverted -0.0040 0.0003 0.0012 0.0010 0.0024 0.0028 0.0027 0.0015 0.0005 -0.0010 -0.0024 -0.0060 -0.0097 -0.0225 -0.0370 -0.0225 -0.0370 -0.0595 -0.0740 -0.0819 -0.0945 -0.0980 -0.0143	attitude 0.109 0.076 0.061 0.048 0.031 0.015 -0.001 -0.016 -0.033 -0.050 -0.050 -0.080 -0.119 -0.158 -0.257 -0.356 -0.469 -0.539 -0.600 -0.663 -0.695 -0.574	0.0083 0.0062 0.0048 0.0030 0.0032 0.0029 0.0027 0.0020 0.0020 0.0020 0.0022 0.0054 0.0054 0.0098 0.0170 0.0391 0.0745 0.1222 0.1552 0.1973 0.2409 0.2716 0.3103	0.016 0.011 0.007 0.003 0 -0.002 -0.006 -0.010 -0.013 -0.016 -0.019 -0.026 -0.039 -0.030 -0.026 -0.013 -0.008 -0.001 0.009 0.016 0.015

Table 11 (Contd)

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing AP/5

 $V = 250 \text{ ft/sec}, R = 3.2 \times 10^6$

a	C _N	c _t	с _г	с _р	С _щ
		Normal ^o a	ttitude		
$\begin{array}{c} - & 6 & 2 \\ - & 4 & 2 \\ - & 3 & 2 \\ - & 2 & 2 \\ - & 2 & 2 \\ - & 2 & 2 \\ - & 0 & 2 \\ - & 0 & 8 \\ - & 0 & 0 \\$	-0.101 -0.065 -0.050 -0.032 -0.019 -0.005 0.012 0.027 0.042 0.059 0.100 0.139 0.189 0.280 0.395 0.525 0.585 0.657	-0.0027 0.0002 0.0010 0.0017 0.0020 0.0025 0.0022 0.0023 0.0010 0.0004 -0.0029 -0.0062 -0.0109 -0.0221 -0.0391 -0.0582 -0.0689 -0.0790	-0.101 -0.065 -0.050 -0.032 -0.019 -0.005 0.012 0.027 0.042 0.059 0.100 0.139 0.188 0.277 0.388 0.509 0.563 0.627	0.0085 0.0051 0.0039 0.0030 0.0024 0.0025 0.0023 0.0031 0.0029 0.0042 0.0070 0.0125 0.0209 0.0448 0.0829 0.0448 0.0829 0.1401 0.1724 0.2141	0.020 -0.015 -0.012 -0.009 -0.006 0.002 0.006 0.010 0.013 0.015 0.019 0.020 0.012 -0.022 -0.014 -0.026
	<u> </u>	Inverted	attitude	 	
6.5° 4.5° 2.5° 1.5° -0.5° -1.5° -3.5° -7.55° -17.55° -17.55° -21.55° -25.6° -29.6° -30.8°	0.111 0.069 0.053 0.037 0.022 0.006 -0.010 -0.021 -0.036 -0.052 -0.088 -0.131 -0.168 -0.265 -0.371 -0.490 -0.625 -0.755 -0.795	-0.0041 -0.0013 0 0.0019 0.0021 0.0020 0.0025 0.0018 0.0009 0.0001 -0.0024 -0.0059 -0.0025 -0.0226 -0.0383 -0.0573 -0.0778 -0.0989 -0.1004	0.111 0.069 0.053 0.037 0.022 0.006 -0.010 -0.021 -0.036 -0.052 -0.088 -0.131 -0.167 -0.263 -0.365 -0.476 -0.597 -0.705 -0.733	0.0082 0.0040 0.0031 0.0034 0.0026 0.0020 0.0026 0.0024 0.0025 0.0034 0.0025 0.0034 0.0064 0.0117 0.0408 0.0764 0.1280 0.2013 0.2887 0.3228	0.016 0.011 0.009 0.005 0.001 -0.002 -0.005 -0.012 -0.016 -0.019 -0.024 -0.027 -0.028 -0.021 -0.020 0.021 -0.020 0.001 0.025 0.031

BALANCE MEASUREMENTS OF LIFT, DRAG AND PITCHING MOMENT

Wing AF/1

$$V = 125 \, \text{ft/sec}; R = 1.6 \times 10^6$$

 $V = 250 \text{ ft/sec}; R = 3.2 \times 10^6$

a	ĒL	₫ _D	ē,
- 4.3°	-0.263	0.0124	-0.0045
- 3.2 ⁰	-0.199	0.0092	-0.0033
- 2.15 [°]	-0.131	0.0070	-0.0023
- 1.05°	-0.067	0.0058	-0.0013
0	0	0.0054	0
1.05°	0.064	0.0058	0.0011
2.15°	0.130	0.0070	0.0023
3.2°	0.199	0.0092	0.0032
-4.3°	0.262	0.0123	0.0043
6 .4 °	0.396	0.0218	0.0066
8.55°	0.539	0.0353	0.0046
10.7°	0.672	0.0519	0.0039
12.85°	0.801	0.0720	0.0030
15.00	0.919	0.0951	0.0013
16.05°	0.972	0.1077	-0.0001
17.1°	1.011	0.1209	-0.0026

a	ċŗ	₽ ₽ ₽	ਟ <u></u> _
- 3.15°	-0.198	0.0097	-0.0036
- 2.1 ⁰	-0.133	0.0076	-0.0024
- 1.0°	-0.065	0.0066	-0.0013
0.05 ⁰	0.002	0.0063	о
1.10	0.069	0.0067	0.0012
2.2°	0.136	0.0081	0.0023
3.25°	0.202	0.0106	0.0035
4.35°	0.268	0.0139	0.0044
6 .4 °	0.401	0.0225	0.0063
8.55°	0.535	0.0347	0.0071
10.7 ⁰	0.674	0.0512	0.0058
12.85°	0.807	0.0709	0.0049
15.0°	0.935	0.0945	0.0036
17.1°	1.036	0.1195	0.0020
1			

BALANCE MEASUREMENTS OF LIFT, DRAG AND PITCHING MOMENT

Wing AF/2

$V = 125 \text{ ft/sec}; R = 1.6 \times 10^6$

<u>V = 250 ft/sec; R = 3.2×10^6 </u>

a	¯c _⊥	⁵ ₪	₽ ₽ ₽
- 4.45°	-0,217	0.0129	-0.0050
- 3.4°	-0.168	0.0100	-0.0042
- 2.35°	-0,115	0.0077	-0,0029
- 1₊3°	-0.064	0.0063	-0,0016
- 0,3°	-0.014	0.0057	-0.0002
0 .75⁰	0.035	0.0059	0.0013
1.8 [°]	0.087	0.0069	0.0028
2 . 8 ⁰	0.139	0.0086	0.0041
3.85°	0.188	0.0110	0.0050
5•9°	0.289	0.0189	0.0065
8.0 [°]	0.392	0.0295	0.0072
10.05 [°]	0.502	0.0443	0.0045
12.15 ⁰	0.610	0.0626	0.0031
14.2 ⁰	0.713	0.0836	0.0014
16.25°	0.811	0.1085	-0.0015
17.3°	0.860	0.1226	-0.0034
18.35°	0.899	0.1362	-0.0057

α.	¯c _⊥	ē _₽	⋶
- 3.35°	-0.163	0.0110	-0.0046
- 2.3°	-0.113	0.0087	-0.0036
- 1.25°	-0.062	0,0074	-0.0023
- 0,2°	-0,011	0,0068	-0.0009
0 .8⁰	0.039	0,0069	0.0006
1.85 ⁰	0.091	0.0078	0.0020
2.9 ⁰	0.142	0.00%	0.0033
3.9°	0.193	0.0124	0.0047
6.0 ⁰	0.292	0.0195	0.0059
8.05°	0.399	0.0302	0.0070
10 . 1°	0.502	0.0440	0.0073
12 .2⁰	0.614	0.0610	0.0053
14.25°	0.725	0.0804	0.0022
16.35°	0.830	0.1099	-0.0004
17 . 4 ⁰	0.881	0.1239	-0.0016
18 . 4°	0.930	0.1390	-0.0033

BALANCE MEASUREMENTS OF LIFT, DRAG AND PITCHING MOMENT

Wing AF/3

$$V = 125 \, \text{ft/sec}; R = 1.6 \times 10^6$$

<u>V = 250 ft/sec; R = 3.2 × 10^6 </u>

a	Ē	₽ ₽	Ĉ _m
- 4.1 [°]	-0.136	0.0136	-0.0069
- 3.1 ⁰	-0.101	0.0113	-0.0057
- 2.05°	-0.066	0.0095	-0.0042
- 1.05°	-0.034	0.0087	-0.0025
- 0.05°	-0.002	0.0082	-0.0002
0.95°	0.032	0.0084	0.0026
1.95°	0.063	0.0092	0.0046
3.0°	0.097	0.0107	0.0063
4.0 ⁰	0.131	0.0127	0.0073
6 .1⁰	0.203	0.0189	0,0086
8 . 1 ⁰	0.274	0.0281	0.0096
10 .15⁰	0.352	0.0406	0.0078
12 .15⁰	0.438	0.0582	0.0026
14.20	0.529	0.0800	-0,0026
16.25°	0.607	0.1029	-0.0080
18.250	0.694	0.1324	-0.0145
20 . 3⁰	0.778	0.1655	-0.0225
22 .3⁰	0.854	0.2017	-0.0314
22 . 85°	0.595	0.2707	-0.1034

a	¯c _⊥	₫ _D	5	
- 2.15°	-0.066	0.0108	-0.0042	
- 1.1 ⁰	-0.035	0.0099	-0.0022	
- 0.1 ⁰	-0.003	0.0095	0.0001	
0.9 ⁰	0.029	0.0096	0.0026	
1.9 ⁰	0.061	0.0104	0.0047	
2.95°	0.095	0.0118	0.0065	
3•95°	0.128	0.0140	0.0075	
6.0°	0.204	0.0207	0.0088	
8.0°	0.278	0.0302	0.0091	
10.05°	0.354	0.0425	0.0082	
12.05°	0.434	0.0586	0.0060	
14.1 ⁰	0.519	0.0790	0.0021	
16.15°	0.607	0.1040	-0.0043	
18.15°	0.696	0.1336	-0.0110	
20.2°	0.782	0.1664	-0.0182	
22.25°	0.867	0.2043	-0.0263	

BALANCE MEASUREMENTS OF LIFT, DRAG AND

PITCHING MOMENT

Wing AF/4

<u>V = 125 ft/seo; R = 1.6 × 10⁶</u>

 $V = 250 \text{ ft/sec}; R = 3.2 \times 10^6$

٩.

ď	¯c _⊥	¯c_ _₽	₿ m
- 4.2 ⁰	-0.104	0.0128	-0.0087
- 3.15°	-0.077	0.0112	-0.0074
- 2.15°	-0.051	0.0098	-0.0058
- 1.15°	-0.028	0.0090	-0.0035
- 0.15°	-0.003	0.0087	-0.0003
0.85°	0.019	0.0088	0.0024
1.85°	0.042	0.0092	0.0051
2.85°	0.068	0.0105	0.0075
3.9°	0.095	0.0120	0.0086
5•9°	0.150	0.0164	0.0104
7•9 ⁰	0.208	0.0243	0.0098
9•9°	0.269	0.0248	0.0079
11.95 ⁰	0.334	0.0492	0.0032
13.95 ⁰	0.407	0.0676	-0.0051
16.0 ⁰	0.477	0.0895	-0.0134
18 . 0 ⁰	0.554	0.1173	-0.0248
20.0°	0.632	0.1497	-0.0373
22.05 ⁰	0.712	0.1877	-0.0507
24.05 ⁰	0.786	0.2277	-0.0638
25.05°	0.820	0.2507	-0.0727
25.35 ⁰	0.738	0.3527	-0.1401

a	Ē	¯c _₽	5 ^m
- 4.15 ⁰	-0.102	0.0137	-0.0088
- 3.1°	-0.075	0.0117	-0.0077
- 2.1 ⁰	-0.049	0.0104	-0.0057
- 1.1 ⁰	-0.025	0.0096	-0.0033
- 0 .1⁰	-0.002	0.0093	-0.0003
0.9 ⁰	0.021	0.0093	0.0026
1.9 ⁰	0.045	0.0100	0.0049
2.9 ⁰	0.070	0.0111	0.0073
3•95°	0.097	0.0129	0.0085
5•95 ⁰	0.153	0.0187	0.0100
7•95 ⁰	0.211	0.0267	0.0095
9•95 [°]	0.273	0.0375	0.0072
12.0 ⁰	0.336	0.0511	0.0039
14.0 ⁰	0.406	0.0694	-0.0027
16•05 ⁰	0.476	0.0911	-0.0104
18 . 05 ⁰	0.548	0.1170	-0.0192
20.05 ⁰	0.619	0.1463	-0.0290
22 .1⁰	0.693	0.1811	-0.0405
24 . 1 ⁰	0.767	0.2202	-0.0533
25 . 1 ⁰	0.804	0.2411	-0.0600
26.1 ⁰	0.838	0.2632	-0.0667

BALANCE MEASUREMENTS OF LIFT, DRAG AND PITCHING MOMENT

Wing AF/5

.

$$V = 125 \, \text{ft/sec}; R = 1.6 \times 10^6$$

ι

 $V = 250 \text{ ft/sec}; R = 3.2 \times 10^6$

a	¯с _L	₽ ₽ ₽	€ m
- 4.10	-0.054	0.0141	-0.0075
- 3.1	-0.038	0.0126	-0.0073
- 2.1°	-0.025	0.0119	-0.0051
- 1.1 [°]	-0.011	0.0112	-0.0049
- 0.1 [°]	-0.001	0.0112	-0.0013
0.9 ⁰	0.012	0.0115	-0,0003
1.9 ⁰	0.023	0.0115	0.0036
2.9°	0.036	0.0121	0.0052
3.9°	0.048	0.0132	0.0071
5.9°	0.079	0.0156	0.0077
7.9°	0.116	0.0210	0.0031
9•9°	0.157	0.0296	0
13.9°	0.246	0.0549	-0.0103
17•95°	0.351	0.0951	-0.0388
21.95°	0.469	0.1545	-0.0707
25.95°	0.600	0.2563	-0.1123
30.0°	0.725	0.3812	-0.1435
34.0°	0.865	0.5364	-0.2052
38.0°	0.940	0.6729	-0.2293
42.05°	1.010	0.8314	-0.2674
46.0°	0.981	0.9120	-0.2480

a	Ĉ _⊥	₽ ₽	₽ ₽
- 4.15°	-0.054	0.0145	-0.0069
- 3.15°	-0.038	0.0138	-0.0062
- 2.1°	-0.025	0.0133	-0.0048
- 1.1 ⁰	-0.013	0.0127	-0.0027
- 0 . 1 ⁰	-0,001	0.0127	-0.0004
0 .9°	0.010	0.0126	0.0023
1.9 ⁰	0.022	0.0129	0.0044
2.9°	0.035	0.0133	0.0063
3•9°	0.048	0.0142	0.0071
5.9°	0.081	0.0184	0.0069
7.9°	0.115	0.0237	0.0048
9•9°	0.153	0.0312	0.0015
13.9 ⁰	0.236	0.0542	-0.0108
17.9 ⁰	0.336	0.0926	-0.0326
21 . 95 ⁰	0.448	0.1477	-0.0609
25.95°	0.567	0.2218	-0.0938
29.95°	0.678	0.3088	-0.1270
34.0°	0.798	0.4881	-0.1838

BOUNDARY LAYER TRANSITION POSITION AT CENTRE SECTION: A SERIES WINGS

V = 125 f	$V = 125 \text{ft/sec}; R = 1.6 \times 10^6$			/sec; R =]	3.2 × 10 ⁶
	× _T	/c	•	2	^κ π⁄c
C.	Upper surface	Lower surface	a	Upper surface	Lower surface
		AF	/1		
- 4.3° - 2.15° 0° 2.15° 4.25° 6.4° 8.55° 10.7°	0.82 0.70 0.58 0.51 0.22 0.06 0.022 0.013	0.25 0.51 0.58 0.68 0.80 1.00 -	- 2.05° 0.10° 2.25° 4.4° 6.4° 8.55°	0.54 0.47 0.36 0.10 0.03 ₁ 0.01 ₃	0.40 0.46 0.54 0.68 0.84 1.00
		AF	/2		
- 4.45° - 2.35° - 0.3° 1.8° 3.85° 5.9° 8.0° 10.05°	0.78 0.69 0.60 0.52 0.41 0.20 0.03 0.01 ₂	0.40 0.52 0.60 0.70 0.75 0.83 1.00	- 2.3° - 0.2° 1.85° 3.9° 6.0° 8.05° 10.1°	0.57 0.50 0.43 0.16 0.06 0.019 0.010	0.40 0.48 0.56 0.66 0.70 0.77 1.00
		AF	/3		
- 4.15° - 2.1° - 0.1° 1.9° 3.95° 6.1° 8.1° 10.15° 12.15°	0.75 0.69 0.60 0.53 0.46 0.29 0.10 0.036 0.016	0.44 0.52 0.58 0.66 0.74 0.78 0.94 1.00	$\begin{array}{r} -2.15^{\circ} \\ -0.1^{\circ} \\ 1.9^{\circ} \\ 3.95^{\circ} \\ 6.0^{\circ} \\ 8.0^{\circ} \\ 10.05^{\circ} \\ 12.05^{\circ} \end{array}$	0.54 0.52 0.47 0.27 0.09 0.042 0.021 0.010	0.42 0.52 0.57 0.56 0.62 0.68 0.81

Table 17 (Contd)

BOUNDARY LAYER TRANSITION POSITION AT CENTRE SECTION: A SERIES WINGS

V = 125 f	t/sec; R =	• 1.6 × 10 ⁶	V = 250 ft	:/sec; R =	3.2 × 10 ⁶
	X _T /	ζc		× _T	/c
c.	Upper surface	Lower surface	C.	Upper surface	Lower surface
		/4			
- 4.2° - 2.15° - 0.15° 1.85° 3.85° 5.9° 7.9° 9.9° 11.95° 13.95°	0.73 0.67 0.60 0.52 0.46 0.33 0.14 0.052 0.031 0.021	0.46 0.54 0.58 0.65 0.73 0.77 0.81 0.98	$ \begin{array}{r} - 4.15^{\circ} \\ - 2.1^{\circ} \\ - 0.1^{\circ} \\ 1.9^{\circ} \\ 3.95^{\circ} \\ 5.95^{\circ} \\ 7.95^{\circ} \\ 9.95^{\circ} \\ 12.0^{\circ} \\ \end{array} $	0.58 0.50 0.52 0.44 0.38 0.18 0.062 0.031 0.01 ₀	0.29 0.44 0.50 0.54 0.58 0.62 0.75 0.83 0.85
		AF,	/5		
- 4.15° - 0.1° 3.9° 7.9° 11.9° 15.95° 20.95°	0.75 0.60 0.48 0.073 0.025 0.013	0.48 0.58 0.75 0.85 - -	$ \begin{array}{r} - 4.1^{\circ} \\ - 0.1^{\circ} \\ 3.9^{\circ} \\ 7.9^{\circ} \\ 11.9^{\circ} \\ 15.9^{\circ} \end{array} $	0.62 0.48 0.40 0.10 0.052 0.01 ₀	0.42 0.50 0.58 0.67 0.71

Table 18

٠

LIFT CURVE SLOPES AT ZERO LIFT, WINGS AF/1 AND AF/5

		-	ē₁∕	/a	
Aspect ratio	_	Origina	l method	Modified	1 method
	Exp.	k=1.00	k=0.92	k #1. 00	k=0.92
4.0 0.5	3.5 0.70	3.91 0.75	3.76 0.72	3.64 0.72	3.45 0.70

 $V = 250 \text{ ft/sec}; R = 3.2 \text{ x} 10^6$

a a	-4.05°	-2.0°	00	2.0°	4.05°	6.05 ⁰	8.10	10-10	12-15 ⁰	14-150	16.15 ⁰
nc /											
				ι	ipper su	face					
θ	-2.252	-1.123	0.354	1.002	0,824	-0.319	-2.620	-5.761	-9.053	-11.486	-10.488
0.005	1.011	0,895	0.541	-0.104	-0.969	-2.130	-3.572	-5-154	-6.548	-7.099	-6.763
0.015	0.778	0.494	0.062	-0.556	-1.281	-2.185	-3.116	-4-141	-5.075	-5.675	-5.039
0.030	0.468	0.164	-0.230	-0.740	-1.296	-1,962	-2.663	-3.363	-4.014	-4-423	-4.000
0.050	0.246	-0.035	-0.316	-0.797	-1.238	-1.735	-2.241	-2.757	-3.249	-3.572	-3.075
0.075	0.072	-0.185	-0.482	-0.836	-1.199	-1.572	-2.000	-2.441	-2.777	-2.982	-2.657
0.100	-0.044	-0,281	-0.542	-0.842	-1.149	-1.531	-1.888	-2.236	-2,489	-2.639	-2.336
0,200	-0.203	-0.368	-0 <u>-544</u>	-0.727	-0.988	-1.104	-1.314	-1.512	-1.652	-1.724	-1.340
0.300	-0.255	-0.380	-0.514	-0.633	-0.764	-0.908	-1.051	-1.179	-1.261	-1+304	-1.138
0.400	-0.246	-0.342	-0.451	-0.526	-0.625	-0.726	-0.823	-0 .90 8	-0.959	-0.978	-0.902
0.500	-0.174	-0.227	-0.292	-0.370	-0.437	-0.509	-0.570	-0.619	-0.649	-0.657	-0.684
0.650	-0.103	-0.150	-0.196	-0.245	-0.288	-0.331	-0.367	-0.394	-0.403	-0.413	-0.613
0.750	-0.020	-0.030	-0.044	-0.057	-0.070	-0.084	-0.093	-0.101	-0.107	-0.089	-0,038
0.850	-0.022	-0.034	-0.052	-0.069	-0.081	-0.096	-0.100	-0.102	-0.109	-0.136	-0.437
0.950	0.053	0.058	0.056	0.052	0.051	0.043	0.040	0.091	0_066	-0.057	-0.427
				L	OWER SUI	face	10				
0.005	0.074	0.006			0.000		0.000		1 0 7 77		0.700
	-2+2)	-0.000	-0,104	0.527	0,902	1.015	0.928	0.000	0.5/5		0.522
	-2.021	-0.009	-0.129	0.052	0,090	0.915	1.010	0.992	0.910	0.850	0.901
	0.207	-0.517	-0.124	0.245	0,592	0.750	0.915	0.990	1.009		1.001
	-0.040		-0.125	0,105	0.410	0.021	0./04	0.905	0.900	0.905	0.955
0.075	-0.040		40,120	0.115	0,520	0.510	0.00	0.011	0.079	0.910	
0.100		-0.344	-0.125	0.080	0.209	0,442	0.591	0.752	0.804	0.751	0.094
0.200	-0.404	-0.019	-0-17	-0.024	0.114	0.251	0.374	0.515	0.583	0.590	0.551
0.300	-0.995	-0.287	-0.175	-0,070	0.040	0.151	0.255	0.388	0.447	0.439	0.389
0.400	-0.297	-0.216	-0.131	-0.053	0.035	0.124	0.207	0.329	0.374	0.350	0.298
0.500	-0.215	-0.154	-0.085	-0.026	0.045	0.116	0.185	0.292	0.330	0.293	0.228
0.650	-0.103	-0.059	-0.015	0.039	0.075	0.127	0.175	0,266	0.290	0.240	0.153
0.750	-0.030	0.003	0.037	0.079	0.096	0.136	0.175	0,254	0,270	0.208	0.101
0.850	0.082	0.107	0.072	0.097	0.127	0.134	0.160	0.231	0.236	0.164	0.023
0.950	0.080	0.094	0,102	0.110	0.123	0.125	0.131	0,188	0.178	0.084	-0.112

Table 19 (Contd)

Wing BP/O

V = 250 ft/sec; R = 3.2 x 10⁶

x/c	-4.05 0	-2.00	00	2 .0 0	4.05°	6.050	8.10	10 •1 0	12,150	14.150	16.150
0	0	0	0	0	0	0	0	0	0	0	0
0.005	2.799	1.163 0.681	0.191	-0,908 -0,985	-1.971	=3.145 =3.100	-4.500 -4.126	-5.133	-5.021 -5.023	-6.505	=5.940
0.050	1.092 0.718	0,400 0,190	-0.251 -0.362	-0,962 -0,951	-1.648	-2,356	-3.025	-3.662 -3.252	-4.209	-4-557	-4.030 -3.533
0.100 0.200	0.527 0.261	0.063 -0.049	-0.417 -0.373	-0.922 -0.703	-1.418	-1•973 -1•355	-2.479 -1.688	-2.968 -2.027	-3.293	-3.370	-3.030 -1.891
0 .300 0 . 400	0.138 0.051	-0.093 -0.126	-0.339 -0.320	-0.563 -0.473	-0.804 -0.660	-1.059 -0.850	-1.306 -1.030	-1•567 -1•237	-1.708 -1.333	-1•743 -1•328	-1.527 -1.200
0.500	0.041 0	-0.073	-0.207	-0,344 -0,284	-0.482	-0.625	-0.755	-0.911	-0.979	-0.950	-0.912
0.850	-0,104 -0,027	-0.141	-0.124	-0.156 -0.058	-0.208	-0.230	-0.260 -0.260 -0.090	-0.333 -0.097	-0.345	-0.300 -0.141	-0.139 -0.460 -0.315

- -

51

•
OF
X 1
- F 🛙
61
_
-4
a

.

V = 250 ft/sec; R = 3.2 x 106

2 × 10	18•45°		1	ł		1-127	3-168	2.879	-2-494	-1.572	1.133	98	0.52	0.242	0.152	8.9	610.0-		C-247	0.755	266-0	1.000	242.0	0.877	159-0	0.50 202	0.4114	0.358	0.302	0.270	0.207	0.115
. н = 3.	17.40		•	•	•	R 7	-3.292	-2.768	-2.492		1.140	0.815	0.562	0.280	-0.148	610.0	120.0		- 1110-0-	0.933	1.008	0.996	0*980	0.851	0.627	0.480	165.0	C.LE.0	0.297	0.270	0.217	0.146
0 ft/sec	15•3°		•	•	4.488	3.620	e.915	-5°185	-2.213	- 6677 F	- 660 -	- 5 9	0,570	- 882	-0°160	0.043	0.059		0.370	0.942	1.013	0.955	0.863	0.783	0.554	1140	0"310	0.299	0.267	0°241	0.219	0.159
V = 25	13-150		-4.818	-r+183	-169 <u>(</u> -	-2.989	-2.162	-2.141	- 196- 1-		50.7	0.75	0.516	- 162°0-	-0-162	0.047	0*074		0.7151	1.007	0.981	0.883	0° 778	9. 9	0-466	0.336	0.277	0.248	0.230	0.221	0.190	0.159
	10-95 ⁰		-2.384	-3.248	-2-869	-2.451	-2•032	1.811	12.1	-1.155	-0-921	-0-695	50.0	-0.279	-0-157	610.0-	140.0		626*0	1.007	C06•0	0.781	0•674	0.590	200	0°258	0•213	2.0	0.191	0.193	R 1.0	0.151
	8•8°		-0-551	2 1 <u>5</u>	P. 17	-1.917	-1.668	-1-196	-1-445	-1-015	9.832	-0.637	R.7.0	-0.262	0.150	5.0	LL0*0		1.013	0.937	682.0	0.653	0.549	12470	0.278	0.178	0.145	0.139	0.153	0.163	0.148	0.145
	6•6°		0.588	-1-209	157-1-	1-397	-1.295	-1-23	せっし	-0-858	-0-727	-0.567	-0.121	-0.235	-0.135	110.0	0.081		196.0	0.783	0.625	167-0	0.403	0.339	0.17	1 6 0*0	4000	0.085	0.114	0.131	0*146	0.112
	4.45°	face	1.008	-0.437	-0-831	-0-932	-0-931	166.0-	906°-	54.9	0.630	6 56	20.0	-0-213	121-0	0.010	170.0	face	0.732	0.545	0-412	0.305	82.0	0.189	0.061	Б 0.0	0,006	620°0	K0*0	0,123	0.119	0.120
с,	2•25°	pper sur	906*0	0.17	-0.27	-0-513	-0.598	6 .655	-0-678	-0.60		877.0-	-0.323	-0-194	6.1 8	-0-035	940.0	OWEL BUL	0.329	0.228	0.157	060*0	0.056	0.028	-0-055	80.0	-0.065	-0.027	0.037	0.081	0.088	0.110
	1•15 ⁰	, î	0.632	0.419	-0-058	-0.319	9K-1-0-	-0-521	0 •566	-0-53L	-0*502	66.0	ନ୍ଦି ୧	-0-168	980	-031	640°0	Ľ.	0.048	0.032	0.008	620 ° 0	0.045	0.057	-0-114	6.1 35	δ <u>.</u> 9	-0°57	62000	140.0	060*0	0.119
	0°050		0.282	0.602	0.133	-151-0-	80.00	-0-105	-0.4465	R770	-0-455	582.0	12.0	-0.153	-0-088	0.000	620*0		-0-27	0-149	-0-113	-0-123	-0.121	-0-122	-0.163	0-163	-0.117	010.0	0.008	0.061	140.0	0.114
	-0•9°		-0-236	0. 762	0, 320	0.013	-0-158	-0. 284	9 <u>6</u>	56.9	101-0-	0	0.210	-0.137	640.0	0.028	620*0		-0-572	-0.358	-0-264	ର୍ଦ୍ଦ ୧	222	8	612.0	200	611.0	80.0	0000	0.048	K0*0	0.110
de	-1.00		-0.250	12 °0	0.333	0.023	-0-150	0.27	-0-354	56.0	£01.0-	27.0-	-0-236	-0.137	-0°078	8	0-078		-0-574	-0-367	-0.27	-0.256	52°	-0-212	2 2 2	-0-20F	611.0	160°0	10.07	0.052	160°0	0-114
l attitu	-2.1 ⁰		-0.942	0.893	791-0	N	-0-017	0.164	-0.252	-0.327	0 •350	<u>6</u>	-0.218	-0.117	-0-065	-0-015	920-6		616•0-	-0.607	111°0-	565.0	455.0-	-0-305	6 ,283	<u>-</u>	181-0-	9 2 2 2	-0.026	0.037	0.063	0.110
1, norma	-4+30		-2.086	1.00	0.742	I CIL-O	0.217	0.051	-0 -0	6 .198	52.0	ର ୧	-0. 181	0 .085	0.045	9 9	0*072		-2,306	-1-496	-0-87	-0°664	6 <u>1</u> 5.0	161°0	-0-1:02	7 ((, o-	-0.248	R	-0-058	600°0	0.046	0.100
Wing BP/	NC G		0	0.005	0.015	0.030	0.050	6°0	0•100	0.200	00.300	001-00	0.500	0.650	04.0	0.850	0*950		0.005	0•015	0.030	0.050	120°0	0.100	0,200	0•300	001-0	0.500	0.650	0-750	0.850	0.950

52

Wing BP/1, inverted attitude

 $V = 250 \text{ ft/sec}; R = 3.2 \times 10^6$

<u> </u>					_		
,α x/c	-4•0°	-1•85 ⁰	-0.75°	0.35°	1.45°	2•55 [°]	4•7 [°]
			Up	per surf	ace		
0	-2.023	-0.870	-0.164	0.311	0.604	0.911	1.001
0.005	1.006	0.884	0.752	0,590	0.405	0.167	-0.489
0.015	0.739	0.481	0.304	0.121	-0.077	-0.307	-0.883
0.030	0.423	0,158	-0.006	-0.167	-0. 535	-0,525	-0.976
0.050	0.209	-0.033	-0.176	-0.311	-0.451	-0.609	-0.974
0.075	0.039	-0.177	-0.301	-0.420	-0.441	-0.571	-0.9/1
0.100	-0.073	-0,268	-0.379	-0.481	-0.585	-0.695	-0.946
0.200	-0.207	-0.343	-0.418	-0.486	-0.552	-0.623	-0. (44
0.300	-0.265	-0,366	-0.421	-0.4/0	-0.521	-0.545	-0.054
0.400	-0.239	÷-0•315∶	-0.360	-0.598	-0.410	-0.442	-0.20
0.500	-0.191	· -0.228	-0.251	-0.204	-V•)12	-0.33/	
0.650	-0.092	-0.128	-0.14/	-0.164	-0.179	-0.192	-0.422
0.750	-0.061	-0.073	-0.086	-0.094	-0.104		-0.133
0.850	-0.029	-0.032	-0.054	-0.039	-U.U4)	0.04/	
0.950	0.063	0.065	0.064	0.000	0.000	0.000	0.004
			Lo	wer surf	ace		
0.005	-2,259	-0.884	-0.542	-0.204	0.074	0.339	0.753
0.015	-1.465	-0.585	-0.331	-0.135	0.048	0.236	0.564
0.030	-0.847	-0.424	-0.242	-0, 101	-0.008	0.163	0.127
0.050	-0.624	-0.375	-0.232	-0.117	-0.019	0.098	0.319
0.075	-0.533	-0.321	-0.203	-0.110	-0.033	0.064	0.250
0.100	-0.474	-0.291	-0.192	-0,113	-0.049	0.038	0.201
0,200	-0.388	-0.272	-0.206	-0.152	-0,105	-0.056	0.070
0.300	-0.327	-0.243	-0.193	-0.153	-0.128	-0.081	0.010
0.400	-0.238	-0.176	-0.141	-0.109	-0.096	-0.058	0.011
0.500	-0.163	-0.116	-0,088	-0.064	-0.050	-0.020	0.033
0.650	-0.053	-0.024	-0.004	0.011	0.030	0.053	0.073
0.750	0.010	0.033	0.048	0.059	0.075	0.091	0.122
0.850	0.045	0.058	0.070	0.076	0.087	0.097	0.117
0.950	0.096	0.103	0.108	0.110	0.114	0.120	· 0.124

 $V = 250 \text{ ft/sec}; R = 3.2 \times 10^6$

α X/C	-4.3°	-2.1 ⁰	-1.0°	-0,9°	0 . 05 ⁰	1•15 ⁰	2 . 25 ⁰
0 0.005 0.015 0.030 0.050 0.075 0.100 0.200 0.300	0 3.310 2.238 1.302 0.881 0.600 0.428 0.204 0.082	0 1.812 1.104 0.618 0.376 0.170 0.050 -0.044	0 1.351 0.700 0.294 0.106 -0.052 -0.142 -0.173 -0.199	0 1.334 0.678 0.277 0.093 -0.062 -0.151 -0.180 -0.198	0 0.829 0.282 -0.041 -0.171 -0.284 -0.343 -0.307	0 0.467 -0.026 -0.327 -0.407 -0.476 -0.509 -0.420 -0.367	0 -0.158 -0.525 -0.670 -0.688 -0.711 -0.706 -0.551
0.400 0.500 0.650 0.750 0.850 0.950	0.019 -0.011 -0.027 -0.054 -0.051 -0.028	-0.097 -0.117 -0.096 -0.091 -0.102 -0.078 -0.034	-0.193 -0.142 -0.130 -0.130 -0.113 -0.036	-0.194 -0.144 -0.157 -0.127 -0.099 -0.037	-0.268 -0.201 -0.161 -0.149 -0.107 -0.041	-0.292 -0.241 -0.197 -0.173 -0.121 -0.044	-0.364 -0.296 -0.231 -0.187 -0.123 -0.034

---- -

Wing BP/1, inverted attitude ΔC_p $V = 250 \text{ ft/sec}; R = 3.2 \times 10^6$

α	-4•0°	-1.85°	-0.75°	0•35°	1.45°	2•55°	4•7 [°]
x/c	!					· · · · · · · · · · · · · · · · · · ·	
0 0.005 0.015 0.030 0.050 0.075 0.100 0.200 0.200 0.300 0.400 0.500 0.650 0.650 0.750 0.850 0.950	0 3.265 2.204 1.270 0.833 C.572 0.401 0.181 0.062 -0.001 -0.028 -0.039 -0.071 -0.074 -0.033	0 1.768 1.066 0.582 0.342 0.144 0.023 -0.071 -0.123 -0.139 -0.112 -0.104 -0.106 -0.090 -0.038	0 1.294 0.635 0.236 0.056 -0.098 -0.187 -0.212 -0.228 -0.219 -0.163 -0.143 -0.134 -0.104 -0.044	0 0.794 0.256 -0.066 -0.194 -0.510 -0.368 -0.334 -0.317 -0.289 -0.220 -0.175 -0.153 -0.153 -0.115	0 0.331 -0.125 -0.327 -0.432 -0.408 -0.536 -0.447 -0.393 -0.314 -0.262 -0.209 -0.179 -0.130 -0.019	0 -0.172 -0.543 -0.688 -0.707 -0.735 -0.733 -0.567 -0.465 -0.384 -0.317 -0.246 -0.202 -0.144 -0.054	0 -1.242 -1.447 -1.403 -1.293 -1.221 -1.147 -0.814 -0.664 -0.534 -0.429 -0.429 -0.300 -0.255 -0.173 -0.060

<u>Table 21</u>

చి

Wing BP/2, normal attitude

V = 250 ft/sec; R = 3.2 x 10⁶

. 																			_											
20.8 ⁰		-13.048	20(-1-		-3.272	-2.699	-2.316	-1-436	-1-022	<u>ک</u>	-0-464	-0.213	0.110	-0-041	<u>500</u> *0		-0-052	0.786	1.008	1.004	0.939	0.864	0.632	62.17-0	0.392	0.335	0.284	0.257	0.205	0.130
19 . 75°		-11-396		3.952	-3.162	-2.595	-2.246	014.1-	8	-0-75	-0-485	0.231	-0.108	-0.018	0.046		0-130	0 . 849	1.015	0.987	0.913	0.836	0,602	0.451	692.0	0.318	0.274	0.254	0.210	0.147
18 . 75°		-10.166		3	-2.996	-2.506	-2.185	-1.381	-1-011	-0.716	-0.492	62.0	0.111	-0-013	0.063		0.261	0.892	1.016	126.0	0.892	0.814	0.577	0.428	0.JL9	0.301	0.262	0.245	0.205	0.154
16.65 ⁰		-7•203	38	-3.314	-2.670	-2.269	-2.013	-1-204	26.0-	69.0	187.0	-0-241	-0-116	0.012	0.088		0.560	176.0	1.008	0.932	0.836	04.0	0.513	0.372	0.301	0.262	0.235	0.224	0•196	0.161
14.6 ⁰		-tioli25			2.298	-1.988	-1 - 80L	-1-185	-0-907	-0.663	-0-468	0.20	-0-120	610.0-	0.103		0.804	1.014	0.963	0.855	0.4.0	0.662	0.432	0,300	0.242	0.213	0.199	0.199	0.17	0.157
12•5 ⁰		-2•369 -2-369			-1-966	-1.744	-1-613	-1.086	-0. 842	0.623 0	111-0-	-0.231	-0-117	-0-021	960*0		1756-0	1.002	0.888	1792 °0	0.656	0*570	0.353	0.231	0.186	0.169	0.168	0-174	0.162	0.153
10-45 ⁰	face	-0-837		1 919	-1-663	-1.47	-1.396	-0.965	50.0	-0.587	0-122	0.222	-0,116	10.0	0*095		1.018	0.946	162.0	0.661	0.553	0.475	0.274	0.167	0.133	0.125	0.137	0.151	0.144	0.148
8, 35 ⁰	ppēr sur	0.332			-1-37	-1.258	-1-206	-0.850	20.00	-0.535	-0.386	-0-20J	-0-101	-0-019	960*0	1110 1110	986*0	0.812	0.647	0.521	0.426	0,356	0.179	060°0	LO O	120.0	0.098	0.117	0.129	0.142
6•25 ⁰	n	226.0		1.072	1.034	-1.007	-0-963	-0.733	€39 • 0	-0.486	-0- 3550-	0.189	-0-07	0.020	1160°0	1	61/8.0	0.618	1240	0.367	0,230	4£2*0	680°0	0*017	0.015	0.031	0.067	0.113	0.117	0.131
4.150		1.03		212	6 7 9		5	-0.626	-0-555	-0-136	न्द्र •	0-173	680°0-	0000	160*0		0.584	0.392	0.279	0.199	0.145	0.106	6°.0	75°°	6£0*0-	-0,012	0.050	760°0	0.101	0.126
2.10		0.70	111	0 101	-0-505	-0.576	0.603	-0.550	661-0-	-0.393	682.0	-0-156	080.0-	-0-Q7	060*0		0.211	0.118	0.066	17Z0*0	50.0	0°81	16°-0-	-0.120	-0-088	610.0-	0.030	0.078	760°0	0.127
00		-0-017	0.010	1000	-0.227	-0.342	-0-402	\$2 1 •9	-0-418	6h£*0-	-0-243	-0-133	20.0	-0-013	0.087		γ <u>ς</u> γ	-0.85	0.222	5.38	R 9	0.168	161.0	-0.181	-0-130	0 .081	-0-00	0*051	0.078	0.120
-2.1 ⁰		666 .0-	0.1.87	0.155	-0-032	-0-171	-0.254	-0-330	6TK-0-	-0.297	702°0	-0-111	-0-055	200.0-	0•088		-0-817	-0.590	-0-458	5.0-	-0.317	162-0-	N.2.0	-0-2L3	121.0	-0.110	-0.022	0.038	L0-0	0.118
-t•-70		-2•183		0 122	0.209	0.042	-0.105	0.21	-0. 256	0.228	0 80 80 80	-0 -0	-0-037	0.0	0,084		-2.112	-1-456	۲ ۹	ନ ଜ	9 2 2	127°0	9 28 9	-0-316	0.228	-0.152	670 ° 0	0•018	0•053	0.108
RC G		0 0	0.0	0.030	0.050	0*075	0.100	0.200	0•300	001-0	0.50	0.650	0.750	0.850	0.950		0*005	0.015	0.030	0.050	0.075	0.100	0.200	0•300	0.400	0.500	0.650	0.750	0.850	0*950

55

Wing BP/2, normal attitude

.

V = 250 ft/sec; $R = 3.2 \times 10^6$

x/c a	-4.7°	-2.1°	o°	2•1°	4•15 [°]	6.25°	8•35°	10•45 ⁰	12 . 5 ⁰	14 .6⁰	16.65°	18•75°	19•75°	20.8°
	0	0	0	0		0	0	0	0	0		^		
0.005	3.117	1.755	1.068	0.113	-0_683	+1,507	-2.333	=3.177	-4.023	-L.859	-5-752	-6-628	-6.980	+7.310
0.015	2,202	1.077	0.507	-0.263	-0.926	-1.627	-2.369	-3.123	-3.781	-4.364	-4.999	-5-177	-5.879	-6.279
0.030	1.196	0.613	0.151	-0.470	-6.991	-1.549	-2.123	-2.713	-3.260	-3.753	-4.322	-4.787	-4.967	-5.166
0.050	0.832	0.339	-0.038	-0.529	-0.948	-1.401	-1.868	-2.324	-2.730	-3-153	-3.602	-3.970	-4-149	-4.276
ú . 075	0.567	0.146	-0.172	-0.575	-0.922	-1.297	-1.684	-2.024	-2.400	-2.738	-3-105	-3.398	-3.508	-3.638
0.100	0.368	0.040	-0.234	-0.582	-0.877	-1.197	-1.562	-1.871	-2.183	-2.466	-2.763	-2.999	-3.082	-3•180 ¹
0.200	0,181	-0.059	-0.234	-0.459	-0.623	-0.822	-1-029	-1.239	-1-439	-1.617	-1.807	-1.958	-2.012	-2.068
0,300	0.060	-0.106	-0,237	-0.379	-0.501	-0.646	-0.792	-0.950	-1.013	-1.207	-1.342	-1.439	-1.474	-1.5 01
0+400	0	-0.124	-0.219	-0.305	-0.397	-9.501	-0.606	-0.720	-0.808	-C.905	-0.994	-1.065	-1.084	- 1•093'
0,500	-0.028	-0.094	-0.162	-0.240	-0.312	-0.387	-0.460	-0.547	-0.613	-0.681	-0.746	-0.793	-0.803	-0.799
0.650	-0.033	-0.089	-0.129	-0.186	-0.223	-0.256	-0.301	-0.359	-0.399	-0.439	-0,476	-0.501	-0.505	-0.497
0.750	-0.055	-0.093	-0.121	-0.158	-0.183	-0.210	-0.221	-0.267	-0.291	-0.319	-0.340	-0.356	-0.362	-0.367
0.850	-0.052	-0,064	-0.091	-0-111	-0.111	-0-137	-0.148	-0.168	-0.183	-0.196	-0,208	-0.218	-0.228	-0.246
0.950	-0.024	-0.030	-0.033	-0.037	-0.037	-0.037	-0.046	-0.053	-0.057	-0.054	-0,073	-0.091	-0.101	-0-125

<u>Table 22</u>

сp

Wing BP/3, normal attitude

X C	-6.35°	-5•35°	-4.3°	-3.3°	-2•3°	-1.3°	-0,25°	0•75 ⁰	1•75°	3.8 ⁰	5•8 ⁰	7•85°	9•9°	11 • 9 ⁰	13 . 95 ⁰	15•95 ⁰	18.0 ⁰	20.0 ⁰	22.05 ⁰
1	Ι.							U	ppe r su r	face									
0	-1.736	-1.282)	-0.844	-0.451	-0.157	0.213	0.430	0.631	0.808	1.003	1.028	0.862	0.470	-0.163	-1.053	-2.174	-3-588	-5.050	-6,807
0.005	1.045	1.024	1.004	0.957	0.933	0,826	0.717	0,590	0.495	0.184	-0.178	-0.637	-1-134	-1.617	-2.381	-3.116	-3+947	-4.638	-5.371
0.015	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-		-	-	-
0.030	0.470	0.409	0.338	0.245	0.164	0,055	-0.036	-0.149	-0.233	-0.477	-0.719	-0.985	-1.219	-1+499	-1.844	-2.203	-2.513	-2.837	-3.209
0.050	0.277	0.210	0.139	0.064	-0.003	-0.099	-0.176	-0.263	-0,348	-0.537	-0.729	-0.940	-1.109	-1.335	-1.546	-1.767	-2.015	-2,253	-2.512
0.075	0.098	0.035	-0.030	-0.096	-0.151	-0.235	-0.301	-0.375	-0,44,5	-0.603	-0.755	-0.925	-1+055	-1.224	-1.385	-1.566	-1-749	-1-919	-2.102
0.100	0	-0.059	-0.115	-0.172	-0,220	-0.293	-0.350	-0.413	-0.472	-0.604	-0,731	-0.875	-0.987	-1.111	-1.247	-1+389	-1+530	-1.669	-1.805
0,200	-0.168	-0.207	-0.242	-0.281	-0.308	-0.353	-0.389	-0.425	-0.459	-0.536	-0.579	-0.654	-0,725	-0.798	-0.865	-0.934	-1.002	-1.064	-1.128
0.300	-0.236	-0.261	-0.287	-0.309	-0.331	-0.361	-0.384	-0.406	-0.429	-0.473	-0.507	-0.552	-0.592	-0.638	-0.672	-0.710	-0.750	-0.782	-0.816
0.400	-0.207	-0.224	-0.242	-0.257	-0.274	-0.294	-0.311	-0.328	-0,339	-0.341	-0.368	-0.397	-0,422	-0.448	-0.469	-0.492	-0.516	-0.535	-0,556
0,500	-0,164	-0.177	-0.190	-0.193	-0,191	-0.194	-0.208	-0.219	-0.231	-0.253	-0.268	-0,285	-0.298	-0.313	-0.327	-0.341	-0,356	-0.367	-0.380
0.650	-0.050	-0.059	-0.070	-0.074	-0.082	-0.089	-0.093	-0.096	-0.102	-0,111	-0.119	-0.127	-0.133	-0.141	-0.149	-0,157	-0.167	-0.174	-0.182
0,750	-0.039	-0.042	-0.045	-0.047	-0.051	-0,052	-0.056	-0.054	-0.056	-0.060	-0.059	-0.061	-0.064	-0.066	-0,070	-0.072	-0-149	-0. 082	-0.086
0.850	0.009	0.005	0.005	0.007	0.003	0.004	0.002	0.006	0.004	0.006	0,008	0,008	0.007	0,008	0,006	0,006	0.004	-0.008	0
0.950	0.00	0.010	0.077	0.0 /9	0.078	0.079	0.081	0+088	0,087	0.087	0,093	0.096	0,097	0.098	0.097	0.095	0,093	0.092	0,083
								L	ower sur	face									
0.005	-2.464	-2.110	-1.779	-1.462	-1.233	-0.873	-0.578	-0.304	-0.085	0.325	0.629	0.847	0.973	1.013	0.990	0-890	0.710	0.1.70	0.168
0.015	-1.255	-1.082	-0.917	-0.752	-0.634	-0.447	-0.329	-0.170	-0.052	0.197	0.407	0.596	0.744	0.867	0.950	1.000	1.013	0.998	0.950
0.030	-0.913	-0.794	-0.679	-0.561	-0.482	-0.347	-0.261	-0.150	-0.058	0.126	0.294	0.450	0.584	0.707	0.806	0.888	0.949	0.988	1.000
0.050	-0.725	-0,640	-0.554	-0.467	0.407	-0,305	-0.238	-0.149	-0.077	0.072	0.209	0.342	0.458	0.569	0.669	0.758	0.833	0.894	0.944
0.075	-0.590	-0.506	-0.463	-0.397	-0.350	-0.271	-0.219	-0.143	-0.090	0.032	0.146	0.258	0.359	0.460	0.552	0.641	0.718	0.786	0.817
0.100	-0.502	-0,4449	-0.396	-0.340	-0.303	-0.240	-0.195	-0.139	-0.093	0.010	0.109	0.208	0.296	0.387	0,1,73	0.555	0.631	0.678	0.737
0.200	-0.385	-0.358	-0.327	-0.295	-0.274	-0.237	-0.208	-0.171	-0.143	-0.077	-0.009	0.060	0.123	0.193	0.258	0.327	0.394	0-455	0.518
0,300	-0.316	-0.298	-0.279	-0.258	-0.246	-0.222	-0.204	-0.176	-0.159	-0.110	-0.062	-0.012	0.037	0.089	0.143	0.271	0.256	0-311	0.365
0.400	-0.211	-0.201	-0.188	-0.174	-0.165	-0.153	-0.139	-0.128	-0.114	-0.082	-0.045	-0.009	0.028	0.070	0.111	0.157	0.203	0.249	0.20
0_500	-0.140	-0.131	-0.125	-0.117	-0.113	-0.105	-0.097	-0.081	-0.073	-0.045	-0.017	0.010	0.037	0.069	0.101	0.138	0.176	0.21	0.252
0.650	-0.021	-0.018	-0.014	-0.007	-0.006	-0.001	0.002	0.010	0.017	0.035	0.045	0.057	0.077	0.097	0.120	0.149	0.175	0.203	0.231
0.750	0.038	0.040	0.043	0.048	0.049	0.051	0 .05 5	0.061	0.064	0.076	0.126	0.110	0.103	0.116	0.135	0.157	0.179	0.201	0.22
0,850	0.056	0.057	0.059	0.064	0.063	0.065	0.066	0.069	0.070	0.076	0.086	0.095	0.106	0.118	0.127	0.147	0.162	0.179	0,196
0,950	0,096	0.097	0.098	0.100	0.100	0.100	0.101	0.101	0.099	0.101	0.104	0.108	0.111	0.116	0.123	0.137	0.143	0.151	0.158

57

 $V = 250 \text{ ft/sec}; R = 3.2 \times 10^6$

Table 22 (Contd)

Wing BP/3, inverted attitude

V = 250 ft/sec; R = 3.2 x 10⁶

പ	_				_		_	***				<u> </u>			~~~~		· · · ·		· ·				_	~~~~					_		-
•2 x 10 ⁴	6.4 ⁰	0				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8	-9-19-	-0.602	-0-525	-0.388	-0.285	-0-137	940.0-	0.000	920*0		10.671	0.122	0.324	0.233	0.167	0.125	0.05	-0-053	6.00	-0.012	0.042	0•033	0.083	0,095
c: R = 3	4.40	8		88	0.530	6.580	-0.634	-0-631	-0.546	-0-485	-0.356	-0.266	-0.126	-0°0	0.01	£20°0		0.381	0.303	0.155	160*0	0,051	0.027	-0 - 85	-0-102	120.0-	0,010	0+037	140.0	520 0	1.60.0
50 ft/ 3e	2•35°	0,84.0			100.0		0.180	-0.503	-0-481	-0.455	61K.0-	212-0-	-0.117	50.0	-0-013	690°0		-2-0-0-4	80.0	-0*030	-0. 053	690°0	-0-0J	-0-131	-0.150	-0-110	-0.067	0.017	0,064	0,066	060"0
₩ ₩ ₩	1•35 ⁰				А. С.	000	0.108	0111-0-	-0-445	-0-425	-0-347	-0-236	0.111	20.0-	6.93	690°0		10.0	-0-132	-0.123	0.125	0.127	0.124	0 162	F1-9-	121-0-	-0.080	0.008	0.058	0.063	0.088
	0•30			CFC C		0.20	-0.332	-0.376	-0.405	-0.398	-0-325	0.220	0.10	690-0-	0.040	0.062		181.0	-0-270	-0.226	-0.211	-0.198	81.0	-0.198	-0.198	-0-132		0	0*05L	0.063	060.0
	-0-70	0 260		07.0	8	0.12	0.260	-0-315	0.372	-0.371	0-311	0.212	0.10	20.0	-0-915	0.063		-0-795	217-0-	222.0	-0.286	952.0	-0-227	83. 9	-0-219	5.1.0	-0-10	800	0.046	0.058	0.088
с С	-1 - 70	50		0.1.1.5	0.123	0.015	0.187	0.253	-0.335	-0.353	-0.293	50.0	960.0-	690.0-	-0.915	0,062		660-1-	-0-559	6211-0-	-0-367	002.00	-0.278	-0.260	-0.238	-0-161	-0.112	-0-010	0-044	0°0%	0.088
	-2.70	1092.0-	0.0	0.535	0.20	0.030	0.123	6.19	667 • 0	-0.330	-0.27	-0.210	8 9 9	0.05	9. 0Г	0.061		1.585	62.0-	-0.533	9440	5.54	0.328	-0.288	-0.255	-0-172	-0-119	<u>-0</u> -013	0.041	0°055	0.087
tude	-3•75°	-0- -741	0.0	0.619	0.205	0.107	-0.055	-0-138	692.0-	10.0	-0-261	-0.208	6. 85	-0-063	6. 93	0•061		1.675	-0.867	-0.64µh	8 <u>2</u> 9		19.9	-0.318	-0.275	-0.186	-0.126	-0-017	0.037	0.051	0 . 086
ted atti	-4.75°	-1-1681 -	0.000		0. 781	0.18	0.012	940.0	523 -0 -	-0.277	112-0-	0,192	520.0	0.058	-0-012	0*059		8°5	-1-035	0.72	-0.615	5 08	121-0-	6K • 0	162.0	-0-197	-0-133	0.022	4K0*0	0.051	0.086
3, inver	-5. B ⁰	10.19-1-		1	1.7.0	0.260	0.082	-0-017	-0-184	0.249	0.22	84.0	0.062	0.055	-0.07	0*060		-2.336	-1-209	6 .880	55.0	-0-57	-0-1,86	5.0	-0-312	-0.208	0,140	-0.023	1K0*0	0•051	0.086
Wing BP/	x/c a	-	0.05	0.015	0.0.0	0.050	0.075	0.100	0.200	0•300	00100	0.500	0.650	0.7.0	0.850	0*950		0°05	0•015	0.030	0.050	0°075	0 .1 00	0.200	00.00	0°†00	0.500	0*650	0°-120	0.850	0.950
											-	_				_			_		_	_	_			_	_	_	_	_	_

.

•

Table 22 (Contd)

Wing BP/3, normal attitude

V = 250 ft/sec; R = 3.2 x 10⁶

xic	-6.35 ⁰	-5•35°	-4.3°	-3.3°	-2.3 ⁰	-1.3 ⁰	-0.25°	0.75 ⁰	1.75°	3.8 ⁰	5.8 ⁰	7.85 ⁰	9 .9 °	11.90	13 . 95 ⁰	15 - 95 ⁰	18.0 ⁰	20.0 ⁰	22.05°
					•													0	
		0					U	0		0								- · · · ·	
0.005	3-509	3-134	2.703	2+419	2.100	1.099	1.295	0 <u>+</u> 894	0,580	-0+141	-0,807	-1+484	-2.107	=2,630	"3-3 <i>1</i> 1	-4-110	-4+02/	-2-100	-2.212
0.015	-	-	-	•	-	-	- 1	-	-	-	-	-	-	•	•	-	-	-	-
0.030	1.383	1.203	1.017	0.806	0,646	0.402	0.225	0.001	-0.175	-0.603	-1-013	-1-435	-1+803	-2,206	-2,650	-3.091	-3.462	-3.825	-4.209
0.050	1.002	0.850	0.693	0.531	0.404	0.206	0.062	-0.114	-0.271	-0.609	-0.938	-1.282	-1.567	-1.904	-2.215	-2,525	-2.848	-3.147	-3.456
0.075	0 .68 8	0.541	0.453	0.301	0.199	0.036	-0.082	-0,232	-0.355	-0,635	-0,901	-1.183	-1.414	-1.684	-1.937	-2.207	-2.467	-2.705	-2.949
0.100	0,502	0.390	0.281	0.168	0,083	-0.053	-0.155	-0.274	-0.379	-0.614	-0.840	-1.083	-1.283	-1.498	-1.720	-1.944	-2,161	-2.347	-2.542
0,200	0.217	0.151	0.085	0.014	0.034	-0,116	-0.181	-0,254	-0.316	-0,459	-0.570	-0.714	-0.848	-0,991	-1.123	-1.261	-1.396	-1.519	-1.646
0.300	0.080	0.037	0.008	-0.051	-0,085	-0.139	-0.180	-0.230	-0.270	-0.363	-0.445	-0.540	-0.629	-0.727	-0.815	-0.981	-1.006	-1.039	-1.181
0.400	0.004	-0.023	-0.054	-0,083	-0.109	-0.141	-0.172	-0.200	-0.225	-0.259	-0.323	-0.388	-0.450	-0.518	-0.580	-0.649	-0,719	-0.784	-0.850
0.500	-0.024	-0.046	-0.065	-0,076	-0.078	-0.089	-0.111	-0,138	-0.158	-0,208	-0.251	-0.295	-0.335	-0.382	-0.428	-0.479	-0,532	-0.581	-0.632
0.650	-0.029	-0.041	-0.056	-0.067	-0.076	-0.088	-0.095	-0.106	-0.119	-0.146	-0.164	-0.184	-0.210	-0.238	-0.269	-0.306	-0.342	-0.377	-0.413
0.750	-0.077	-0.082	-0.088	-0.095	-0.100	-0.103	-0,111	-0.115	-0.120	-0.136	-0.185	-0.171	-0.167	-0.182	-0.205	-0.229	-0.328	-0.283	-0.310
0.850	-0.047	-0.051	-0.053	-0.057	-0.060	-0,061	-0.064	-0.063	-0.064	-0.070	-0.078	-0.087	-0.099	-0.110	-0.121	-0.141	-0.158	-0.187	-0.196
0.950	-0.021	-0.021	-0.021	-0.021	-0.022	-0.021	-0.020	-0.013	-0.012	-0.014	-0,011	-0.012	-0.014	-0,018	-0.026	-0.042	-0.050	-0.059	-0,075

V = 250 ft/sec; R = 3.2 x 10⁶

Wing BP/3, inverted attitude

	α x/c	-5.75°	~4.75°	-3.75°	-2.7°	-1.7°	-0.7°	0.3 ^{0°}	1.35°	2 .35 °	لاملا ⁰	6 . 4 ⁰
	0	0	0	0	0	0	0	0	0	0	0	0
ļ	0.005	3.349	3.004	2,644	2.304	2,028	1.573	1.163	0.798	0 <u>_</u> 448	-0.270	-0.966
	0.015	1.980	1.734	1.486	1.242	1.004	0.759	0.502	0.244	-0,004	-0,601	-1.051
	0.030	1+353	1•146	0.939	0.743	0.552	0,346	0+148	-0.062	-0.264	-0.687	-1.117
	0,050	0.959	0.799	0.636	0.476	0.322	0.157	0.001	-0.177	-0.336	-0.674	-1.018
- 1	0.075	0.656	0.520	0.389	0,248	0.133	-0.004	-0.134	-0,281	-0.411	-0.685	-0.967
	0.100	0.469	0.358	0.243	0,129	0.025	-0.088	-0,200	-0,316	-0.428	-0,658	-0.892
	0,200	0.192	0.126	0.049	-0.011	-0.075	-0.143	-0.207	-0.283	-0,350	-0.481	-0.607
	0,300	0,063	0.017	-0.029	-0.075	-0.115	-0.158	-0.200	-0.254	-0.305	-0.383	-0.472
	0,400	-0.012	-0.044	-0.075	-0.105	-0.132	-0.161	-0.193	-0.223	-0,239	-0,282	-0,349
	0,500	-0.038	0.059	-0.082	-0.091	-0.093	-0,108	-0.129	-0,156	-0.180	-0.226	-0.273
	0.650	-0.039	-0.053	-0.068	-0.079	-0, 088	-0.098	-0,104	-0.119	-0.134	-0.163	-0.179
1	0.750	-0.089	-0.092	-0.100	-0.106	-0.113	-0_116	-0.123	-0.130	-0.139	-0.152	-0.169
	0.850	-0.058	-0.063	-0.064	-0.069	-0.071	-0.073	-0.075	-0.076	-0,079	-0.088	-0.093
	0,950	-0.026	-0.027	-0.025	-0.026	-0.026	-0.025	-0.028	-0.019	-0,021	-0.020	-0.019

∆cp

с_р

Wing BP/4, normal attitude

-	

V = 250 ft/sec; R = 3.2 x 10⁶

x/c	-6.3 ⁰	-4+3°	-3.3°	-2.3°	- 1•3°	-0 _* 3°	0.75 ⁰	1.750	3.75°	5•75°	9.8°	13.85°	17•85 ⁰	21 . 9 ⁰	25 . 95 ⁰	27 • 95°	28 . 95 ⁰	30.0 ⁰
							·		Upper su	urface								
0	-1-464	-0.722	-0_400	-0.108	-0.139	0,277	0,556	0.723	0.941	1.010	0.797	-0.138	-1.837	-4.335	-7-537	-9-452	-10,524	-11-513
0.005	1.010	0.971	0.933	0.882	0.819	0.749	0.660	0,560	0.323	0.032	-0.697	-1.639	-2.833	-4.206	-5.704	-6.410	-6.813	-7.142
0.015	0.758	0.629	0.558	0.526	0.397	0.316	0,220	0.119	-0,108	-0.353	-0,925	-1.617	-2.332	-3,238	-4.058	-4.505	-40733	-4.909
0.030	0.452	0+312	0,240	0.164	0.082	-0_006	-0.084	-0.171	-0.363	-0.560	-1.000	-1.488	-2.034	-2.553	-3-114	-3.379	-3.509	-3.599
0,050	0.248	0.123	0.058	-0.005	-0.074	-0,137	-0.213	-0.283	-0.434	-0.592	-0.922	-1,291	-1.609	-1.999	-2.375	-2.564	-2.646	-2.723
0.075	0.076	-0.039	-0.095	-0.148	-0.207	-0,259	-0.322	-0.380	-0.502	-0.627	-0,882	-1.097	-1.407	-1.687	-1.945	-2,064	-2,121	-2.161
0.100	-0.015	-0.118	-0.100	-0.211	-0,203	-0.313	-0, 361	-0,409	-0.510	-0.612	-0.820	-0.988	-1.231	-1.446	=1.634	-1.717	=1.757	-1.768
0.200	-0.174	-0.250	-0,207	-0.292	-0.320	-0.347	-0.20	-0,402	-0,455	-0.495	-0.581	-0.679	-0.763	-0.872	-0.952	-0.983	-1.002	-1.020
	-0.409	-0.200		-0.050	-0.067	-0.070	-0.000	-V•2/5	-0,409	-0,429	-0,470	-0.528	-0.585	-0.030	=0.677	=0.092	-0.099	
0.400	-0.150	-0 179	-0 177	-0.250	-0.166	-0.470	-0.204	-0.499	-0.275	-0.295	-0.520	-0.072	-0.000	-0.429	-0.401	-0.4//	-0.40/	-0.495
0.500		-0.059			-0.067	-0.069	-0.060	-0.100	-0.201	-0.091		-0.270	-0.204	-0.299		-0.540		
0.750	-0.031	-0.037	-0.010	-0.037	-0.038	-0.037	-0.035	-0.036	-0.01	-0.03	-0.032			-0.001	-0.111	-0.130	-0.160	-0.151
0.850	0.017	0.012	0.013	0.01	0.014	0.017	0.019	0.019	0.020	0.021	0.023	0.015	-0.004				-0.060	-0.003
0.950	0.082	0.079	0.080	0.080	0.084	0.087	0.091	0.092	0.095	0.096	0.099	0.096	0.080	0.068	0.063	0.032	0.033	0.019
								L	ower sur	face					••••••••••••••••••••••••••••••••••••••	<u> </u>		
0.005	-2.144	-1.629	l =1 - 383	-1-129	1 -0-863	1-0.6L6	1-0.06	مەر بى	0 172		0.870	1	1 0 001.		1 0 006	-0.256	عارام	1_0_636
0.015	-1.105	-0-830	-0.701	-0-571	-0-1417	-0.352	-0.226	-0.107	0.104	0.200	0.622	0.858	0.087	1.010	0.050	0.860	0.896	0 777
0.030	-0.803	-0.616	-0.525	-0.438	-0.348	-0.274	-0.190	-0.105	0.055	0.202	0.1.71	0.696	0.865	0.967	1.010	1.010	1.005	0.997
0.050	-0.632	-0.497	-0.433	-0.367	-0.300	-0.2.2	-0.179	-0.111	9.016	0.135	0.359	0.559	0.729	0.861	0.953	0.982	0.995	1.003
0.075	-0,505	-0.405	-0.356	-0.306	-0.257	-0.209	-0.163	-0.112	-0.012	0.086	0.272	0,1,52	0.613	0.746	0.857	0.903	0.924	0.941
0.100	-0,426	-0.348	-0.312	-0.269	-0.229	-0.189	-0.152	-0.113	-0.029	0.052	0.216	0.372	0.525	0.657	0.772	0.825	0.848	0.870
0,200	-0.330	-0,292	-0,273	-0.250	-0.229	-0.207	-0.185	-0.156	-0.103	-0.051	0.060	0.178	0.299	0.414	0.528	0.583	0.610	0.635
0.300	-0.263	-0.241	-0.230	-0.218	-0.206	-0.193	-0.179	-0.164	-0.129	-0.093	-0.011	0.079	0.178	0.276	0.380	0.432	0.459	0.482
0.400	-0.172	-0.161	-0.157	-0.148	-0.141	-0.135	-0.126	-0.120	-0.096	-0.072	-0.011	0.058	0.140	0.222	0.313	0.358	0.380	0.403
0.500	-0.108	-0.105	-0.102	-0.099	-0.096	-0.093	-0.086	-0.079	-0.059	-0.041	0.005	0.058	0.125	0.195	0.273	0.313	0.334	0.352
0,650	-0.002	-0.004	0	0	0	0.002	0,005	0.008	0.024	0.032	0.049	0.089	0.140	0.195	0.257	0.288	0.304	0.319
0.750	0.049	0.049	0.050	0.049	0.048	0.049	0.051	0.054	0.063	0.071	0.099	0.111	0.151	0.197	0.251	0.274	0.287	0.301
0.850	0.070	0.063	0.064	0,062	0.063	0.062	0.063	0.063	0.067	0.072	0.090	0.113	0.140	0.175	0.219	0.237	0.244	0.254
0.950	0.113	0.099	0.099	0.100	0.099	0,101	0.098	0.093	0.095	0.095	0.099	0,106	0.126	0.142	0.165	0.170	0.171	0.173

<u>Table 23</u> (Contd)

V = 250 ft/sec; R = 3.2 x 10⁶

4

. . .

. B. 1

Wing BF	0∕4, in v e	rted att:	l tude		cp			V = 2	250 ft/s	ec; R =]	5.2 x 10 ⁶
x/c	-5.75°	-4•75°	-3.7	-2.7 ⁰	-1.7	-0.7	0.3 ⁰	1.30	2 . 3 ⁰	4•35°	6.35 ⁰
				U	lpper sur	face					
0	-1.316	-0.949	-0.626	-0.290	-0.012	0.234	0.438	0.628	0.784	0.968	1.012
0.005	1.008	0.989	0,962	0.917	0.863	0.795	0.720	0.623	0.512	0.265	-0.034
0.015	0,737	0.672	0.609	0,530	0,455	0.374	0.285	0,180	0.073	-0,153	-0.406
0.030	0.430	0.360	0.292	0.211	0.136	0.057	-0.025	-0,116	-0.211	-0.403	-0,602
0.050	0.228	0.164	0.103	0.034	-0.029	-0.097	-0.163	-0.238	-0.316	-0.465	-0.621
0.075	0.056	-0,001	-0.054	-0.113	-0.169	-0.160	-0.281	-0.342	-0,406	-0.528	-0.649
0,100	-0.034	-0.085	-0.131	-0.184	-0,231	-0.279	-0,326	-0.378	-0,428	-0.530	-0.627
0.200	-0.185	-0.218	-0.246	-0.277	-0.304	-0.331	-0.357	-0.384	-0.413	-0.465	-0.492
0,300	-0.240	-0.264	-0.283	-0.302	-0.319	-0.334	-0.349	-0.365	-0,382	-0.412	-0.431
0.400	-0,220	-0,222	-0.233	-0.247	-0.256	-0.266	-0.279	-0.289	-0.293	-0.282	-0.295
0.500	-0.161	-0.174	-0.182	-0.177	-0.166	-0.168	-0.175	-0.182	-0.188	-0.199	-0.206
0.650	-0.047	-0.056	-0,061	-0,063	-0,065	-0.067	-0.068	-0.068	-0.070	-0.073	-0.075
0.750	-0.033	-0.038	-0.039	-0.039	-0.036	-0.040	-0.034	-0.031	-0.029	-0.028	-0.023
0.850	0.014	0.011	0.013	0.015	0,016	0.019	0.021	0.026	0.027	0.031	0.037
0.950	0.083	0,082	0.084	0,088	0.091	0.094	0.096	0,102	0.105	0.111	0.117
			· · · ·					i i i contra ll'ite anna i	<u>,</u>		
				L	ower sur	rface					
0.005	-2.086	-1.797	-1.556	-1.289	-1.035	1-0.779	i -0.564 l	-0.322	-0.106	0.244	0.530
0.015	-1.053	-0.917	-0.790	-0.652	-0.525	-0-408	-0.308	-0.170	-0,055	0.151	0.341
0.030	-0.765	-0.674	-0.587	-0.492	-0.404	-0.318	-0.243	-0.153	-0.064	0.091	0.239
0.050	-0.606	-0.540	-0.477	-0.409	-0.343	-0.277	-0.221	-0.148	-0.076	0.045	0.165
0.075	-0,486	-0.438	-0.391	-0,338	-0,288	-0.239	-0.192	-0.140	-0.085	0.012	0.111
0.100	-0.411	-0.373	-0.335	-0.294	-0,252	-0.214	-0.178	-0.133	-0.089	-0.008	0.076
0.200	-0.320	-0.305	-0,283	-0.262	-0.239	-0.219	-0.196	-0.171	-0-137	-0.087	-0.032
0.300	-0.254	-0.247	-0.235	-0.223	-0,210	-0.200	-0.185	-0.168	-0.150	-0.117	-0.077
0.400	-0.166	-0.164	-0.156	-0.150	-0.142	-0.136	-0.127	-0.116	-0.110	-0.085	-0.058
0.500	-0.104	-0.104	-0.100	-0.098	-0.094	-0.090	-0.087	-0.079	-0.067	-0.049	-0.028
0.650	0	0	0.001	0.002	0,003	0.005	0.007	0.011	0.019	0.032	0.044
0.750	0.054	0.052	0.053	0.053	0.053	0.055	0,053	0.059	0.064	0.071	0,086
0.850	0.073	0.070	0.072	0.072	0.073	0.075	0.073	0.077	0.079	0.084	0.093
0.950	0,113	0.111	0.113	0.113	0,113	0.115	0.115	0.116	0.117	0.120	0.125

∆cp

 $V = 250 \text{ ft/sec}; R = 3.2 \text{ x} 10^6$

X/C	α -6.30	-4.30	-3.3°	-2.30	-1.3°	-0.3°	0.75°	1.750	3•75°	5 •75 °	9 . 8 ⁰	13.85°	1 7. 85°	21 •9⁰	25 . 95°	2 7. 95°	28 . 95 ⁰	30 .0 0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.00	5 3.154	2.600	2.316	2.011	1.682	1.395	1.066	0.758	0.151	-0.440	-1.567	-2.650	-3.757	-4.810	-5.800	-6.163	-6.368	-6.518
0.01	5 1.863	1-459	1.259	1.097	0.844	0.668	0.446	0.226	-0,212	-0.652	-1.547	-2.475	-3-319	-4.248	-5.008	-5.374	-5.557	-5.686
0.03	0 1.255	0.928	0.765	0.602	0.430	0,268	0.106	-0.066	-0.418	-0.762	-1.471	-2.184	-2.899	-3.520	-4.124	-4.389	-4.514	-4.596
0.05	0 0.880	0.620	0-491	0,362	0.226	0,105	-0.034	-0.172	-0,450	-0.727	-1.281	-1-850	-2,338	-2,860	-3.328	-3.546	-3.641	-3.726
0.07	5 0.581	0.366	0.261	0.158	0.050	-0.050	-0.159	-0.268	-0.490	-0.713	-1-154	-1.549	-2,020	-2.433	-2,802	-2.967	-3.045	-3.102
0.10	0 0.411	0.230	0.146	0.058	-0.034	-0.124	-0.209	-0.296	-0.481	-0.664	-1.036	-1.360	-1.756	-2.103	-2.406	-2.542	-2,605	-2.658
0.20	0 0.156	0,062	0.006	-0.042	-0.091	-0+140	-0.190	-0.246	-0.350	-0 . 444	-0.641	-0.857	-1.082	-1.286	-1.480	-1.566	-1.612	-1.655
0.30	0 0.032	-0.035	-0,063	-0.092	-0,121	-0.149	-0,181	-0.211	-0,280	-0.336	-0.467	-0.607	-0.763	-0.912	-1.057	-1.124	-1+158	-1.186
0.40	0 -0.0 26	-0.067	-0_084	-0+102	-0,122	-0.137	-0.158	-0.175	-0.179	-0.223	-0.315	~0.410	-0.528	-0.651	-0.774	-0.835	-0.867	-0.898
0.50	0 [-0_048	-0.073	-0.075	-0.066	-0,070	-0,079	-0.095	-0.109	-0.142	-0.169	-0,228	-0.296	-0.389	-0.494	-0.604	-0.659	-0.690	-0.718
0.65	o -0 .040	-0.054	-0.063	-0.064	-0.067	-0,070	-0.074	-0.079	-0.100	-0.113	-0-135	-0.186	-0.264	-0.352	-0-446	-0.492	-0.520	-0.546
0.75	0 -0,080	-0,086	-0.090	-0.086	-0.086	-0.086	-0.086	-0.090	-0.097	-0,105	-0.131	-0.151	-0.215	-0.288	-0,362	-0.404	-0.427	-0.452
0,85	0 -0.053	-0.051	-0.051	-0,048	-0.049	-0.045	-0.044	-0.044	-0.047	-0.051	-0.113	-0.098	-0,144	-0.197	-0.259	-0.287	-0.304	-0.347
0.95	0 -0. 031	-0,020	-0.019	-0+020	-0.015	-0.014	-0.007	-0,001	0	0.001	0	-0.010	-0.046	-0.074	-0,102	-0.138	-0.138	-0.154

V = 250 ft/sec; R = 3.2 x 10⁶

Wing BP/4, inverted attitude

x/C C	-5.75°	-4•75°	-3.7 ⁰	-2.7°	-1.7°	-0.7º	0.3 ⁰	1.3°	2•3 ⁰	4•35 ⁰	6.35 ⁰
0	0	0	0	0	0	0	0	0	0	0	0
0,005	3.094	2.786	2.518	2.206	1.898	1.574	1.284	0.945	0.618	0,021	-0.564
0.015	1.790	1.589	08بلو 1	1.182	0.980	0.782	0.593	0,350	0.128	-0.304	-0.747
0.030	1.195	1.034	0.879	0.703	0.540	0.375	0,218	0.037	-0.147	-0.494	-0,841
0.050	0.834	0.704	0.580	0.443	0.314	0,180	0.058	-0,090	-0.240	-0.510	-0.786
0.075	0,542	0.437	0,337	0,225	0.119	0.079	-0.089	-0.202	-0.321	-0.540	-0 .760
0.100	0.379	0,288	0,204	0.110	0.021	-0.065	-0.148	-0,245	-0.339	-0.522	-0.703
0.200	0•135	0.087	0.037	-0.015	-0.065	-0.112	-0.161	-0,213	-0,276	-0.378	-0.460
0.300	0.014	0.017	-0.048	-0.079	-0.109	-0.134	-0.164	-0.197	-0,232	-0.295	-0.354
0.400	-0.054	-0.058	-0.077	-0.097	-0.114	-0.130	-0.152	-0.173	-0.183	-0.197	-0.237
0,500	-0.057	-0,070	-0.082	-0.079	-0.072	-0.078	-0,088	-0.103	-0.121	-0.150	-0.178
0.650	-0.047	-0.056	-0.062	-0,065	-0.068	-0.072	-0.075	-0,079	-0.089	-0.105	-0.119
0.750	-0.087	-0.090	-0.092	-0.092	-0.089	-0.095	-0.089	-0,090	-0.093	-0.099	-0.109
0.850	-0.059	-0.059	-0.059	-0.057	-0.057	-0.056	-0.052	-0.051	-0,052	-0.053	-0,056
0.950	-0.030	-0.029	-0.029	-0.025	-0.024	-0.021	-0.019	-0.014	-0,012	-0.009	-0.008

Δcp

. <u>Table 24</u>

Сp

Wing BP/5, normal attitude

χic	-6.35°	-4.35°	-2.35°	-1-35°	-0.35°	0 .65⁰	1.65 ⁰	3 .6 5°	5•65 ⁰	9 .6 5°	13•7 ⁰	17.7°	21 . 7 ⁰	25 •7 °	29.75°	31 -7 5°	33 .7 5°	35.75°	37•25°
								U	ipper sur	face									
0	-0.716	-0,264	0.105	0.277	0.423	0 .56 5	0.681	0.866	0.973	1.008	0.745	1 0.095	-0.917	-2.346	-4.120	-5.136	-6.2741	-7.508	-8.490
0.005	0,982	0.929	0.853	0.808	0.754	0.691	0,626	0.471	0.297	-0.127	-0.661	-1.285	-1.973	-2.769	-3.613	-4.042	-4-517	-4.894	-5.215
0.015	0.659	0.553	0.442	0.382	0.320	0.247	0.179	0.029	-0.128	-0.483	-0.889	-1.338	-1.804	-2.216	-2.747	-2.946	-3.158	-3.402	-3.554
0.030	0.349	0,242	0.133	0.081	0.025	-0,038	-0.094	-0.221	-0.350	-0.615	-0.903	-1.205	-1.534	-1.740	-2.015	-2.156	-2.294	-2.414	-2.467
0.050	0,165	0,070	-0.019	-0.063	-0.107	-0.157	-0.203	-0.300	-0.396	-0.590	-0,792	-1.000	-1.100	-1.305	-1.485	-1.570	-1.651	-1.724	-1.747
0.075	0.014	-0.069	-0.141	-0.178	-0.212	-0.254	-0.291	-0.363	-0,435	-0.578	-0.716	-0.814	-0.945	-1.065	- 1•177	-1.227	-1.275	-1.309	-1.313
0,100	-0.060	-0.130	-0+191	-0.220	-0.247	-0,284	-0.310	-0.369	-0.426	-0.534	-0.612	-0.702	-0.793	-0.878	-0,953	-0.987	-1.019	-1.042	-1.066
0.200	-0,167	-0,210	-0.239	-0.251	-0,263	-0.282	-0.292	-0.316	-0.338	-0.356	-0.392	-0.432	-0.464	-0.495	-0.534	-0.550	-0.573	-0.599	-0.640
0.300	-0,209	-0.233	-0.250	-0.255	-0.265	-0,266	-0.271	-0.284	-0.284	-0.291	-0.299	-0.321	-0.347	-0.379	-0,430	-0.455	-0.485	-0.510	-0.537
0.400	-0.171	-0.187	-0.197	-0.198	-0.198	-0.205	-0,206	-0,170	-0.172	-0.175	-0.178	-0.203	-0.237	-0,285	-0.354	-0.385	-0.422	-0,460	-0.492
0,500	-0.129	-0.135	-0.182	-0,108	-0.108	-0.113	-0.113	-0.111	-0.109	-0.106	-0.112	-0.148	-0,200	-0.262	-0.346	-0.385	-0,432	-0.476	-0.515
0.050	-0.029	-0.000	-0.035	-0.031	-0.028		-0.024	-0.021	=0.019	-0.025	-0.046	-0.105	-0-174	-0.250	-0.363	-0.414	-0.468	-0.508	-0.530
0.950	0.015	0.016	0,000	0.028	-0.007	0.035		0.000		-0.001			-0.107	-0.200	-0.00	-0.420	-0.450	-0.402	-0.300
0.050	0.066	0.073	0.022	0.085	0.001	0.003	0.006	0.009	0.000	0.029	0.060	0 017	0.007		-0.051			-0.70	
		0.010	0.019	0.000	0.071	0.095	0.090	0.090	0.070	0.000	0.009	10.057	0.000	-0.0)2	-0.051	-0.049	-0.052	~.,04	-0.110
								L	ower sur	face					_				
0.005	-1.669	-1.290	-0.938	-0.762	-0.628	-0.432	-0.277	0.011	0.253	0.639	0.894	1.007	0.993	0.862	0.607	0.438	0.232	0.004	-0.182
0.015	-0.808	-0.633	-0.468	-0.385	-0.316	-0.231	-0.150	0.014	0.156	0.418	0.645	0.820	0.941	1.005	1.010	0.995	0.965	0.925	0.880
0.030	-0.576	-0.461	-0.351	-0.292	-0.241	-0.184	-0.128	-0.013	0.093	0.295	0.487	0.651	0.789	0.896	0.968	0.991	1.006	1.016	1.010
0.050	-0•441	-0,363	-0,289	-0.242	-0.204	-0.164	-0.123	-0.035	0.047	0.208	0.369	0.515	0.650	0.767	0.861	0.890	0.936	0.968	0.981
0.075	-0.337	-0.283	-0.228	-0.196	-0.163	-0.139	-0.107	-0.046	0.017	0.147	0.283	0.412	0.535	0,650	0.750	0.795	0.839	0.882	0.903
0,100	-0.271	-0.230	-0.190	-0.164	-0.139	-0.118	-0.093	-0.054	-0.001	0.108	0.226	0.342	0,455	0.565	0.665	0.714	0.759	0.805	0.830
0.200	-0.215	-0.204	-0.188	-0.175	-0.163	-0.153	-0.140	-0.109	-0.078	-0.008	0.071	0.159	0.252	0.346	0.442	0.489	0.538	0.589	0.630
0,300	-0,177	-0.177	-0.175	-0.167	-0.161	-0.157	-0.149	-0.134	-0.114	-0,065	-0.003	0.068	0.146	0.234	0.320	0.365	0.412	0.462	0.496
0,400	-0.110	-0.110	-0.119	-0.110	-0.113	-0.113	=0.109	-0.104	-0.090	-0.055	-0.007	0.052	0.118	0.195	0,275	0.314	0.361	0.409	0,439
0.500	0.014	رە0،0-		-0.009					-0.057	-0.030		0.059	0.118	0.188	0.201	0.300	0.342	0.388	0.414
	0.054	0.068		0.01						0.025		0.035	0.148	0.212	0.2/8	0.314	0.251	0.391	0.414
0.850	0.066	0.063	0.058	0.058	0.059	0.054						0.157		0.233	0.000	0.325	0.301	0.390	0.414
0.950	0,101	0.103	0,101	0,101	0,101	0.098	0.096	0,096	0.005	0.103	0.108	0.128	0.150	0.182	0.202	0.216	0.266	0.283	0.287
								0.090	0.090			V+120	0.190	1 0.102	V.224	0.240	10.200	L0.203	V.201

 $V = 250 \text{ ft/sec}; R = 3.2 \times 10^6$

V = 250 ft/ sec; R = 3.2 t/ 052 = V

ďg

Wing BP/5, inverted attitude

. .

٠

0 7	log (0-12 2	032 0	10.11	10-12 0	10-29 V	10-2	10-39 0-	0-2 2-		⊅
. 17*0	55.04	.55.05	56.52	55+1	.55*0	-59°0-	-59°1-	-C9*Z=	59.5-	. <u></u>	2nx
ł					9081	na 1944	n				
586-0	1088-0	1 118-0	190°-0	109-0	104-1-0	1202-0	1791-0	1900-0-	101-2-0-	019-0-	į
0*527	2777-0	0"252	809"0	1429"0	582.0	1067.00	07870	288-0	0-920	92.6*0	500-0
521.0-	£00°0-	570.0	1251.0	1571.0	0 567	092*0	0.423	6270	825.0	179*0	510.0
985-0-	-0-552	281-0-	-0-150	£90°0-	-0*005	250.0	711-0	12910	0.225	852.0	020 0
-0-1/26	-0-354	-0-275	-0-222	1/1.0-	-0-128	£80 ° 0−	52000-	200*0	1250.0	571.0	050-0
-0*162	585.0-	672*0-	902.0-	ETS.0-	-0 - 233	561.0-	951.0-	-0-122	180.0-	800-0-	520.0
2777-0-	782 .0-	652*0-	-0-326	-0-299	-0*568	-0 - 237	661.0-	121.0-	171.0-	080.0-	001-0
575.0-	055.0-	612.0-	705.0-	-0-593	875.0-	-0*563	-0*548	-0*533	-0-519	-0+182	0.200
-0*531	-0"567	-0*588	-0-281	175.0-	022.0-	-0*507	-0*522	152.0-	-0-545	-0*531	00£*0
781.0-	081.0-	1210-	-0*502	-0-213	-0*509	-0*502	-0*505	-0*500	561-0-	581.0-	007*0
-0-150	-0*150	-0*152	121.0-	521.0-	-0-153	-0-125	-0*155	-0+123	-0*152	651.0-	005*0
550.0-	120.0-	££0*0-	520.0-	920-0-	520.0-	070*0-	£70°0-	1710-0-	810-0-	870-0-	059.0
900*0-	900*0-	800*0-	010*0-	710-0-	710-0-	120.0-	-0*055	-0*053	020.0-	550.0-	05.0
620°0	670°0	0*058	0*058	0*056	120°0	210.0	0	0*015	100*0	£00°0	058*0
1790°0	580°0	980°0	580*0	580*0	£80•0	620.0	£10.0	40.0	290°0	190*0	056*0
							···1			•	
				1.05				1-20 0-			1 200 0
662.0	550.0	1790°0-	-0*5*0	085-0-	195-0-	14.0-	TR8*0-	500°I-	612.1-	165-1-	500 0
	0000	Chin*o-	971-0-	002.0-	262.0-	COC • 0-	1000		1100	Col • ~	<10*0
	1200°0-	(CO+0-	211-0-	Cal-n-	122.0	602.0-	1200	CoC+0-		ACC .	
000*0	CZ0*0-	000*0-	cut on	251.0	561.0	672.0-	2/2*0-		1200	26110-	
120*0	9.0.0-			071.0-	661.0-		612*0-		0/2.0-	CCC+0-	
		CI 0*0-	C60.0-	21140-	101-0-	00100-	281.0-	107*0-	177.0-	607.0-	
0/010-	Callea	27140-	10110	951°0=	291-0-	7/100	121-0-	36100	(07*0	1281-0-	001-0
680*0=	201-0-	75140-			70140-	911°0=	1/140-	011-0-	611-0-	021-0-	007-0
550"0-	590-0-	020-0-	290-0-	690*0*	020-0-	020-0-	02.0*0=	690*0-	990-0-	790*0~	005-0
0.020	E10.0	200*0	100*0	100"0-	100-0-	0	100*0	700*0	200° 0	800*0	059•0
550*0	050*0	970*0	0°0175	070*0	170*0	170*0	170-0	0*00	770*0	570°0	057.0
190*0	∠ 50*0	£50*0	£50°0	0 \$0*0	150*0	050+0	220.0	†50°0	S S0 *0	550*0	058.0
880*0	S80*0	<u>⊊80</u> •0	980- 0	980*0	780.0	680*0	160 ° 0	0*035	£60* 0	760*0	0 56•0
											4

Table 24 (Contd)

∆cp

Wing BP/5, normal attitude

x/c a	-6.35°	-4-35°	-2,35°	-1.35°	-0.35 ⁰	0.65 ⁰	1 . 65 ⁰	3 .65 °	5.65 ⁰	9.65 ⁰	13•7 ⁰	17•7°	21 . 7 ⁰	25 .7 °	29.75°	31.75°	33•75°	35•75°	37•25°
0 0.005	0 2.651	0	0 1•791	0 1.570	0 1, 382	0	0	0 0-1/60	0 0.0///	0	0	0	0	0	0 =1220	0	0	0	0
0.015	1.467 0.925	1•186 0•703	0.910 0.484	0.767 0.373	0.636 0.266	0.478 0.146	0.329 0.034	0.015	-0.284 -0.443	-0.901 -0.910	-1.534 -1.390	-2.158 -1.856	-2.745 -2.184	-3.221 -2.636	-3.757 -2.983	-3.941 -3.147	-4.123 -3.300	-4-327 -3-430	-4.434 -3.477
0.050 0.075 0.100	0.005 0.351 0.211	0.433 0.214 0.100	0,270 0,087 0,001	0.179 0.018 -0.056	0.097 -0.049 -0.108	0.007 -0.115 -0.166	-0.080 -0.184 -0.217	-0.265 -0.317 -0.315	-0.443 -0.452 -0.425	-0.798 -0.725 -0.642	-1,161 -0,999 -0,838	-1.515 -1.226 -1.044	-1.750 -1.480 -1.248	-2.072 -1.713 -1.443	-2.346 -1.927 -1.618	-2.460 -2.022 -1.701	-2.587 -2.114 -1.778	-2.692 -2.191 -1.847	-2.728 -2.216 -1.896
0.200 0.300 0.400	0.048 0.032 0.061	-0.006 -0.056 -0.071	-0.051 -0.075 -0.078	-0.076 -0.088	-0.100 -0.104	-0.129 -0.109 -0.092	-0.152 -0.122 -0.097	-0.207 -0.150 -0.066	-0.260 -0.170	-0.348 -0.226	-0.463 -0.296	-0.591 -0.389	-0.716 -0.493	-0.841 -0.613	-0.976 -0.750	-1.039 -0.820	-1.111 -0.897	-1.188 -0.972	-1.270 -1.033
0.500	-0.075 -0.048	-0.072 -0.044	-0.113 -0.038	-0.039 -0.032	-0.041 -0.029	-0.044 -0.026	-0.046 -0.023	-0.045 -0.030	-0.052 -0.052 -0.037	-0.076 -0.046	-0.119	-0.207	-0,318 -0,322	-0.460 -0.450 -0.468	-0,607 -0,607	-0.685 -0.728	-0.774 -0.819	-0.864 -0.899	-0.929 -0.950
0. 750 0.850 0.950	-0.077 -0.051 -0.035	-0.071 -0.047 -0.030	-0.062 -0.036 -0.022	-0.057 -0.030 -0.016	-0.052 -0.025 -0.010	-0.046 -0.021 -0.005	-0.042 -0.017 0	-0.042 -0.015 0.002	-0,046 -0,021 0	-0.075 -0.052 -0.017	-0.134 -0.108 -0.049	-0.233 -0.199 -0.091	-0.342 -0.304 -0.147	-0.493 -0.433 -0.214	-0.666 -0.566 -0.275	-0.745 -0.616 -0.295	-0.819 -0.679 -0.318	-0.878 -0.717 -0.587	-0.922 -0.771 -0.405

 $V = 250 \ ft/sec; R = 3.2 \ x \ 10^6$

Wing BP/5, inverted attitude

x/c	-5.65°	-3.65°	-2.65°	-1.65°	-0.65°	0.35°	1.35°	2•35°	3.35°	4.35°	6.4°
							9		بت ہے ہیں متنبعہ ر		
0	U	0	0	0	0	0	0	0	0	0	0
0.005	2,507	2.169	1.945	1•724	1.507	1.299	1.051	0.848	0,609	0.387	-0.045
0.015	1•424	1.149	0.997	0.860	0.723	0.586	0.383	0.285	0.118	-0.039	-0.356
0.030	0+887	0,670	0.550	0.441	0.326	0.219	0.100	-0.008	-0.134	-0.256	-0.500
0.050	0.577	0.411	0.318	0.237	0.146	0.067	-0.025	-0.109	-0.207	-0.301	-0.486
0.075	0.325	0.195	0.123	0.063	-0.008	-0.074	-0.145	-0.206	-0.278	-0.347	-0.489
0.100	0.189	0.086	0.024	-0.019	-0.081	-0.134	-0.187	-0.231	-0.284	-0.341	-0.455
0.200	0,037	-0.016	-0,065	-0,065	-0.091	-0.116	-0.144	-0.167	-0.197	-0.225	-0.267
0.300	-0.041	-0.065	-0.077	-0.086	-0.095	-0.108	-0.121	-0.133	-0,146	-0.162	-0.182
0_400	-0.065	-0.076	-0.081	-0.083	-0.089	-0.095	-0.101	-0.098	-0,068	-0.078	-0.095
0.500	-0.075	-0.061	-0.054	-0.052	-0.052	-0.053	-0.054	-0.054	-0.052	-0.055	-0.065
0.650	-0.056	-0.055	-0.048	-0.044	-0.040	-0.034	-0.035	-0.034	-0.040	-0.044	-0.053
0.750	-0,080	-0.074	-0.071	-0.063	-0.062	-0,055	-0.054	-0.052	-0.054	-0.056	-0.061
0.850	-0,052	-0.054	-0.042	-0.053	-0.038	-0.027	-0.024	-0.025	-0.025	-0.028	-0.035
0.950	-0.033	-0.026	-0.021	-0.016	-0.010	-0.004	-0.001	-0.001	0.001	0	-0.00

∆cp

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing BP/0

V = 125 ft/sec, $R = 1.6 \times 10^6$

a	с _N	с _т	с _г	с _р	С _ш
- 5.05° - 4.05° - 2.0° 4.05° 6.05° 8.1° 10.1° 12.15° 14.15° 15.1° 16.15° 18.15°	-0.302 -0.207 0.012 0.452 0.660 0.867 1.070 1.247 1.365 1.451 1.478 1.372 1.311	-0.0041 -0.0035 0.0028 0.0013 -0.0126 -0.0439 -0.0892 -0.1467 -0.2149 -0.2647 -0.2952 -0.2986 -0.2142 -0.2142 -0.1169	-0.301 -0.206 0.012 0.231 0.453 0.661 0.872 1.081 1.262 1.388 1.481 1.505 1.378 1.284	0.0225 0.0116 0.0024 0.0013 0.0033 0.0028 0.0036 0.0049 0.0063 0.0265 0.0681 0.0956 0.1740 0.2970	-0.0365 -0.0374 -0.0395 -0.0356 -0.0345 -0.0285 -0.0285 -0.0237 -0.0148 -0.0095 -0.0307 -0.0368 -0.0368 -0.0819 -0.1551

Wing BP/O

 $V = 250 \text{ ft/sec}, R = 3.2 \times 10^6$

						_
a	C _N	с _т	с _г	° _D	Cm	
$ \begin{array}{r} - 4.05^{\circ} \\ - 2.0 \\ 0 \\ 2.0^{\circ} \\ 4.05^{\circ} \\ 6.05^{\circ} \\ 8.1 \\ 10.1^{\circ} \\ 12.15^{\circ} \\ 14.15^{\circ} \\ 16.15^{\circ} \end{array} $	-0.220 0.028 0.218 0.434 0.656 0.864 1.077 1.307 1.445 1.472 1.401	-0.0083 0 -0.0006 -0.0163 -0.0459 -0.0839 -0.1389 -0.2110 -0.2833 -0.3234 -0.1692	-0.218 0.028 0.218 0.435 0.658 0.868 1.086 1.322 1.469 1.507 1.395	0.0074 0.0010 -0.0006 -0.0007 0.0007 0.0076 0.0140 0.0221 0.0272 0.0470 0.2260	-0.0425 -0.0417 -0.0347 -0.0341 -0.0328 -0.0305 -0.0277 -0.0319 -0.0229 -0.0082 -0.0618	
				•		

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing BP/1

,

 $V = 125 \text{ ft/sec}, R = 1.6 \times 10^6$

a	C _N	с _т	С ^Г	с _р	C _m
		Normal	attitud	le	
$\begin{array}{c} - 6.55^{\circ} \\ - 4.4^{\circ} \\ - 2.2^{\circ} \\ - 1.1^{\circ} \\ - 0.05^{\circ} \\ 2.15^{\circ} \\ 4.35^{\circ} \\ 6.5^{\circ} \\ 8.7^{\circ} \\ 10.85^{\circ} \\ 13.05^{\circ} \\ 13.05^{\circ} \\ 15.15^{\circ} \\ 17.25^{\circ} \\ 17.6^{\circ} \\ 18.05^{\circ} \\ 19.05^{\circ} \end{array}$	-0.315 -0.158 -0.001 0.083 0.159 0.240 0.319 0.482 0.645 0.794 0.949 1.105 1.229 1.312 1.336 1.127 1.133	-0.0100 -0.0056 0.0030 0.0024 0.0027 -0.0012 -0.0062 -0.0249 -0.0491 -0.0816 -0.1275 -0.1816 -0.2541 -0.2881 -0.2899 -0.1448 -0.1619	-0.314 -0.158 0 0.083 0.159 0.240 0.319 0.483 0.646 0.797 0.956 1.118 1.252 1.338 1.361 1.115 1.123	0.0249 0.0060 0.0030 0.0011 0.0026 0.0033 0.0058 0.0126 0.0181 0.0390 0.0537 0.0778 0.0801 0.1145 0.1225 0.2108 0.2172	-0.0447 -0.0361 -0.0327 -0.0318 -0.0317 -0.0294 -0.0271 -0.0249 -0.0249 -0.0192 -0.0192 -0.0145 -0.0133 -0.0086 0.0035 -0.0044 -0.0959 -0.0968
		Inverte	d attit	1de	
- 3.95° - 1.75° - 0.65° 0.45° 1.5° 2.6° 4.8°	-0.127 0.031 0.123 0.206 0.273 0.355 0.520	-0.0026 0.0028 -0.0003 0.0019 -0.0006 -0.0075 -0.0263	-0.126 0.031 0.123 0.206 0.273 0.355 0.521	0.0061 0.0019 -0.0017 0.0035 0.0066 0.0086 0.0172	-0.0422 -0.0518 -0.0391 -0.0344 -0.0370 -0.0325 -0.0304

Table 26 (Contd)

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing BP/1

 $V = 250 \text{ ft/sec}, R = 3.2 \times 10^6$

٢

a	C _N	C _T	с _г	с _р	С _т
		Norma	l attitu	de	<u> </u>
- 4.3° - 2.1° - 1.0° - 0.9° 0.05° 1.15° 2.25° 4.45° 6.6° 8.8° 10.95° 13.15° 15.3° 17.4° 18.45°	-0.155 0.011 0.098 0.104 0.182 0.250 0.332 0.498 0.667 0.826 0.978 1.131 1.284 1.384 1.411	-0.0122 -0.0009 0.0029 0.0026 0.0019 -0.0012 -0.0071 -0.0288 -0.0521 -0.0907 -0.1333 -0.1873 I	-0.156 0.011 0.098 0.104 0.182 0.249 0.332 0.499 0.668 0.830 0.985 1.144 ncomplet pressure asuremen	-0.0006 -0.0013 0.0016 0.0009 0.0037 0.0039 0.0059 0.0097 0.0249 0.0365 0.0365 0.0552 0.0552 0.0749 e	-0.0394 -0.0347 -0.0386 -0.0356 -0.0356 -0.0320 -0.0286 -0.0283 -0.0238 -0.0222 -0.0176 -0.0153 -0.0078 -0.0037 0.0029
		Invert	ed attit	ude	
- 4.0° - 1.85° - 0.75° 0.35° 1.45° 2.55° 4.7°	-0.155 0.031 0.118 0.200 0.268 0.355 0.524	-0.0089 0.0021 0.0028 0.0026 -0.0006 -0.0076 -0.0262	-0.116 0.031 0.118 0.200 0.268 0.355 0.525	-0.0009 0.0011 0.0013 0.0038 0.0061 0.0081 0.0170	-0.0358 -0.0408 -0.0349 -0.0342 -0.0349 -0.0320 -0.0296

.

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing BP/2

 $V = 125 \text{ ft/sec}, R = 1.6 \times 10^6$

a	С _N	° _T	С _L	с _р	C _m			
	Normal attitude							
- 4.15° - 2.10° 2.05° 4.15° 6.25° 8.3° 10.4° 12.5° 14.6° 16.65° 18.7° 19.2° 19.75° 19.95°	-0.109 0.015 0.132 0.257 0.381 0.508 0.628 0.764 0.878 1.008 1.109 1.187 1.209 1.234 1.231	-0.0028 0.0023 0.0026 -0.0038 -0.0152 -0.0331 -0.0567 -0.0872 -0.1218 -0.1628 -0.2059 -0.2599 -0.2736 -0.2834 -0.2871	-0.109 0.015 0.132 0.257 0.381 0.508 0.628 0.766 0.883 1.016 1.121 1.206 1.231 1.256 1.256	0.0052 0.0017 0.0026 0.0055 0.0131 0.0223 0.0340 0.0520 0.0711 0.0962 0.1208 0.1348 0.1395 0.1505 0.1502	-0.0385 -0.0329 -0.0294 -0.0250 -0.0207 -0.0165 -0.0173 -0.0127 -0.0089 -0.0038 -0.0022 -0.0019 0.0019 0.0018 0.0018			
- 3.95° - 1.9° 0.2° 2.3° 4.35° 6.45°	-0.108 0.021 0.149 0.265 0.370 0.517	Inver -0.0073 0.0028 0.0046 -0.0017 -0.0134 -0.0302	ted atti -0.108 0.020 0.149 0.265 0.370 0.517	tude 0.0002 0.0020 0.0051 0.0086 0.0147 0.0262	-0.0244 -0.0336 -0.0314 -0.0374 -0.0406 -0.0441			

Table 27 (Contd)

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing BP/2

 $V = 250 \text{ ft/sec}, R = 3.2 \times 10^6$

٠

æ	с _N	C _T	CL	с _р	C m						
Normal attitude											
- 4.7° - 2.1° 2.1° 4.15° 6.25° 8.35° 10.45° 12.5° 14.6° 14.6° 18.75° 19.75° 20.8°	-0.139 0.012 0.131 0.269 0.382 0.511 0.655 0.783 0.904 1.024 1.146 1.243 1.279 1.312	-0.0115 0.0031 0.0019 -0.0048 -0.0156 -0.0345 -0.0586 -0.0903 -0.1267 -0.1647 -0.2106 -0.2609 -0.2885 -0.3157	-0.138 0.012 0.131 0.269 0.383 0.511 0.657 0.786 0.911 1.032 1.158 1.253 1.298 1.340	-0.0001 -0.0004 0.0018 0.0049 0.0122 0.0212 0.0370 0.0528 0.0719 0.0986 0.1275 0.1527 0.1527 0.1605 0.1720	-0.0384 -0.0325 -0.0305 -0.0277 -0.0223 -0.0159 -0.0134 -0.0130 -0.0093 -0.0058 -0.0058 -0.0021 0.0008 0.0022 0.0047						
LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing BP/3

<u>V = 125 ft/sec</u>, $R = 1.6 \times 10^6$

đ	° _N	C _T	с ^г	с _р	C m
		Norn	al attit	ude	
- 6.45° - 5.45° - 4.4° - 2.4° - 2.4° - 1.4° - 0.35° 1.65° 3.7° 7.75° 11.8° 13.85° 15.85° 17.9° 19.9°	-0.171 -0.118 -0.088 -0.049 -0.003 0.035 0.079 0.122 0.162 0.252 0.327 0.419 0.503 0.599 0.681 0.761 0.862 0.952	Norn -0.0050 -0.0085 0.0017 0.0031 0.0038 0.0036 0.0030 0.0012 -0.0015 -0.0015 -0.0073 -0.0179 -0.0323 -0.0179 -0.0323 -0.0488 -0.0706 -0.0929 -0.1179 -0.1536 -0.1846	al attin -0.171 -0.118 -0.087 -0.049 -0.002 0.035 0.079 0.122 0.162 0.252 0.367 0.420 0.590 0.684 0.765 0.867 0.958	cude 0.0143 0.0028 0.0085 0.0060 0.0039 0.0027 0.0025 0.0025 0.0026 0.0032 0.0032 0.0089 0.0147 0.0248 0.0375 0.0248 0.0375 0.0533 0.0727 0.0947 0.1184 0.1501	-0.0452 -0.0403 -0.0378 -0.0378 -0.0309 -0.0279 -0.0237 -0.0225 -0.0191 -0.0142 -0.0014 -0.0043 -0.0018 0.0011 0.0028 0.0064 0.0069 0.0082
21.95° 23.95° 25.0° 25.5° 25.8°	1.031 1.101 1.137 1.116 1.168	-0.2237 -0.2644 -0.2793 -0.2869 -0.2887	1.041 1.114 1.149 1.170 1.177	0.1776 0.2056 0.2271 0.2396 0.2480	0.0062 0.0044 0.0016 -0.0020 -0.0051
-		Inver	ted atti	tude	
- 5.65° - 4.65° - 3.65° - 2.6° - 1.6° - 0.6° 0.45° 1.45° 2.45° 4.5° 6.5°	-0.122 -0.091 -0.054 -0.014 0.024 0.071 0.113 0.149 0.196 0.276 0.367	-0.0012 0.0011 0.0031 0.0038 0.0040 0.0036 0.0018 -0.0002 -0.0083 -0.0184	-0.122 -0.091 -0.054 -0.014 0.024 0.071 0.113 0.149 0.196 0.276 0.367	0.0108 0.0086 0.0050 0.0037 0.0031 0.0032 0.0045 0.0056 0.0084 0.0133 0.0234	-0.0446 -0.0450 -0.0387 -0.0345 -0.0306 -0.0268 -0.0245 -0.0208 -0.0133 -0.0119

Table 28 (Contd)

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing BP/3

$V = 250 \text{ ft/sec}, R = 3.2 \times 10^6$

a	с _N	с _т	с ^г	с _р	C _m
		Norma	l attitu	le	
- 6.35° - 5.35° - 4.3° - 3.3° - 2.3° - 1.3° - 0.25° 1.75° 3.88° 7.80° 5.85° 9.99° 11.95° 13.95° 13.95° 18.0° 20.0°	-0.169 -0.086 -0.039 -0.008 0.042 0.083 0.129 0.169 0.258 0.344 0.511 0.600 0.690 0.794 0.886 0.958	-0.0021 -0.0021 0.0005 0.0019 0.0018 0.0025 0.0029 0.0008 -0.0004 -0.0086 -0.0187 -0.0333 -0.0482 -0.0667 -0.0893 -0.1223 -0.1223 -0.1476 -0.1837	-0.168 -0.126 -0.086 -0.039 -0.008 0.042 0.083 0.129 0.169 0.258 0.344 0.431 0.512 0.601 0.692 0.797 0.888 0.963	0.0166 0.0097 0.0069 0.0042 0.0021 0.0015 0.0025 0.0025 0.0025 0.0048 0.0085 0.0162 0.0258 0.0162 0.0258 0.0162 0.0583 0.0750 0.1007 0.1333 0.1552	-0.0438 -0.0406 -0.0378 -0.0351 -0.0330 -0.0288 -0.0265 -0.0223 -0.0201 -0.0160 -0.0130 -0.0061 -0.0030 -0.0006 0.0027 0.0033 0.0013 0.0040
22.05	1.045	-0.2178	1.050	0.1904	0.0032
•		Inver	ted atti	tude	
- 5.75° - 4.75° - 3.75° - 2.7° - 1.7° - 0.7° 0.3° 1.35° 2.35° 4.4° 6.4	-0.144 -0.102 -0.059 -0.018 0.018 0.062 0.107 0.153 0.197 0.282 0.368	-0.0033 0.0012 0.0025 0.0035 0.0037 0.0037 0.0030 0.0010 0.0012 -0.0084 -0.0212	-0.143 -0.101 -0.058 -0.018 0.018 0.062 0.107 0.153 0.197 0.282 0.368	0.0111 0.0096 0.0063 0.0044 0.0031 0.0030 0.0036 0.0046 0.0046 0.0069 0.0132 0.0201	-0.0432 -0.0413 -0.0391 -0.0365 -0.0352 -0.0305 -0.0273 -0.0242 -0.0222 -0.0175 -0.0131

.

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing BP/4

 $V = 125 \text{ ft/sec}, R = 1.6 \times 10^6$

a	с _N	с _т	CL	CD	Cm		
	Normal attitude						
$\begin{array}{c} - 6.45^{\circ} \\ - 4.4^{\circ} \\ - 3.4^{\circ} \\ - 2.4^{\circ} \\ - 1.4^{\circ} \\ - 0.4^{\circ} \\ 0.6^{\circ} \\ 1.6^{\circ} \\ 5.65^{\circ} \\ 9.7^{\circ} \\ 13.7^{\circ} \\ 17.75^{\circ} \\ 21.8^{\circ} \\ 25.8^{\circ} \\ 27.85^{\circ} \\ 28.85^{\circ} \\ 29.85^{\circ} \end{array}$	-0.113 -0.058 -0.034 -0.003 0.031 0.057 0.091 0.122 0.183 0.252 0.386 0.538 0.681 0.831 0.990 1.069 1.104 1.150	-0.0008 0.0017 0.0028 0.0038 0.0042 0.0047 0.0033 0.0010 -0.0036 -0.0118 -0.0329 -0.0660 -0.1025 -0.1562 -0.1562 -0.2113 -0.2478 -0.2784 -0.2986	-0.113 -0.058 -0.034 -0.003 0.031 0.057 0.091 0.122 0.183 0.252 0.386 0.538 0.679 0.830 0.983 1.061 1.102 1.146	0.0119 0.0062 0.0049 0.0039 0.0034 0.0043 0.0042 0.0044 0.0080 0.0131 0.0324 0.0633 0.1099 0.1630 0.2407 0.2796 0.2886 0.3129	-0.0417 -0.0373 -0.0326 -0.0282 -0.0254 -0.0215 -0.0210 -0.0154 -0.0091 -0.0052 0.0059 0.0059 0.0051 0.0039 -0.0076 -0.0137 -0.0193 -0.0203		
30.35	1.139	-0,2//8	1.123	0.3358	-0.0262		
		Invert	ed attit	ude			
- 5.6° - 4.6° - 3.6° - 2.6° - 1.6° - 0.6° 0.4° 1.45° 2.45° 4.45°	-0.099 -0.067 -0.037 -0.005 0.012 0.055 0.084 0.112 0.146 0.219 0.261	0.0007 0.0013 0.0025 0.0024 0.0046 0.0037 0.0028 0.0009 0.0003 -0.0050 -0.0137	-0.099 -0.067 -0.037 -0.005 0.012 0.055 0.084 0.112 0.146 0.218 0.261	0.0104 0.0067 0.0048 0.0026 0.0043 0.0032 0.0034 0.0037 0.0059 0.0121 0.0158	-0.0439 -0.0412 -0.0381 -0.0330 -0.0307 -0.0246 -0.0215 -0.0188 -0.0129 0.0073 0.0041		

Table 29 (Contd)

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing BP/4

V = 250 ft/sec, $R = 3.2 \times 10^6$

G	с _N	с _т	CL	с _р	С _щ
Normal attitude					
- 6,3°	-0.128	-0.0014	-0,128	0.0127	-0.0423
- 4.3	-0.066	0.0023	-0.066	0.0073	-0.0 361
- 3.3	-0.037	0.0031	-0.037	0.0052	-0.0336
- 2.3	-0.009	0.0044	-0.009	0.0048	-0.0294
- 1.3	0.023	0,0027	0,023	0.0022	-0. 0248
- 0.3	0.053	0.0033	0.053	0.0030	-0.0223
0.75	0,085	0.0027	0,085	0.0037	-0.0184
1.75	0.117	0.0019	0.117	0.0055	-0.0153
3.75	0,185	-0.0049	0.185	0.0072	-0.0103
5.75	0.249	-0.0119	0.249	0.0132	-0,0058
9.8	0, 388	-0.0345	0.388	0.0319	0.0001
13.85	0.527	-0.0642	0.527	0.0636	0,0063
17.85	0.690	-0.1117	0,691	0.1056	0,0052
21.9	0.852	-0.1590	0.849	0.1702	-0,0008
25.95	1.008	-0,2234	1.004	0.2395	-0,0062
27.95	1.080	-0.2566	1.074	0.2796	-0.0142
28.95	1.112	-0.2724	1.105	0,3002	-0,0152
30 . 00	1.147	-0,2861	1.137	0,3254	-0.0204
		Inver	ted atti	tude	
- 5.75°	-0.114	-0.0008	-0.114	0.0106	-0.0424
- 4.75°	-0.085	-0,0004	-0,085	0.0066	-0.0394
- 3.7%	-0.049	0.0013	-0.049	0.0045	-0.0371
- 2.7	-0.020	0.0023	-0.020	0.0032	-0.0331
- 1.7	0.008	0.0023	0.008	0.0021	-0.0294
- 0.7	0.035	0,0029	0.035	0.0024	-0.0268
0.3	0.066	0.0022	0.066	0,0025	-0.0216
1.3	0,102	0	0,102	0.0023	-0.0188
2.3	0.138	-0.0018	0,138	0.0054	-0.0158
4.35	0,204	-0.006 5	0,203	0,0089	-0.0105
6.35°	0.268	-0.0147	0.268	0.0150	-0.0059

+

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

Wing BP/5

V = 125 ft/sec, $R = 1.6 \times 10^6$

a	с _N	с _т	С _Т	C D	C m	
	Normal attitude					
- 6.45°	-0.060	0.0056	-0.059	0.0123	-0.0364	
- 4.40	-0.029	0.0031	-0.029	0.0053	-0.0314	
- 2.4	0	0.0038	0	0.0038	-0.0231	
- 1₊4°	0,012	0.0048	0.012	0.0045	-0.0192	
- 0.4	0,024	0.0047	0.024	0.0045	-0,0163	
0.6	0.039	0.0027	0.039	0.0031	-0.0116	
1.6	0,056	0.0019	0.056	0,0034	-0,0084	
3.6	0,083	0	0.083	0,0052	-0,0020	
5.6	0,125	-0.0040	0.125	0,0082	-0.0010	
9.6	0,201	-0.0144	0,200	0.0193	0.0063	
13.6	0,304	-0.0289	0.302	0.0434	0,0013	ł
17.65	0.432	-0.0452	0.426	0.0879	-0.0144	
21.65	0,561	-0.0677	0.546	0,1440	-0.0296	1
25.65	0.718	-0.0918	0.687	0.2281	-0.0569	
29.70	0,888	-0.1186	0.830	0.3365	-0.0793	
33.7	1.018	-0.1525	0.932	0.4379	-0.1081	Ì
35.7	1.103	-0.1731	0.997	0.5032	-0,1288	ł
37.7	1.161	-0.1893	1.034	0.5606	-0,1384	;
. 37.9"	1.076	-0.0906	0.905	0.5897	-0.1384	
1		Inve	rted att	itude		•
-17.6°	-0.30 8	0.0123	-0,290	0.1049	-0.0293	
-13.6°	-0,209	0.0129	-0,200	0.0616	-0.0322	
- 9.6	-0.118	0.0086	-0.115	0,0281	-0.0431	
- 7.6°	-0.079	0.0047	-0.079	0.0151	-0.0402	
- 5.6	-0.051	0.0055	-0.050	0.0105	-0.0381	
- 3.6	-0.020	0.0060	-0.019	0.0072	-0.0326	
- 2.6	-0.007	0.0056	-0.007	0.0059	-0.0258	i
- 1.6	0.011	0.0045	0.011	0.0042	-0.0241	
- 0.6	0.025	0.0052	0.025	0,0049	-0.0199	ľ
0.4	0.039	0,0053 ;	0.039	0,0055	-0,0166	
1.45	0.050	0,0038	0.050	0.0050	-0.0128	
2.45	0.067	0.0021	0.067	0.0049	-0.0089	1
3.45	0,082	0.0003	0.082	0,0082	-0.0059	1
4.45	0,105	-0.0013	0,105	0,0069	-0.0043	1
6.45	° 0 . 141	-0.0050	0.141	0,0108	-0,0007	

Table 30 (Contd)

LOCAL FORCE AND MOMENT COEFFICIENTS FROM INTEGRATED

PRESSURE MEASUREMENTS

•

Wing BP/5

 $V = 250 \text{ ft/sec}, R = 3.2 \times 10^6$

α	C _N	с _т	с _г	с _р	C _m
		Normal	L attitu	de	
- 6.35° - 4.35° - 2.35° - 1.35° - 0.35° 0.65° 1.65° 3.65° 9.65° 13.7° 17.7° 21.7° 25.7° 29.75° 31.75° 33.75° 33.75° 33.75°	-0.059 -0.027 -0.001 0.009 0.022 0.040 0.057 0.089 0.125 0.207 0.302 0.433 0.564 0.717 0.877 0.949 1.033 1.138 1.155	0.0038 0.0050 0.0058 0.0029 0.0030 0.0018 -0.0007 -0.0056 -0.0153 -0.0291 -0.0456 -0.0651 -0.0895 -0.1190 -0.1320 -0.1563 -0.1649 -0.1777	-0.058 -0.027 0 0.009 0.022 0.040 0.057 0.089 0.125 0.207 0.300 0.427 0.548 0.684 0.820 0.877 0.946 1.020 1.027	0.0104 0.0070 0.0058 0.0046 0.0028 0.0035 0.0034 0.0049 0.0068 0.0197 0.0431 0.0882 0.1482 0.2302 0.3314 0.3870 0.4440 0.5313 0.5580	-0.0349 -0.0294 -0.0231 -0.0182 -0.0143 -0.0104 -0.0084 -0.0025 0.0012 0.0050 0 -0.0115 -0.0310 -0.0550 -0.0797 -0.0910 -0.1059 -0.1301 -0.1318
1		Inverte	ed attit	ude	
- 5.65° - 3.65° - 2.65° - 1.65° - 0.65° 0.35° 1.35° 2.35° 3.35° 4.35° 6.4°	-0.056 -0.023 -0.007 0.003 0.021 0.034 0.050 0.068 0.083 0.105 0.142	0.0046 0.0049 0.0060 0.0048 0.0038 0.0038 0.0019 0 -0.0010 -0.0046	-0.055 -0.022 -0.007 0.003 0.021 0.034 0.050 0.068 0.083 0.104 0.142	0.0100 0.0063 0.0060 0.0045 0.0040 0.0050 0.0047 0.0049 0.0070 0.0113	-0.0361 -0.0297 -0.0254 -0.0183 -0.0136 -0.0119 -0.0086 -0.0062 -0.0045 -0.0013

BALANCE MEASUREMENTS OF LIFT, DRAG AND

PITCHING MOMENT

Wing BF/1

 $V = 125 \text{ ft/sec}, R = 1.6 \times 10^6$

,

 $V = 250 \, \text{ft/sec}, R = 3.2 \times 10^6$

α	¯⊂ _L	₫ _D	Č _m
- 6.25° - 4.15° - 3.05° - 2.0° - 0.95° 0.15° 2.3° 4.45° 6.6° 8.75° 10.9° 13.05° 15.15° 16.25° 17.3° 17.5°	-0.245 -0.122 -0.054 0.002 0.067 0.124 0.265 0.400 0.549 0.669 0.799 0.928 1.044 1.105 1.147 1.147	0.0276 0.0114 0.0081 0.0070 0.0071 0.0066 0.0114 0.0192 0.0334 0.0488 0.0654 0.0902 0.1155 0.1307 0.1437	-0.0361 -0.0325 -0.0312 -0.0298 -0.0289 -0.0271 -0.0256 -0.0245 -0.0260 -0.0263 -0.0270 -0.0285 -0.0285 -0.0301 -0.0310 -0.0322 -0.0324
17.6	1.088	-	-0.0541

No "inverted attitude" tests

α	Ē	5 _D	Ĉ _m
		, ,	
	1		
	:		l -
	No tests Reynold	at highe 's number	r
		1	
	1		
	1		•

BALANCE MEASUREMENTS OF LIFT, DRAG AND

PITCHING MOMENT

Wing BF/2

 $V = 125 \text{ ft/sec}, R = 1.6 \times 10^6$

 $V = 250 \, \text{ft/sec}, R = 3.2 \times 10^6$

a	₫L	Ĉ _D	5 m
$\begin{array}{c} - 6.15^{\circ} \\ - 4.05^{\circ} \\ - 3.05^{\circ} \\ - 2.0^{\circ} \\ - 0.95^{\circ} \\ 0.05^{\circ} \\ 2.15^{\circ} \\ 4.2^{\circ} \\ 6.25^{\circ} \end{array}$	-0.195	0.0252	-0.0325
	-0.094	0.0121	-0.0292
	-0.052	0.0088	-0.0275
	-0.006	0.0074	-0.0258
	0.042	0.0074	-0.0245
	0.093	0.0079	-0.0230
	0.190	0.0113	-0.0204
	0.292	0.0175	-0.0186
	0.394	0.0278	-0.0182
8.35	0.507	0.0435	-0.0215
10.40	0.614	0.0616	-0.0226
12.5	0.716	0.0827	-0.0247
14.55	0.824	0.1081	-0.0269
16.60	0.912	0.1337	-0.0301
18.7	1.009	0.1655	-0.0340
19.3	1.033	0.1753	-0.0366
19.5	1.037	0.1781	-0.0372

α	ĒL	Ē _D	۳
- 5.1° - 4.05 - 2.0° 0.05° 2.15° 4.2° 6.25° 10.4° 12.5° 16.65 18.7° 10.7°	-0.137 -0.091 0.004 0.103 0.203 0.307 0.403 0.516 0.624 0.728 0.835 0.934 1.029	0.0154 0.0104 0.0066 0.0086 0.0121 0.0194 0.0305 0.0453 0.0641 0.0853 0.1113 0.1394 0.1716	-0.0312 -0.0292 -0.0256 -0.0229 -0.0208 -0.0194 -0.0194 -0.0194 -0.0213 -0.0242 -0.0272 -0.0297 -0.0348 0.0375

No "inverted attitude" tests

BALANCE MEASUREM NTS OF LIFT, DRAG AND

PITCHING MOMENT

Wing BF/3

V = 125 ft/sec, $R = 1.6 \times 10^6$

 $V = 250 \text{ ft/sec}, R = 3.2 \times 10^6$

-4.0° -0.054 0.0123 -0.0 -3.0^{\circ} -0.023 0.0111 -0.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0297 0277 0256 0235 0235 0194 0181 0194 0181 0194 0160 0161 0199 0241 0287 0345 0420 0507 0611

α	⊂ _L	Ē _D	Ĉ _m
$- 3.95^{\circ}$ $- 3.0^{\circ}$ $- 2.0^{\circ}$ $- 1.0^{\circ}$ 2.05° 4.1° 6.1° 8.15° 10.15° 12.2° 14.25° 16.25° 18.3° 20.35° 22.35° 24.4° 24.9° 25.4°	-0.053 -0.023 0.008 0.041 0.068 0.137 0.210 0.282 0.357 0.439 0.521 0.611 0.699 0.791 0.882 0.973 1.055 1.078 1.093	0.0115 0.0108 0.0106 0.0108 0.0116 0.0139 0.0204 0.0297 0.0423 0.0583 0.0779 0.1029 0.1314 0.1649 0.2031 0.2477 0.3022 0.3062 0.3164	-0.0297 -0.0279 -0.0258 -0.0236 -0.0219 -0.0184 -0.0170 -0.0167 -0.0175 -0.0199 -0.0235 -0.0300 -0.0365 -0.0365 -0.0452 -0.0543 -0.0649 -0.0744 -0.0769 -0.0791

BALANCE MEASUREMENTS OF LIFT, DRAG AND

PITCHING MOMENT

Wing BF/4

V = 125 ft/sec. $R = 1.6 \times 10^6$

 $V = 250 \text{ ft/sec}, R = 3.2 \times 10^6$

.

80

BALANCE MEASUREMENTS OF LIFT, DRAG AND

PITCHING MOMENT

Wing BF/5

 $V = 125 \, \text{ft/sec}, R = 1.6 \times 10^6$

 $V = 250 \, \text{ft/sec}$, $R = 3.2 \times 10^6$

α	Ĉ_⊥	D D	Ĉ m
- 4.45° - 3.5° - 2.5° - 1.55° - 0.5° - 1.6° - 0.5° - 0.5° - 1.6° - 1.6° - 0.5° - 1.6° - 1.3° - 6° - 1.3° - 6° - 1.3° - 7° - 1.6° - 1.6° - 1.6° - 1.6° - 1.7° - 1.6° - 1.6°	-0.027 -0.017 -0.006 0.009 0.020 0.032 0.044 0.060 0.074 0.108 0.145 0.183 0.275 0.390 0.511 0.632 0.756 0.890 0.988 1.086 1.100 1.073 1.021	0.0111 0.0114 0.0110 0.0110 0.0111 0.0110 0.0111 0.0108 0.0127 0.0143 0.0197 0.0234 0.0375 0.0635 0.0197 0.0235 0.0635 0.1154 0.2650 0.3702 0.5056 0.5056 0.6920 0.8864 0.9467 0.9771	-0.0198 -0.0187 -0.0166 -0.0150 -0.0139 -0.0125 -0.0107 -0.0101 -0.0090 -0.0138 -0.0195 -0.0323 -0.0572 -0.0866 -0.1197 -0.1550 -0.1986 -0.2451 -0.2618 -0.2612 -0.2477 -0.2339

and the second se	· · · · · · · · · · · · · · · · · · ·			_
α	₫L	Ĉ _D	Č m	
$- 4.4^{\circ}$ $- 3.5^{\circ}$ $- 2.5^{\circ}$ $- 1.5^{\circ}$ $- 0.5^{\circ}$ 1.6° 2.6° 5.6° 7.6° 9.6° 13.6° 17.65° 21.65° 25.65°	-0.026 -0.014 -0.003 0.010 0.022 0.033 0.047 0.063 0.077 0.111 0.147 0.186 0.277 0.382 0.507 0.631	0.0131 0.0123 0.0121 0.0121 0.0123 0.0126 0.0139 0.0151 0.0164 0.0224 0.0302 0.0402 0.0402 0.0402 0.0402 0.0402 0.0402 0.0402 0.0402 0.0402 0.0402 0.0402	-0.0198 -0.0183 -0.0170 -0.0143 -0.0139 -0.0129 -0.0107 -0.0102 -0.0103 -0.0114 -0.0140 -0.0180 -0.0319 -0.0539 -0.0855 -0.1156	
-/••/				

BALANCE MEASUREMENTS OF LIFT, DRAG AND

PITCHING MOMENT

Wing CF/1

$$V = 125 \, \text{ft/sec}, R = 1.6 \times 10^6$$

<u>V = 250 ft/sec.</u> R = 3.2×10^6

α	⊂ _L	Ĉ _D	Ĉ _m
a $- 6.85^{\circ}$ $- 5.9^{\circ}$ $- 3.75^{\circ}$ $- 2.6^{\circ}$ $- 1.6^{\circ}$ $- 0.4^{\circ}$ 2.7° 2.7° 3.9° 4.8° 6.0° 7.0° 8.2° 9.1° 10.3°	CL -0.361 -0.302 -0.229 -0.178 -0.105 -0.049 0.023 0.076 0.206 0.286 0.340 0.418 0.474 0.556 0.610 0.684	CD 0.0266 0.0228 0.0133 0.0118 0.0082 0.0086 0.0069 0.0063 0.0091 0.0142 0.0166 0.0235 0.0258 0.0258 0.0370 0.0404 0.0532	-0.0131 -0.0063 -0.0094 - -0.0038 -0.0038 -0.0020 - -0.0004 -
11.3 12.5 47.10	0.787 0.820	0.0560	-
13.4° 14.6° 15.5°	0.868 0.943 0.985	0.0780	-0.0051 -0.0043
16.7° 17.65°	1.053 1.084	0.1221 0.1257	-0.0049 -0.0104

α	$ar{c}_{_{ m L}}$	Ĉ _D	5 m
4 - 6.8° - 4.7° - 3.8° - 2.6° - 1.6° - 0.4° 0.5° 1.7° 2.7° 3.9° 4.8° 6.05°	L -0.364 -0.242 -0.181 -0.113 -0.049 0.022 0.081 0.159 0.217 0.288 0.351 0.440	D 0.0260 0.0150 0.0125 0.0089 0.0083 0.0079 0.0071 0.0092 0.0101 0.0155 0.0171 0.0262	m -0.0128 -0.0095 -0.0077 -0.0066 -0.0052 -0.0015 -0.0015 -0.0005 0 0.0006 0.0006
7.06 9.10 11.30 13.450 15.60 17.70	0.493 0.631 0.775 0.914 1.035 1.147	0.0277 0.0419 0.0605 0.0827 0.1062 0.1336	0.0010 -0.0007 -0.0021 -0.0040 -0.0063 -0.0085

BALANCE MEASUREMENTS OF LIFT, DRAG AND

PITCHING MOMENT

$$R = 3.2 \times 10^6$$

 $V = 125 \text{ ft/sec}, R = 1.6 \times 10^6$

V = 250 ft/sec

α	¯⊂ _L	ē _D	Č m
- 8.50 - 6.50 - 5.90 - 4.80 - 2.50 - 4.80 - 2.50 - 4.80 - 2.50 - 1.73 - 0.30 - 1.25 - 0.50 - 0.12 - 8.90 - 1.489 - 2.50 - 0.12 - 8.90 - 1.489 - 1.489 - 1.289 - 1.489 - 1.489 - 1.289 - 1.489 - 1.590 - 1.480 - 1.590 - 1.680 - 1.6800 - 1.680 - 1.6800 - 1.6800 - 1.6800 - 1.6800 - 1.6800 -	-0.358 -0.274 -0.238 -0.166 -0.139 -0.064 -0.042 0.033 0.053 0.129 0.152 0.220 0.253 0.353 0.461 0.568 0.670 0.769 0.872 0.962 0.987	0.0363 0.0229 0.0198 0.0122 0.0119 0.0081 0.0082 0.0080 - 0.0088 0.0085 0.0156 0.0153 0.0240 0.0349 0.0532 0.0721 0.0941 0.1201 0.1568	- -0.0101 - -0.0082 - -0.0054 - -0.0019 - 0.0012 - 0.0029 0.0038 0.0006 -0.0019 -0.0030 -0.0060 -0.0106 -0.0166 -0.0188
	1	ļ	1

a	Ē
$- 6.45^{\circ}$ $- 3.80^{\circ}$ $- 2.30^{\circ}$ $- 1.80^{\circ}$ $- 0.20^{\circ}$ 1.80° $- 0.20^{\circ}$ 1.80° 2.40° 3.90° 4.40° 8.60° 10.65° 12.70° 14.80° 16.90° 18.95° 20.00° 21.0°	-0.279 -0.176 -0.152 -0.075 -0.052 0.025 0.049 0.127 0.153 0.230 0.253 0.365 0.473 0.580 0.695 0.802 0.917 1.013 1.063 1.100

BALANCE MEASUREMENTS OF LIFT, DRAG AND

PITCHING MOMENT

Wing CF/3

 $V = 125 \text{ ft/sec}, R = 1.6 \times 10^6$

$$V = 250 \text{ ft/sec}, R = 3.2 \times 10^6$$

α	⊂ _L	ē _D	с ^щ
- 6.25° - 5.85° - 4.85° - 3.25° - 3.28° - 2.28° - 2.25° -	$\begin{array}{c} -0.173 \\ -0.158 \\ -0.125 \\ -0.103 \\ -0.093 \\ -0.073 \\ -0.0059 \\ -0.042 \\ -0.032 \\ -0.032 \\ -0.008 \\ 0 \\ 0.019 \\ 0.031 \\ 0.080 \\ 0.019 \\ 0.031 \\ 0.080 \\ 0.019 \\ 0.031 \\ 0.380 \\ 0.090 \\ 0.162 \\ 0.230 \\ 0.301 \\ 0.546 \\$	0.0148 0.0134 0.0134 0.00117 0.0084 0.0090 0.0062 0.0067 0.0056 0.0054 0.0045 0.0048 0.0044 0.0051 0.0054 0.0055 0.0054 0.0054 0.0054 0.0054 0.0055 0.0054 0.0055 0.0054 0.0055 0.0054 0.0055 0.0054 0.0055 0.0054 0.0055 0.0054 0.0055 0.0054 0.0055 0.0054 0.0054 0.0054 0.0055 0.0054 0.0055 0.0054 0.005500000000	$\begin{array}{c} -0.0124 \\ -0.0112 \\ -0.0115 \\ -0.0106 \\ -0.0103 \\ -0.0092 \\ -0.0083 \\ -0.0068 \\ -0.0068 \\ -0.0063 \\ -0.0051 \\ -0.0035 \\ -0.0025 \\$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α	ē _l	ē _D	Č _m
22.55 0.921 0.2276 -0.0405 23.55 0.967 0.2131 -0.0459	$\begin{array}{c} - 6.25^{\circ} \\ - 4.25^{\circ} \\ - 2.20^{\circ} \\ - 2.20^{\circ} \\ - 1.80^{\circ} \\ - 0.20^{\circ} \\ - 0.20^{\circ} \\ 1.20^{\circ} \\ - 0.20^{\circ} \\ 1.250^{\circ} \\ 2.250^{\circ} \\ 4.250^{\circ} \\ 1.250^{\circ} \\ 1.25$	-0. 177 -0. 108 -0. 041 -0. 034 -0. 011 0. 008 0. 023 0. 034 0. 068 0. 085 0. 094 0. 164 0. 239 0. 316 0. 398 0. 491 0. 571 0. 571 0. 571 0. 534 0. 921 0. 967	0.0192 0.0115 0.0084 0.0084 0.0079 0.0083 0.0079 0.0085 0.0079 0.0085 0.0091 0.0095 0.0145 0.0227 0.0335 0.0482 0.0684 0.0896 0.1144 0.1472 0.1472 0.1472 0.1472 0.2276 0.2431	$\begin{array}{c} -0.0125\\ -0.0107\\ -0.0070\\ -0.0064\\ -0.0049\\ -0.0036\\ -0.0022\\ -0.0013\\ 0.0014\\ 0.0021\\ 0.0021\\ 0.0027\\ 0.0047\\ 0.0053\\ 0.0049\\ 0.0026\\ -0.0017\\ -0.0069\\ -0.0131\\ -0.0219\\ -0.0306\\ -0.0405\\ -0.0405\\ -0.0405\\ -0.0459\\ -0.0455\\ -0.045\\ -0.0455\\ -0.04$

BALANCE MEASUREMENTS OF LIFT, DRAG AND

PITCHING MOMENT

Wing CF/4

V = 125 ft/sec, $R = 1.6 \times 10^6$

<u>V = 250 ft/sec.</u> $R = 3.2 \times 10^6$

α	Ċ _L	Ē,	ю. В
$\begin{array}{c} - 6.05^{\circ} \\ - 4.0^{\circ} \\ - 3.0^{\circ} \\ - 2.0^{\circ} \\ - 1.0^{\circ} \\ 2.0^{\circ} \\ - 1.0^{\circ} \\ 2.0^{\circ} \\ 4.05^{\circ} \\ 6.05^{\circ} \\ 8.05^{\circ} \\ 10.1^{\circ} \\ 12.1^{\circ} \\ 14.1^{\circ} \\ 12.1^{\circ} \\ 22.2^{\circ} \\ 25.25^{\circ} \\ 24.2^{\circ} \\ 25.25^{\circ} \\ 27.25^{\circ} \\ 28.25^{\circ} \\ 29.25^{\circ} \\ 29.25^{\circ} \end{array}$	-0. 126 -0. 073 -0. 048 -0. 026 -0. 006 0. 012 0. 034 0. 061 0. 079 0. 113 0. 175 0. 237 0. 300 0. 365 0. 434 0. 502 0. 575 0. 652 0. 652 0. 726 0. 803 0. 838 0. 877 0. 914 0. 948 0. 981	0.0133 0.0081 0.0053 0.0049 0.0042 0.0031 0.0044 0.0055 0.0054 0.0054 0.0054 0.0054 0.0054 0.0270 0.0382 0.0542 0.0730 0.0382 0.0542 0.0730 0.0942 0.1252 0.1580 0.1938 0.2349 0.2579 0.2825 0.3060 0.3299 0.3628	-0.0111 -0.0097 -0.0081 -0.0059 -0.0033 -0.0012 0.0013 0.0028 0.0042 0.0054 0.0056 0.0042 0.0056 0.0042 0.0056 0.0042 0.0056 0.0042 0.0013 -0.0032 -0.0099 -0.0170 -0.0272 -0.0376 -0.0272 -0.0376 -0.0497 -0.0636 -0.0687 -0.0687 -0.0685 -0.0840 -0.0934 -0.0934 -0.0934 -0.1029

α	Ē	ē _D	5 m
$\begin{array}{c} - 3.0^{\circ} \\ - 2.0^{\circ} \\ - 1.0^{\circ} \\ 0^{\circ} \\ 1.0^{\circ} \\ 2.0^{\circ} \\ 4.05^{\circ} \\ 6.05^{\circ} \\ 6.05^{\circ} \\ 6.05^{\circ} \\ 6.05^{\circ} \\ 10.1^{\circ} \\ 12.1^{\circ} \\ 12.1^{\circ} \\ 12.1^{\circ} \\ 14.15^{\circ} \\ 16.15^{\circ} \\ 18.15^{\circ} \\ 20.2^{\circ} \\ 23.2^{\circ} \\ 24.25^{\circ} \end{array}$	-0.049 -0.027 -0.003 0.016 0.039 0.060 0.119 0.183 0.238 0.307 0.378 0.452 0.521 0.602 0.679 0.795 0.836	0.0087 0.0080 0.0073 0.0075 0.0075 0.0087 0.0131 0.0201 0.0286 0.0413 0.0286 0.0413 0.0582 0.0793 0.1023 0.1023 0.1331 0.1664 0.2248 0.2483	

BALANCE MEASUREMENTS OF LIFT, DRAG AND

PITCHING MOMENT

Wing CF/5

 $V = 125 \, \text{ft/sec}, R = 1.6 \times 10^6$

 $V = 250 \text{ ft/sec}, R = 3.2 \times 10^6$

α	€ _L	Ĉ _D	C _m
- 6.2°	-0.073	0.0084	-0.0024
- 4.2	-0.043	0.0057	-0.0040
- 3.2	-0.032	0.0037	-0.0025
- 2.8	-0.027	0.0087	-
- 2.2	-0.016	0.0056	0
- 1.8	-0,014	0.0087	-
- 1.2	-0.005	0.0043	0.0016
- 0.8	-0.005	0.0087	-
- 0,20	0.008	0.0053	0.0031
0.2	0.008	0 .007 6	
1.2	0.027	0.0076	·
1.8	0.027	0.0053	0.0064 '
2.2	0.038	0.0084	-
3.2	0.048	0.0092	-
3.8	0.054	0.0053	0.0072
4.2	0.065	0.0097	-
5.8	0.086	0.0118	0.0071
7.8	0.118	0.0186	0.0018
9.8	0.161	0.0270	-0.0006
11.85	0.204	0.0386	-0.0106
13.85	0.258	0.0555	-0.0181
15.85	0.304	0.0723	-0.0261
17.85	0.354	0.0951	-0.0377
19.85	0.405	0.1228	-0.0491
21.85	0.456	0.1524	-0.0659
23.85	0.501	0.1798	-0.0762
25•9°	0.563	0.2226	-0.0960
27.9	0.622	0.2665	-0.1163
29.9	0.678	0.3118	-0.1314
31.9	0.731	0.3678	-0.1574

α	₫L	Ĉ _D	C m
$\begin{array}{c} 3.2^{\circ} \\ -2.8^{\circ} \\ -2.8^{\circ} \\ -2.2^{\circ} \\ -1.8^{\circ} \\ -1.2^{\circ} \\ -0.8^{\circ} \\ -0.2^{\circ} \\ 0.2^{\circ} \\ 1.2^{\circ} \\ 0.2^{\circ} \\ 0.$	-0.033 -0.026 -0.020 -0.013 -0.008 -0.003 0.005 0.009 0.021 0.028 0.033 0.056 0.089 0.126 0.165 0.210 0.254 0.311 0.364 0.424 0.486 0.536	0.0103 0.0104 0.0098 0.0099 0.0099 0.0098 0.0093 0.0093 0.0093 0.0103 0.0104 0.0107 0.0107 0.0107 0.0127 0.0169 0.0227 0.0169 0.0227 0.0561 0.0227 0.0561 0.0561 0.0768 0.0995 0.1288 0.1636 0.1959	-0.0052 -0.0066 -0.0035 -0.0049 -0.0018 -0.0029 0 0.0010 0.0029 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0032 0.0028 0.0004 -0.0039 -0.0102 -0.0174 -0.0305 -0.0403 -0.0552 -0.0730 -0.0860

-

BOUNDARY LAYER TRANSITION POSITION AT CENTRE SECTION: B SERIES WINGS

V = 125	ft/sec; R	$= 1.6 \times 10^{6}$	V = 250	ft/sec; R	= 3.2 × 10 ⁶					
α	X	/T/C	α	х _т /с						
	Upper surface	Lower surface		Upper surface	Lower surface					
	BF/1									
- 4. 15° - 3.05° - 2.0° - 0.95° 0.15° 1.2° 2.3° 3.35° 4.45° 5.55° 6.6° 7.7° 8.75° 9.8° 11.95°	0.72 0.68 0.67 0.59 0.56 0.49 0.46 0.42 0.38 0.30 0.19 0.15 0.13 0.094 0.021	0.010 0.010 0.010 - 0.71 0.72 0.80 0.88 - - - -	-2.0° -0.95° 0.15° 1.2° 2.3° 3.35° 4.45° 5.55° 6.6° 7.7° 9.75° 9.8° 10.9°	0.52 0.49 0.45 0.42 0.42 0.31 0.21 0.15 0.13 0.10 0.063 0.063 0.031	0.010 - 0.53 0.59 0.61, 0.70 0.71 0.85 1.00 - -					
		1	BF/2							
	No measurements									

Table 41 (Contd)

BOUNDARY LAYER TRANSITION POSITION AT

CENTRE SECTION: B SERIES WINGS

V = 125	ft/sec; R	$1 = 1.6 \times 10^6$	V = 250	ft/sec; I	$R = 3.2 \times 10^6$
α		х ^т /С	α		x _T /c
l	Upper surface	Lower surface		Upper surface	Lower surface
		B	F/3		
$\begin{array}{c} - & 4 \cdot 1^{\circ} \\ - & 2 \cdot 1^{\circ} \\ - & 0 \cdot 05^{\circ} \\ 1 \cdot 95^{\circ} \\ 4 \cdot 0^{\circ} \\ 6 \cdot 0^{\circ} \\ 8 \cdot 05^{\circ} \\ 10 \cdot 05^{\circ} \\ 12 \cdot 1^{\circ} \\ 14 \cdot 15^{\circ} \\ 16 \cdot 15^{\circ} \end{array}$	0.69 0.62 0.57 0.48 0.43 0.40 0.25 0.15 0.15 0.13 0.083 0.052	0.01 0.01 - 0.71 0.80 0.88 0.96 1.00 - -	$\begin{array}{r} - 3.1^{\circ} \\ - 2.1^{\circ} \\ - 1.1^{\circ} \\ - 0.05^{\circ} \\ 0.95^{\circ} \\ 1.95^{\circ} \\ 4.0^{\circ} \\ 6.0^{\circ} \\ 8.05^{\circ} \\ 10.1^{\circ} \\ 12.1^{\circ} \\ 14.15^{\circ} \end{array}$	0.52 0.51 0.47 0.44 0.43 0.38 0.20 0.16 0.11 0.083 0.063	Leading edge " " 0.54 0.65 0.72 0.75 0.83 0.96 1.00
- 4.3° - 2.3° - 0.3° 1.75° 3.75° 5.75° 7.75° 9.8° 13.8° 17.85°	0.67 0.62 0.56 0.50 0.46 0.41 0.33 0.21 0.13 0.061	E Leading edge " 0.71 0.75 0.79 0.90 1.00 -	F/4 - 4.25° - 2.20 - 0.20 1.8° 3.8° 5.85° 7.85° 9.85° 11.9° 15.95° 17.95°	0.62 0.55 0.49 0.46 0.40 0.33 0.22 0.14 0.10 0.042 0.031	Leading edge " 0.62 0.67 0.75 0.80 0.83 1.00
		BF	/5		
- 4.45° - 2.45° - 0.45° 1.6° 3.6° 7.6° 9.6° 13.6° 17.6° 19.6° 21.65°	0.70 0.60 0.54 0.50 0.46 0.35 0.29 0.15 0.13 0.08 ₃ 0.06 ₃	Leading edge 0.58 0.71 0.75 0.92 0.96 1.00 -	- 4.4° - 0.4 3.6° 7.6° 9.6° 13.6° 15.6° 17.65	0.58 0.48 0.42 0.27 0.19 0.11 0.10 0.06 ₃	Lead ing edge 0.58 0.67 0.69 0.75 0.79 1.00

BOUNDARY LAYER TRANSITION POSITION AT CENTRE SECTION: C SERIES WINGS

Table 42 (Contd)

BOUNDARY LAYER TRANSITION POSITION AT

CENTRE SECTION: C SERIES WINGS

V = 125 f	't/sec; R =	= 1.6 × 10 ⁶	V = 250 ft	/sec; R =	3.2 × 10 ⁶	
	X	r _T ∕C		x _T ∕c		
α	Upper Lower surface surface s		Upper surface	Lower surface		
- 4.0° - 2.0° 1.0° 2.0° 3.0° 4.05° 5.05° 6.05° 7.05° 8.05° 10.1° 12.1°	0.68 0.65 0.58 0.55 0.50 0.45 0.43 0.43 0.38 0.30 0.19 0.14 0.073 0.052	Leading edge 0.65 0.69 0.71 0.77 0.80 0.83 0.83 0.88 0.91 0.97 1.00	CF/4 - 2.0° 1.0° 2.0° 3.0° 4.05° 6.05° 7.05° 8.05° 9.1° 10.1	0.49 0.45 0.39 0.35 0.21 0.17 0.11 0.094 0.073 0.062	Leading edge 0.53 0.56 0.59 0.64 0.71 0.73 0.76 0.79 0.82	
- 2.2° - 0.2° 1.8° 3.8° 5.8° 6.8° 7.8° 9.8° 10.85° 11.85° 13.85° 15.85°	0.62 0.54 0.50 0.45 0.38 0.31 0.24 0.16 0.13 0.12 0.067 0.05 4	C Leading edge 0.70 0.74 0.79 0.85 0.88 0.89 0.97 1.00 -	F/5 - 2.2° - 0.2° 1.8° 3.8° 4.8° 5.8° 7.8° 9.8° 11.8°	0.51 0.48 0.42 0.38 0.28 0.20 0.14 0.08 ₃ 0.06 ₃	Leading edge 0.56 0.59 0.65 0.65 0.64 0.72 0.75 0.81	

Table 43

ZERO LIFT ANGLES OF BF AND CF SERIES WINGS

-	αο									
	BF/1	BF/2	BP/3	BF/4	BF/5	CF/1	CF/2	CF/3	CF/4	CF/5
Calc.	-1.96 ⁰	-2.04 ⁰	-2.21 ⁰	-2.32°	-2.52°	-0.76°	-0,78°	-0.80°	-0.82°	-0.84°
Exp.	-2.1°	-2.0°	-2.2°	-2.3°	-2.2°	-0.8°	-0.8°	-0.8°	-0.7°	-0.6°

ZERC LIFT ANGLES AT CENTRE SECTION OF BP SERIES WINCS

	α _o								
[BP/0	BP/1	BP/2	BP/3	BP/4	BP/5			
Calc.	-1.92°	'-1.96°	-2.04°	-2.21 ⁰	-2.32°	-2.52°			
Exp.	-2.1°	-2.20	-2.3°	-2.2°	-2.2°	-2.2°			

-

CALCULATED PRESSURE COEFFICIENTS ON WINGS OF SYMMETRICAL SECTION

Wing AP/1

~

11/0	$\alpha_e = 0^\circ$ $C_N = 0$	$\alpha_e \approx C_N =$	2 ⁰ 0•212	$\alpha_{e} = C_{N} = 0$	5 [°] 0•527	$\alpha_{e} = 8^{\circ}$ $C_{N} = 0.838$	
x/c	С _р	C	p	C p		Cp	
		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
0.0096 0.0381 0.0843 0.1464 0.2222 0.3087 0.4025 0.5000 0.5975 0.6913 0.7778 0.8536 0.9157 0.9619 0.9901	0.050 -0.215 -0.277 -0.302 -0.311 -0.308 -0.216 -0.182 -0.121 -0.064 -0.016 0.026 0.067 0.118 0.196	-0.703 -0.635 -0.551 -0.498 -0.460 -0.423 -0.333 -0.249 -0.171 -0.102 -0.044 0.006 0.054 0.110 0.191	C.586 O.146 -0.027 -0.116 -0.167 -0.1914 -0.159 -0.115 -0.068 -0.024 0.015 0.048 0.083 0.127 0.201	-2.231 -1.373 -1.003 -0.811 -0.690 -0.598 -0.463 -0.31,6 -0.243 -0.155 -0.082 -0.020 0.038 0.103 0.193	0.979 0.570 0.300 0.140 0.038 -0.028 -0.029 -0.013 0.012 0.039 0.063 0.085 0.110 0.146 0.211	-4.221 -2.233 -1.500 -1.143 -0.928 -0.775 -0.591 -0.438 -0.310 -0.202 -0.114 -0.041 0.027 0.100 0.198	0.875 0.852 0.568 0.367 0.228 0.130 0.098 0.089 0.089 0.094 0.105 0.105 0.116 0.127 0.142 0.169 0.226

CALCULATED	PRESSURE	COEFFICIENTS	ON	WINGS	OF	SYMMETRICAL	SECTION

Wing AP/2

	$a_e = 0^\circ$ $C_N = 0$	$\alpha_e = C_N =$	3 ⁰ 0.267	$\alpha_e = 0$ $C_N = 0$	7 [°] 0•615	$\alpha_{e} = 12^{\circ}$ $C_{N} = 1.033$	
x/c	C p	C	р	C	þ	C p	
		U.S.	L .S.	V.S.	L.S.	U.S.	L.S.
0.0096 0.0381 0.0843 0.1464 0.2222 0.3087 0.4025 0.5000 0.5975 0.6913 0.7778 0.8536 0.9157 0.9619 0.9901	0.052 -0.212 -0.274 -0.298 -0.307 -0.304 -0.242 -0.179 -0.117 -0.061 -0.013 0.028 0.069 0.120	-0.783 -0.815 -0.699 -0.562 -0.503 -0.451 -0.352 -0.260 -0.178 -0.106 -0.042 0.006 0.055 0.112 0.186	0.868 0.276 0.060 -0.052 -0.125 -0.157 -0.131 -0.093 -0.051 -0.011 0.020 0.056 0.089 0.132	-2.903 -1.790 -1.277 -0.936 -0.777 -0.648 -0.493 -0.363 -0.251 -0.157 -0.080 -0.016 0.044 0.110	0.917 0.735 0.433 0.243 -0.141 0.034 0.019 0.024 0.041 0.062 0.079 0.100 0.122 0.155 0.219	-6.632 -3.253 -2.082 -1.431 -1.114 -0.886 -0.658 -0.476 -0.329 -0.207 -0.111 -0.030 0.044 0.120 0.248	-0.208 0.992 0.772 0.552 -0.376 0.260 0.203 0.174 0.163 0.161 0.165 0.174 0.165 0.174

CALCULATED PRESSURE COEFFICIENTS ON WINGS OF SYMMETRICAL SECTION

	$\alpha_e = 0^\circ$ $C_N = 0$	α _e = C _N =	3° 0.216	α _e = ^C N =	7° 0.499	$\alpha_e = 12^{\circ}$ $C_N = 0.839$		
	с _р	С _р		C	p	С _р		
		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	
0.0096 0.0381 0.0843 0.1464 0.2222 0.3087 0.4025 0.5000 0.5975 0.6913 0.7778 0.8536 0.9157 0.9619 0.9904	0.057 -0.205 -0.265 -0.288 -0.296 -0.291 -0.230 -0.167 -0.107 -0.052 -0.006 0.033 0.073 0.122 0.200	-1.024 -0.708 -0.562 -0.437 -0.438 -0.396 -0.305 -0.222 -0.146 -0.081 -0.026 0.020 0.066 0.119 0.200	0.733 0.216 0.006 -0.097 -0.154 -0.150 -0.184 -0.150 -0.108 -0.062 -0.019 0.018 0.051 0.085 0.130 0.204	-3.075 -1.497 -0.992 -0.761 -0.626 -0.530 -0.398 -0.286 -0.190 -0.109 -0.043 0.012 0.064 0.123 0.207	0.992 0.642 0.325 0.142 0.031 -0.038 -0.039 -0.022 0.005 0.033 0.059 0.082 0.109 0.148 0.216	-6.558 -2.651 -1.571 -1.109 -0.853 -0.683 -0.498 -0.350 -0.229 -0.130 -0.050 0.015 0.075 0.139 0.227	0.278 0.944 0.643 0.410 0.251 0.143 0.106 0.094 0.098 0.109 0.121 0.133 0.151 0.181 0.242	

Wing AP/3

٠

CALCULATED PRESSURE COEFFICIENTS ON WINGS OF SYMMETRICAL SECTION

	$\alpha_e = 0^\circ$	$\alpha_e = 3^\circ$		$\alpha_e = 7^\circ$		$\alpha_e = 12^\circ$	
	$C_{N} = 0$	$C_{N} = 0.176$		$C_{\rm N} = 0.408$		$C_{N} = 0.686$	
	С _р	Cp		Cp		U P	
· · · · · · · · · · · · · · · · · · ·		V.S.	L.S.	U.S.	L.S.	U.S.	L.J.
0.0096 0.0381 0.0813 0.1164 0.2222 0.3087 0.4025 0.5000 0.5975 0.6913 0.7778 0.8536 0.9157 0.9619 0.9904	0.060 -0.200 -0.258 -0.279 -0.284 -0.278 -0.217 -0.155 -0.097 -0.047 -0.002 0.036 0.074 0.122 0.199	-0.922 -0.629 -0.503 -0.438 -0.395 -0.358 -0.273 -0.195 -0.125 -0.015 0.027 0.070 0.121 0.200	0.698 0.170 -0.029 -0.122 -0.171 -0.194 -0.155 -0.110 -0.064 -0.021 0.016 0.048 0.083 0.128 0.203	-2.749 -1.287 -0.848 -0.651 -0.537 -0.456 -0.339 -0.239 -0.239 -0.154 -0.082 -0.025 0.025 0.072 0.127 0.209	1.000 0.562 0.248 0.079 -0.019 -0.076 -0.066 -0.042 -0.011 0.020 0.049 0.074 0.103 0.143 0.214	-5.811 -2.229 -1.301 -0.914 -0.703 -0.563 -0.404 -0.277 -0.174 -0.088 -0.020 0.036 0.088 0.146 0.229	0.191 0.881 0.541 0.313 0.169 0.076 0.054 0.054 0.054 0.067 0.084 0.101 0.118 0.139 0.174 0.239

Wing AP/4

;	$\alpha_e \approx 0^{\circ}$	$\alpha_e = 4^{\circ}$		$\alpha_e = 10^{\circ}$		$\alpha_e = 16^\circ$	
x/c	$C_{N} = 0$	C _N = 0.149		C _N = 0.367		C _N = 0.567	
	C p	С _р		С _р		C p	
·		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
0.0096	0,062	-0,938	0.709	-3.058	0.988	-5.838	0.432
0.0381	-0,192	-0.571	0.147	-1.204	0.558	-1.890	0.842
0.0843	-0.240	-0.438	-0.045	-0.734	0.232	-1.017	0.481
0.1464	-0.248	- 0.369	-0.122	-0.534	0.074	-0.672	0.269
0.2222	-0.244	-0.323	-0.155	-0.420	-0.009	-0.489	0.147
0.3087	-0,234	-0.287	-0.169	-0.345	-0.056	-0.375	0.073
0.4025	-0.175	-0,210	-0.129	-0.241	-0.041	-0.246	0.064
0.5000	-0,121	-0,144	-0.087	-0.158	-0.018	-0.147	0.070
0.5975	-0.073	-0.087	-0.047	-0.090	0.009	-0.068	0.084
0.6913	-0.030	-0.039	-0.011	-0.034	0.035	-0.006	0.100
0.7778	0,004	0	0.019	0.011	0.058	0.044	0.116
0.8536	0,036	0.033	0.045	0.049	0.079	0.084	0.131
0.9157	0.068	0.069	0.076	0.087	0.105	0.125	0.153
0.9619	0.114	0,116	0.120	0.136	0.145	0.174	0.188
0.9904	0.190	0, 194	0.195	0.213	0.216	0.250	0.254

•

Wing AP/5

SYMBOLS

Α	Aspect ratio			
0	chord			
t/c	thickness/chard ratio			
y C	chordwing position of houndary laws three sitis			
<u>ግ</u> ፓ ኩ	boight of the menter short			
11 a	neight of tip vortex sheet			
U.	angle of incidence			
^a i	induced incidence at wing due to trailing vortices			
a io	half of the incidence induced by the trailing vortices at a great			
	distance downstream			
ae	effective incidence -			
α ₀ .	zero lift angle			
a _B -	reduction in incidence due to boundary layer			
c_{N}, \bar{c}_{N}	local and total normal force coefficient			
$c_{\rm L}^{\rm I}, \bar{c}_{\rm L}^{\rm I}$	local and total lift coefficient			
c_{T}, \bar{c}_{T}	local and total tangential force coefficient			
c _D , C _D	local and total drag coefficient			
C _{Do} , Ĉ _{Do}	local and total profile drag ocefficient			
c _{Di} , \bar{c}_{Di}	local and total vortex arag coefficient			
c _m , c _m	local and total pitching moment coefficient			
C _{no} , Ĉ _{no}	local and total pitching moment coefficient at zero lift			
<u>م</u> ۲	pressure coefficient			
۵Č	local loading coefficient at a point on the wing			
a	sectional lift slope = $\partial C_{T} / \partial \alpha_{A}$			
k	boundary layer reduction factor			
m	camber line parameter			
n	parameter used in loading calculations			

REFERENCES

<u>No</u> .	Author	<u>Title, etc</u> .
1	D. Küchemann	A simple method of calculating the span and chordwise loading on straight and swept wings of any given aspect ratio at subsonic speeds A.R.C. R. & M. 2935, August 1952
2	J. Weber	The calculation of the pressure distribution over the surface of two-dimensional and swept wings with symmetrical aerofoil sections A.R.C. R. & M. 2918, July 1953
3	J. Weber	The calculation of the pressure distribution on thick wings of small aspect ratio at zero lift in subsonic flow A.R.C. R. & M. 2993. September 1954
4	J. Weber	The effect of aspect ratio on the chordwise load distri- bution of flat and cambered rectangular wings A.R.C. 17522, October 1954
5	G. G. Brebner	The application of camber and twist to swept wings in incompressible flow A.R.C. C.P. No.171, March 1952
6	G. G. Brebner J. A. Bagley	Pressure and boundary layer measurements on a two-dimensional wing at low speed A.R.C. R. & M. 2886, February 1952
7	D. H. Peckham	Low speed wind tunnel tests to determine the effects of taper on low aspect-ratio wings at zero incidence A.R.C. C.P. No.571, August 1960
8	H. Multhopp	Methods for calculating the lift distribution of wings (Subsonic lifting - surface theory)
9	W. Mangler	A.R.C. R. & M. 2884, January 1950 Aerofoils with tip plates.
10	D. Kettle	M.U.S. A.V.A. Monograph F, 1.6, R. & T. 1023, 1947 The effect of endplates on swept wings
	D. Küchemann	A.R.C. C.P. 104, June 1951
11	J. Weber D. Kuchemann G. G. Brebner	Low speed tests on 45 [°] sweptback wings A.R.C. R. & M. 2882, May 1951

CHORDWISE POSITIONS OF PRESSURE HOLES

× c = 0 0 005 0.015 0.030 0.050 0.075 0.100 0.200 0.300 0.400 0.500 0.650 0.750 0.850 0.950

FIG. I SKETCH OF MODELS

FIG. 2. METHOD OF CORRECTING INCIDENCE FOR TUNNEL PITCH AND DATUM LINE ERROR

SECTION OF AP WINGS

FIG. 3 (CONTD)

FIG. 3 (CONT'D)

•

FIG.4 EXPERIMENTAL AND CALCULATED SPANWISE LIFT DISTRIBUTION ON A THIN RECTANGULAR WING OF ASPECT RATIO 6

FIG. 5 CALCULATED SPANWISE LIFT DISTRIBUTIONS ON TWO THIN RECTANGULAR WINGS

FIG. 6 LIFT VINCIDENCE, WING AF/I

FIG.7 LIFT v INCIDENCE, WING AF/5

FIG. 9 PITCHING MOMENT, WING AF/5

FIG. 10 DRAG DUE TO LIFT AND BOUNDARY LAYER, WING AF/1

FIG. II DRAG DUE TO LIFT AND BOUNDARY LAYER, WING AF/5

FIG. 12 $\overline{C}_N^2 \vee \overline{C}_T$, WING AF/1

FIG. 13 $\overline{C}_N^2 \times \overline{C}_T$, WING AF/5

FIG. 14 LOCAL LIFT AT CENTRE LINE V INCIDENCE, WING AP/1

FIG. 17 LOCAL PITCHING MOMENT AT CENTRE SECTION, WING AP/5

FIG.18 LOCAL DRAG DUE TO LIFT AND BOUNDARY LAYER, WING AP/1

FIG. 19 LOCAL DRAG DUE TO LIFT AND BOUNDARY LAYER, WING AP/5

FIG. 20 $C_N^2 \times C_T$ AT CENTRE SECTION, WING AP/1

FIG. 21 $C_N^2 \vee C_T$ AT CENTRE SECTION, WING AP/5

•

(d) WING BF/4

(e) WING BF/5

FIG. 22 (CONTD)

● EXPERIMENT R=1.6 X 10° & EXPERIMENT R=3 2 X 10°

(d) WING CF/4

(e) WING CF/5

•

FIG. 24 (CONTD)

FIG. 25 PITCHING MOMENT v LIFT, WING BF/1

٠

١

FIG. 26 PITCHING MOMENT V LIFT, WING BF/5

. . .

• EXPERIMENT $R = 1.6 \times 10^6$ \triangle EXPERIMENT $R = 3.2 \times 10^6$

FIG. 27 PITCHING MOMENT V LIFT, WING CF/I

...

....

O EXPERIMENT R=16 X 106 & EXPERIMENT R=32 X 106

FIG.28 PITCHING MOMENT v LIFT, WING CF/5

A.R.C. C.P. No. 916 October 1965 Brebner, G. G. Wyatt, L. A. Hlott, Gladys P.	533.693.6 : 533.6.048.2 : 533.6.048.1 : 533.6.013.12/13 : 533.6.013.152 : 532.526.3	A.R.C. C.P. No. 916 October 1965 Brebner, G. G. Wyatt, L. A. Ilott, Gladys P.	533.693.6 : 533.6.048.2 : 533.6.048.1 : 533.6.013.12/13 : 533.6.013.152 : 532.526.3
LOW SPEED WIND TUNNEL TESTS ON A SERIES OF RECTANGULAR		LOW SPEED WIND TUNNEL TESTS ON A SERIES OF RECTANGULAR	
WINGS OF VARYING ASPECT RATIO AND AEROFOIL SECTION		WINGS OF VARYING ASPECT RATIO AND AEROFOIL SECTION	
To provide experimental evidence on the loading and pressure distribution		To provide experimental evidence on the loading and pressure distribution	
of low aspect ratio wings and on the variation of aerofoil section		of low aspect ratio wings and on the variation of aerofoil section	
characteristics with aspect ratio, wind tunnel tests were done on a series		characteristics with aspect ratio, wind tunnel tests were done on a series	
of rectangular wings with aspect ratios varying from 4.0 to 0.5 and three		of rectangular wings with aspect ratios varying from 4_{*} 0 to 0.5 and three	
different aerofoil sections. Two of the sections were cambered and all		different aerofoil sections. Two of the sections were cambered and all	
had the RAE 101 thickness distribution, $t/c = 0.10$. The tests comprised		had the RAE 101 thickness distribution, $t/c = 0.10$. The tests comprised	
balance measurements of lift, drag and pitching moment, pressure measure-		balance measurements of lift, drag and pitching moment, pressure measure-	
ments at the centre section (which have been integrated to obtain local		ments at the centre section (which have been integrated to obtain local	
forces and moments) and boundary layer transition observations. (over)		forces and moments) and boundary layer transition observations. (over)	
		A.R.C. C.P. No. 916 533.693.6 : October 1965 533.6.048.2 : Brebner, G. G. 533.6.013.12/13 : Wyatt, L. A. 533.6.013.12/13 : Ilott, Gladys P. 532.626.3 LOW SPEED WIND TUNNEL TESTS ON A SERIES OF RECTANGULAR WINGS OF VARYING ASPECT RATIO AND AEROFOIL SECTION To provide experimental evidence on the loading and pressure distribution of low aspect ratio wings and on the variation of aerofoil section characteristics with aspect ratio, wind tunnel tests were done on a series of rectangular wings with aspect ratios varying from 4.0 to 0.5 and three different aerofoil sections. Two of the sections were cambered and all had the RAE 101 thickness distribution, t/c = 0.10. The tests comprised balance measurements of lift, drag and pitching moment, pressure measurements at the centre section (which have been integrated to obtain local forces and-moments) and boundary layer transition observations.	

-

~

f

A limited analysis has been done of the local and total forces and moments, comparisons being made with the methods of Kúchemann and Weber for calculating load and pressure distribution. The experimental pressure distributions offer scope for considerably more analysis.

`

.

A limited analysis has been done of the local and total forces and moments, comparisons being made with the methods of Küchemann and Weber for calculating load and pressure distribution. The experimental pressure distributions offer scope for considerably more analysis.

.

A limited analysis has been done of the local and total forces and moments, comparisons being made with the methods of Kuchemann and Weber for calculating load and pressure distribution. The experimental pressure distributions offer scope for considerably more analysis.

.....

í

,

:

• .

C.P. No. 916

,

• Crown Copyright 1967

Published by ... Her Majesty's Stationery Office

To be purchased from 49 High Holborn, London w c 1 423 Oxford Street, London w.1 13A Castle Street, Edinburgh 2 109 St. Mary Street, Cardiff Brazennose Street, Manchester 2 50 Fairfax Street, Bristol 1 35 Smallbrook, Ringway, Birmingham 5 80 Chichester Street, Belfast 1 or through any bookseller

C.P. No. 916

S.O. CODE No. 23-9017-16