

MINISTRY OF TECHNOLOGY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

A Review of Counting Accelerometer Data on Aircraft Gust Loads

by

N. I. Bullen B.Sc.

LIBRARY ICYAL AIRCRAFT ESTABLISHMENT BEDFORD.

LONDON: HER MAJESTY'S STATIONERY OFFICE

1967

PRICE 9s 6d NET

•

-

•

-

:

U.D.C. No. 533.6.048.5 : 551.551

C.P. No. 933* July 1966

A REVIEW OF COUNTING ACCELLROMETER DATA ON AIRCRAFT GUST LOADS

by

N. I. Bullen, B.Sc.

SUMMARY

Counting accelerometer data collected over a period of several years on a number of passenger transport aircraft are summarized and the derived gust frequency distributions studied.

The intensity of the turbulence encountered is compared with that observed by research aircraft in storms and clear air.

* Replaces R.A.E. Tech. Report No. 66234 - A.R.C. 28702.

CONTENTS

			Page
1	INT	RODUCTION	3
2	INS	TRUMENTATION	3
3	DAT	A ANALYSIS	4
4	DIS	CUSSION OF RESULTS	4
5	VAR	IATION OF GUST FREQUENCY DISTRIBUTION WITH ALTITUDE	7
6	THE	NATURE OF THE TWO COMPONENTS OF TURBULENCE	9
7	CON	CLUSIONS	13
Table	1	Aircraft used in counting accelerometer recording	14
Table	2	Numbers of gusts observed during climb and descent	1 5
Table	2A	Numbers of gusts observed during climb and descent (up and down combined)	16
Table	3	Numbers of gusts observed during cruise	15
Table	3A	Numbers of gusts observed during cruise (up and down combined) 16
Table	4	Numbers of gusts observed during all flying	15
Table	4A	Numbers of gusts observed during all flying (up and down combined)	16
Table	5	Gust frequency distributions for each altitude band	17
Table	6	Ambassador - Gust frequency distributions	19
Table	7	Comet 1 - Gust frequency distributions	20
Table	8	Bristol Freighter (S.C.A.) - Gust frequency distributions	21
Table	9	Bristol Freighter (S.C.A.) - Gust frequency distributions	22
Table	10	Hermes 4A (Airwork) - Gust frequency distributions	23
Table	11	Hermes 4 (B.O.A.C.) - Gust frequency distributions	24
Table	12	Stratocruiser - Gust frequency distributions	25
Table	13	Super-constellation - Gust frequency distributions	26
Table	14	Viking (B.E.A.) - Gust frequency distributions	27
Table	15	Viking (C.A.A.) - Gust frequency distributions	28
Table	16	Viscount (B.E.A. and Aer Lingus) - Gust frequency distributions	29
Table	17	Viscount (C.A.A.) - Gust frequency distributions	30
Refer	ence	S	31
Illus	trat	ions Figures	1-8
Detac	habl	e abstract cards	

1 INTRODUCTION

1.1 For many years, counting accelerometers have been fitted in a number of passenger transport aircraft and a body of operational data covering over 19000 hours or about 5 000 000 miles has been built up.

Since, at the present time, the majority of aircraft carry cloud warning radar and recording on aircraft without such aids has now virtually ceased, this seems a suitable opportunity to summarize the earlier data, some of which have been re-analysed by more up to date methods.

It should perhaps be emphasized that the data reflect the operational 1.2 procedures of the aircraft and do not purport to be a study of properties of the atmosphere. For example, many aircraft exhibit a minimum frequency of occurrence of bumps near the nominal cruising altitude. This arises from the fact that in calm conditions, cruising takes place at the nominal height, while when it is rough, the pilot changes altitude in an attempt to avoid the turbulence. Cruising at altitudes other than the nominal cruising height is thus biased towards turbulent conditions. Again, it is apparent from the data that manoeuvre loads contribute to the observed accelerations near the However, the results are presented as typical of passenger transport ground. aircraft operations.

1.3 Differences in the gust frequency distribution with altitude are fairly small and are often influenced by operational procedures; previously these differences have been neglected but an attempt is made here to examine such variation in more detail.

The intensity of turbulence encountered by operational aircraft is compared with that observed by research aircraft in storms and clear air.

2 INSTRUMENTATION

2.1 The data presented here were all obtained from counting accelerometer records from passenger transport aircraft, the instruments being fitted close to the aircraft centre of gravity.

The counting accelerometer¹ is an instrument which records by counters the number of times given levels of normal acceleration are exceeded. These accelerations may be either up or down and a count is made each time the acceleration exceeds a given value and then returns by a given amount towards its mean value. The counters, together with instruments recording aircraft height and speed and the time, are photographed at given intervals of time, usually of a few minutes duration.

3 DATA ANALYSIS

3.1 In order to make comparisons between aircraft, the recorded accelerations are interpreted as gust velocities using a method based on Zbrozek's work². Briefly, a standard gust profile is assumed, ramp shaped with a 100 ft build up to the maximum, and the response of the aircraft calculated assuming that it is rigid and does not pitch, account being taken of the unsteady lift functions.

3.2 The data are divided into different flight conditions and altitude ranges and the results are presented in Tables 6 - 17, which have been extracted from work by Heath-Smith^{3,4,5,6,7,8,9} and Judy Aplin^{10,11,12}. All gust velocities are expressed in equivalent airspeeds. These tables represent the basic information on which this summary is based.

A list of aircraft types with their characteristics, main cruising conditions and the gust velocity required to produce a normal acceleration of 1g in mean cruising conditions are given in Table 1.

4 DISCUSSION OF RESULTS

4.1 As a first step in classifying the data the numbers of gusts in each altitude band for each flight condition have been summed and the results given in Tables 2 and 3. The "Initial Climb" and "Final Descent" conditions of Tables 6 - 17 are slightly more severe than the remainder of the climb and descent, but not sufficiently so to require different treatment, and, in fact, being a part of the climb and descent have been included as such.

Table 4 has been prepared to examine any change in gust distribution with altitude regardless of flight condition.

4.2 It is customary in studies of this kind to add the numbers of up and down gusts of equal magnitude. It is true that the distributions of up and down gusts are fairly similar in shape and that in any case this is a convenient procedure in fatigue applications but before taking such a step it is worthwhile to look at what differences there are.

The total numbers of gusts of Table 4 are plotted on a logarithmic scale against gust velocity in Fig.1. Below gust velocities of about 30 ft/see the shapes of the curves are practically identical, the differences in frequency being accounted for by a shift of the origin amounting to about 0.7 ft/sec. With the conversion factors given in Table 1, this corresponds to about 0.02g for most of the flying and is, no doubt, due to some extent to the presence of small manoeuvring loads which influence the results and produce a positive

bias, manoeuvres producing positive accelerations being by far the more frequent. However, Anne Burns¹⁴ has shown that there are also other reasons for expecting such a bias.

Above gust velocities of about 30 ft/sec, the ratio of up to down gusts increases; the numbers involved here are smaller and the increased difference is probably due to a few large manoeuvres which are, of course, interpreted in terms of gusts.

4.3 As might be expected, the zero shift is not constant with altitude but is greatest near the ground where most manoeuvring takes place, either in turning on to course after take-off, or in circling when waiting to land. To show this effect more clearly the ratio of the number of up gusts to down gusts is given in the following table and shown plotted in Fig.2.

Mean altitude ft	Observed ratio	Ratio calculated from empirical formula
820	2,227	2.230
21,40	1.892	1.864
4530	1.612	1.624
7940	1.437	1.2,30
11240	1.270	1.330
15760	1.379	1.251
19230	0.972	1.211
23890	1.039	1.175
34590	1.281	1.125

Ratio of number of up gusts to number of down gusts for gusts greater than 10 ft/sec

A useful empirical expression for the ratio is (h + 7700)/(h + 3000) where h is the height in feet.

4.4 As mentioned earlier, for most practical purposes it is convenient to sum the up and down gusts of equal magnitudes and this is done in Tables 2A to 4A. Fig.3 shows the number of gusts per mile greater than 10 ft/sec for cruise and for climb and descent. The values are tabulated overleaf. ratio of one of the geometrical progressions. The cases in which it proved satisfactory, however, were sufficient to show that the intensity parameter for the light component had a value of about 2.5 ft/sec near the ground falling off to about 1.5 ft/sec at about 10000 ft and then remaining fairly constant.

By assuming this to be exactly the case and then fitting the remaining three parameters by moments, a satisfactory and generally consistent set of distributions was obtained. The resulting fitted values compared with the original data are given in Table 5, and it will be seen that the procedure adopted gives satisfactory agreement. (Since above 29500 ft all the data are from Comet aircraft and the number of gusts greater than $7\frac{1}{2}$ ft/sec for this aircraft and altitude are determined without recourse to extrapolation, this value has been included.) The parameters so determined are as follows:

Altitude	a ₁	a ₂	A ₁	A ₂
band ft	ft/sec	ft/sec	per mile	per mile
0-1500	5.357	2.418	1.924, -2	1.967, -1
1500-3500	3.922	2.256	3.527, -2	1.363, -1
3500-5500	3.393	2.047	3.722, -2	5.242, -2
5500-9500	3.525	1.706	1.796, -2	1.015, -2
9500-13500	3.982	1.500	7.679, -3	3.347, -3
13500-17500	4.155	1.500	3.457, -3	2.295, -3
17500-21500	4.685	1.500	3.623, -3	3.343, -3
21500-29500	3.871	1.500	2.548, -3	2.256, -3
Over 29500	3.778	1.500	8.045, -4	3.467, -4

These intensity parameters are shown plotted in Fig.4. It seems likely that the rapid rise in the intensity of the severe component near the ground is, in fact, due to a manoeuvring contribution, and this may also be true of the more gradual increase in that of the light component.

5.2 The proportion in which these components are encountered may depend on flight condition. Accordingly, keeping the intensity parameters already determined, values of A_1 and A_2 for climb and descent and for cruise are determined from the data of Tables 2A and 3A and are as follows:

Altitude	Climb and	i ácseent	Crı	nise
band ft	A ₁	^A 2	^А 1	^A 2
0-1500	3.148, -2	3.042, -1	1.209, -2	1.340 , - 1
1500-3500	4,867, -2	1.613, -1	1.820, -2	1.021, -1
3500-5500	4.091, -2	6.040, -2	2.964, -2	3.602, -2
5500-9500	2.925, -2	1.922, -2	1.293, -2	6.116, -3
9500-1 3500	1. 191, -2	6.716, -3	7.001, -3	2.807, -3
13500-17500	5.058, -3	3.682, -3	3.104, -3	1.989, -3
17500-21500	8.818, -3	3.837 , - 3	3.081, -3	2.187, -3
2:500-29500	2.296, -3	2.084, -3	2.635, -3	2.316, -3
0ver 29500	4.727, -4	3.616, -4	8.593, -4	3.441, -4

These are shown plotted in Figs. 5 and 6. The two figures are similar in nature and in each both components show a general decrease with increasing altitude above 5000 ft. The severe component also falls off markedly near the ground having a maximum at about 3000 to 5000 ft.

6 THE NATURE OF THE TWO COMPONENTS OF TURBULENCE

6.1 It is often assumed that the severe component of turbulence is associated with strong convective activity in cumulus or cumulo-nimbus cloud and described as "storm" turbulence and the light component referred to as "non storm" turbulence¹⁵.

Do these two components in fact occur on different occasions accoriated with different meteorological conditions or do they occur in association?

6.2 It has already been noted that aircraft encounter less turbulence in cruise than in climb and descent. If this difference is primarily due to the avoidance of "storm" turbulence the propertions in which the components are encountered in cruise and in climb and descent will differ and will be indicated in the Table in Fara. 5.2 by a change in ratio of A_1 to A_2 , the value of A_1/A_2 being smaller in cruise. The value of this ratio for the two flight conditions is shown plotted in Fig.7. There is little indication that the severe component is the more easily avoided and for much of the flying the reverse seems to be the case. It is difficult to see why this should be so unless possibly it is caused by autopilot hunting which is sometimes observed

on continuous trace records of acceleration¹⁶. On the whole Fig.7 would suggest that the two components occur in association.

6.3 A number of thunderstorm investigations have been described in which acceleration or gust distributions have been given and these show no evidence of two components being present and are generally well fitted by exponential distributions. The values of the intensity parameter obtained in these investigations are compared below with those of the severe component of the counting accelerometer data.

A paper by R. F. Jones¹⁷ gives statistical details of accelerations encountered by a Spitfire aircraft traversing cumulus and cumulo-nimbus clouds at different heights.

Plots of the logarithms of the number of accelerations against magnitude of acceleration down to the lowest value of 0.1g often show marked curvature and, in fact, are well fitted by the family of distributions suggested by the author¹⁸. However, such fitting makes a comparison with the present data difficult. It is found that an exponential distribution can be satisfactorily fitted for accelerations above C.3g and as this corresponds to a gust velocity of about 8 or 9 ft/sec which is near the lower limit of the counting accelerometer data, this has been considered adequate for purposes of comparison. The intensity parameter is obtained in terms of acceleration and then converted to a gust velocity by Zbrozek's method.

Gust frequency distributions in thunderstorms have also been obtained by Tolefson¹⁹ based on the series of thunderstorm investigations made in Florida and Oklahoma. The gust velocities given were obtained form the accelerations using Pratt and Walker's²⁰ method. After fitting an exponential to each of the distributions given by Tolefson, a correction has therefore been made to the intensity parameter to obtain the value corresponding to a factor given by Zbrozek's method.

Finally, data given by Wicker²¹ for flying in thunderstorms have also been analysed. These were mainly at high altitude and have been combined to give a single value of intensity at 34200 ft. An intensity parameter has been calculated by fitting an exponential distribution to values over 10 ft/sec and the parameter then corrected to the Zbrozek value.

The following Table summarises these results and the values shown are plotted in Fig.8.

Source	Height ft	Intensity parameter ft/sec
Counting accelero- meter data from passenger transport aircraft	820 2440 4530 7940 11240 15760 19230 23890 34590	5.36 3.92 3.39 3.53 3.98 4.16 4.63 3.87 3.78
R. F. Jones ¹⁷	5000 10000 15000 20000 25000 30000 35000 25000	3.62 3.41 3.92 4.31 4.90 5.54 4.64 3.90
Telefson ¹⁹ 1941-42	7500 12500 17500 22500 27500 32000	3•99 5•56 6•26 5•66 5•39 5•05
1946	6000 11000 16000 21.000 26000	4.73 4.84 5.25 5.10 4.73
1947	5000 10000 15000 20000 25000	5.02 5.21 5.61 5.19 5.62
Wicker ²¹	54,200	l;• 32

The values of intensity parameter irom the thunderstorm investigations give reasonably consistent values. Generally speaking, they are about 30% higher than those from the counting accelerometer records but show a similar trend and it is reasonable to suppose that the passenger transport aircraft successfully avoided the most severe turbulence. On the whole, Fig.8 provides fairly convincing evidence that the severe component of the turbulence originates in storms. 6.4 There is little comparable information regarding the light component. However, its intensity above 30000 ft is close to that observed for clear air turbulence.

During the TOPCAT investigation made in Australia, a number of routine flights were made over set tracks and heights to observe clear air turbulence and counting accelerometer records were taken and analysed by Wells²². These results give the following numbers of gusts in 8466 miles of flight at a mean height of 36000 ft.

Gust velocity	No. of gusts
v	exceeding
ft/sec	v
2.5	2313
3.75	937
5.0	409
7.5	74
10.0	14
12.5	1

TOPCAT routine flights

Fitting an exponential distribution gives a value of 1.42 ft/sec for the intensity parameter in good agreement with that assumed above. It will be noted that the range of gust velocity over which the observations were made is considerably lower than that reached by the passenger transport counting accelerometer records and it is interesting to find that the exponential relationship appears to persist to such low values.

A further piece of information is provided by counting accelerometer data obtained from Comet 2 aircraft operated by the R.A.F. and carrying radar¹¹. It is apparent that during cruise, practically all the severe component of turbulence was avoided, and the gust distribution obtained therefore provides a good estimate for the intensity of the light component. The numbers of gusts for 243 000 miles of flight at a mean height of 39400 are as follows:

Gust velocity v ft/sec	Nc. of gusts exceeding v
7 ¹ /2	255
10	61
15	4

Gust distribution from Comet 2 cruise

An exponential fit to the above gives a value of the intensity parameter of 1.75 ft/sec.

7 CONCLUSIONS

The gust statistics presented here provide information on the operational experience of passenger transport aircraft over a wide variety of routes up to altitudes of about 35000 ft.

The data are sufficient for the variation in gust frequency distribution with altitude to be examined and the influence of manoeuvring loads on the data near the ground is noted.

In general, the gust frequency distribution consists of two components. The evidence suggests that the severe component originates in cumulus and cumulo-nimbus cloud, and that the light component is associated with it, although at high altitude a contribution to the light component is made by clear air turbulence.

					Mean cruising conditions					
Aircraft	Operator	Wing area ft ²	Span ft	Slope of lift curve per radian	Weight lb	Height ft	Speed knots E. A. S.	Gust vel. to produce 1g bump ft/sec		
Ambassador Comet 1 Freighter (Bristol) Hermes 4 Hermes 4A Strato cruiser Super constellation Viking Viscount	B. E. A. B. O. A. C. S. A. F. E. S. C. A. B. O. A. C. Airwork B. O. A. C. Q. A. N. T. A. S. B. E. A. C. A. A. B. E. A. and Aer Lingus C. A. A.	1 200 2015 1487 1487 1408 1408 1769 1650 882 882 963 963	$ \begin{array}{c} 115\\ 115\\ 108\\ 108\\ 113\\ 143\\ 141\frac{1}{2}\\ 123\\ 89\frac{1}{2}\\ 89\frac{1}{2}\\ 94\\ 94\\ 94\end{array} $	4. 84 5. 49 [%] 4. 4 4. 4 4. 53 4. 53 4. 70 5. 1 4. 93 4. 58 4. 58 4. 6 4. 6 4. 6	47900 82100 40200 38200 76700 125500 112500 31000 31100 51400 53400	11 300 34950 2460 1200 13090 9410 14150 14990 6870 8810 21 260 17650	164 213 135 134 160 158 176 189 150 144 186 182	31.2 21.6 31.9 31.3 44.2 45.4 45.8 42.2 32.6 33.7 35.3 37.8		

Aircraft used in counting accelerometer recording

*For mean cruising conditions, corrected for compressibility.

Abbreviations

.

B. E. A.	British European Airways
B. O. A. C.	British Overseas Aircraft Corporation
S.A.F.E.	Straits Aircraft Freight Express (New Zealand)
S. C. A.	Silver City Airways (English Channel Ferry Service)
Q. A. N. T. A. S.	Queensland and Northern Territories Aircraft Service
C. A. A.	Central African Airways

\sim
Table

descent
and
climb
during
observed
of gusts
s of
Numbers

•

		40 45 50 55			•		-					
		35	ę	: -	t	7	ŀ		-	•		
		8	8		<u></u>	- -	- u -) -		۱ 		
		25	 		_	17						
0	đ	ଷ୍ପ	353	100	474	- 0 7 년	}&	^ت م (F		
Gust velocity ft/sec		15									·−−	
it veloci		10	111.24	01.17		10/2		789	797		66	
Gus		10	1227	5028	AFA8	11.30	1 330	+ m 2/2	5777	864		
		15	677	689	1,65			129	6	,) m	
	Down	କ୍ଷ	132	4 4		174	7	62	\ 7	, σ	ب (
		25	39	25	14	67	24	-	12	i w	٠.	
		30	13	•	м	<u> </u>	00	2	5	•		
		35	8			к	• •					
		9	2			2	[
	1	45										
Miles flown					-	236 900			-		72 400	
Mean height	feet		200	2490	4550	7530	11560	15500	19270	25590	32460	•
Altitude range	feet		0-1500	1500-3500	3500-5500	5500-9500	9500-13500	13500-17500	17500-21500	21 500-29500	Over 29500	

<u>Table 3</u> Numbers of gusts observed during cruise

																				and the second se
AT title nonco	Mace Lai at 1									Gus	Gust velocity ft/sec	ty ft/sec								
rue I auge	reau neignu feet	Miles flown						Down									ŀ			
	> > > > +		45	07	35	ନ୍ନ	25	20	15	10	10	15	କ୍ଷ	25	8	35	9	45	ß	55
0-1500	890	F			 -	7	15	87	502	1.01.1	7985	1100	120	57	16	1	†-		•	-
00-3500	2370	-	,.			- 0			ן ק ק	2004	2.2.2	EB2	<u>,</u> 8		24	о м 	 ł	t	1	
3500-5500	11180	-) -	3%	2 4	1001		200	R 92	45	o ~) «				
00-9500	8130			2	к	σ	36	182	26	0111	5700	1057	27	11	t -	- \	ç	*	Ŧ	
00-13500	11180	_		•		۰ <u>در</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	297	1010	202.	5720	1925	2 u 7 k	Ξā	t 6	;	J ~	- *		
00-17500	15820		2	. N	7)\$	2 7 7 7	;t	338	1 5 5 8	2100	5		2 M	15	- *	ł	-		
00-21500	19220				+ 00	t Q		17.8			177.	A P	2 6	70	2 -	- u	0			
00-29500	23300			••••••)	, (۲ ۲	7		658			18) t 1 k	- M	، ر	J			
Wer 29500	34,950	1410 100				 -) 10	i 0	39	237	20	27	18	2-4	<u> </u>	-		•		

<u>Table 4</u> Numbers of gusts observed during all flving

	.		-							_			
		55	-	•									-
		ß	~	-		•							+
		45	r	• •	-	C	N	~	•				6
		\$	ę	c	J		4	4	ŀ	М	r		3
		35	16	٢	~ 4	- (2	4		- \	,	-	53
		R	77		7	= c	Υ Ω	5	:5		ι. Έν	N N	171
		25	153	â	5 -	\$8	2	00	1	; u	}	J-4	573
	Up	କ୍ଷ	584	1	NZC		540	20.1		19	200	10	2441
ty ft/sec		15	2924	202	202		C077	150,5		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.14	<u></u> 48	11212
Gust velocity ft/sec		10	19419	1 2705			12/21	751.5	2062		889	333	67548
Gus		10	8718	7204	222	1000	00/4	5912	1000	2305		8.8	41127
		15	1 300	500				1279	167	1,68	111	1	6825
	Down	କ୍ଷ	219	177	- 0 - 7	202	000	366	116	18	25	<u>ې</u>	1598
		સ	5	31		- μ - α	5	106	77	5	; œ) M	411
		ጽ	17	~	1 K	٦ç	2	53	97	23	3		117
		35	2			V	 >	œ	4	- cc ,			28
		07	2		<i>t</i>	, ,	4		2	0	l.		Ę
	ľ	45							2		,		m
	Miles flown											512 600	
Ween heimht	Poot incutou	2 2 1	820	5440	4530	2940		11 240	15760	19230	23890	34590	TOTALS
Al titude range	feet.		0-1500	1500-3500	3500-5500	5500-9500		0025 1-WGE	13500-17500	17500-21500	21 500-29500	Over 29500	

1-22	E	
LO E	2	
æ	,	
2	2	
عوا	~	

Numbers of gusts observed during climb and descent (up and down combined)

Over 29500	21500-29500	17500-21500	13500-17500	9500-13500	5500-9500	3500-5500	1500-3500	0-1500	feet	Altitude range
32460	25590	19270	15500	11560	7530	4550	2490	700	feet	Mean hei <i>s</i> ht
	-					91 400			Miles flown	
હુ	107	911	1452	3149	11481	9260	14475	16111	10	
7	67	229	288	629	1935	1320	2142	2409	15	
N	- 6	œ	73	159	607	259	410	485	20	
(J	25	19	£	92	£8	85 5	135	25	Gust [\] ve
		5	5	13 13	22	10	16	54	30	Gust velocity ft/sec
		د.		د.	7		4	12	35	ft/sec
		<u>د.</u>			4		N	ω	Ð	
					د.		د۔	<u>د</u>	5	
							ح بہ		50	

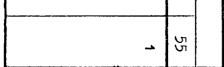

-

Table 3A Numbers of gusts observed during cruise (up and down combined)

Altitude range	Mean height					Gust ve	Gust velocity ft/sec	ft/sec	-	-	-	
feet	feet	Miles flown	10	15	20	25	30	35	40	5	50	
0-1500	068		12026	1815	318	72	20	6	4	4	2	
1500-3500	2370		6611	887	1	28	ω	U	14.			
3500-5500	4,4,80		2913	1-1-1	89 4	1 3	7	د				
5500-9500	81 30	532 500	10144	1845	418	83	23	9	4	د.	<u>د</u>	
9500-1 3500	11180		10338	2195	610	163	57	18	თ	د		
1 3500-1 7500	15820		3832	739	217	68	24	<u>ა</u>	N	N		
17500-21500	19220		3634	770	270	8 <u>1</u>	24	13	4	<u>د</u>		
21500-29500	23300		1338	216	53	18	<u>ს</u>	د.				
Over 29500	34950	4,4,0 100	528	103	31	7	3					

Table 4A Numbers of gusts observed during all flying (up and down combined)

3500-5500 5500-9500 9500-13500 13500-13500 17500-21500 21500-21500 21500-29500 0ver 29500	0 -1 500 1500-3500	Altitude range feet
4530 7940 11240 15760 19230 23890 34590	820 21.1.0	Mean height feet
135 800 769 400 1 223 200 918 600 761 800 363 200 512 600		Miles flown
12173 21625 13487 5284 4545 1745 593	281 37 21086	10
1761 3780 2824 1027 999 283 110	4224	15
343 8243 769 290 351 33	лл. лл.	20
175 175 106 23	207 11 3	Gust v
377757 377757	63	Gust velocity ft/sec 25 30 35
	18. 7	ft/sec 35
טוטמט	12	£
<u>→ N → N</u>		45
·	<u>→ </u>	50

		۰.
and the second se	55	
1		

Altitude	Gust	Number o greater th	of gusts lan v from	Total number greater f	
band ft	velocity v ft/sec	Severe component	Light component	Calculated	Observed
0 to 1500	10 15 20 25 30 35 40 45 50 55	2506.6 985.7 387.6 152.4 59.9 23.6 9.3 3.6 1.4 0.6	25630.4 3241.2 409.9 51.8 6.6 0.8 0.1 -	281 37.0 4226.9 797.5 204.2 66.5 24.4 9.4 3.6 1.4 0.6	281 37 4224 803 207 63 18 12 5 2 1
1500 to 3500	10 15 20 25 30 35 40 45 50	4335.2 1211.6 338.6 94.6 26.4 7.4 2.1 0.6 0.2	16750.8 1826.0 199.1 21.7 2.4 0.3	21086.0 3037.6 537.7 116.3 28.8 7.7 2.1 0.6 0.2	21086 3029 554 113 24 7 2 1 1
3500 to 5500	10 15 20 25 30 3 5	5054.2 1157.9 265.3 60.8 13.9 3.2	7118.8 618.9 53.8 4.7 0.4	12173.0 1776.8 .319.1 65.5 14.3 3.2	12173 1761 343 61 14 1
5500 to 9500	10 15 20 25 30 35 40 45 50	1 381 5.0 334 5.1 810.0 196.1 47.5 11.5 2.8 0.7 0.2	7810.0 416.7 22.2 1.2 0.1 - -	21625.0 3761.8 832.2 197.3 47.6 11.5 2.8 0.7 0.2	21 625 3780 827 175 45 16 8 2 1

Gust frequency distributions for each altitude band

(Contd.)

Table 5 (Contd.)

.

Altitude	Gust	Number o greater th		Total number greater t	-
band ft	velocity v ft/sec	Severe component	Light component	Calculated	Observed
9500 to 13500	10 15 20 25 30 35 40 45	9392.8 2675.7 762.2 217.1 61.9 17.6 5.0 1.4	4094.2 146.1 5.2 0.2 - - -	13487.0 2821.8 767.4 217.3 61.9 17.6 5.0 1.4	1 3487 2824 769 205 70 19 5 1
13500 to 17500	10 15 20 25 30 35 40 45	3175.9 953.2 286.1 85.9 25.8 7.7 2.3 0.7	2108.1 75.2 2.7 0.1 -	5284.0 1028.4 288.8 86.0 25.8 7`7 2.3 0.7	5284 1027 290 87 27 5 27 5 2
17500 to 21500	10 15 20 25 30 35 40 45	2760.1 949.3 326.5 112.3 38.6 13.3 4.6 1.6	1784.9 63.7 2.3 0.1 - -	4545.0 1013.0 328.8 112.4 38.6 13.3 4.6 1.6	4545 999 351 106 37 14 5 1
21500 to 29500	10 15 20 25 30 35	925.5 254.3 69.9 19.2 5.3 1.4	819.5 29.2 1.0 - -	1745.0 283.5 70.9 19.2 5.3 1.4	1745 283 69 23 5 1
Above 29500	7 1 10 15 20 25 30	799.4 412.4 109.8 29.2 7.8 2.1	940.6 177.7 6.3 0.2 -	1740.0 590.1 116.1 29.4 7.8 2.1	1740 593 110 33 7 3

-

.

.

.

•

•

•

,

•

Ambassador - Gust frequency distributions

	Altitude	Mean	Recorded	-	N	Number Vert	ber of t Vertical	§ •r-1		each gust speed in	0	peed was ft/sec E.	s exc E.A.S.	exceeded A. S.	eđ	
Flight condition	band feet	al titude feet	time minutes	Statute miles		Γ	Down					P	Up			
					30	25	20	15	10	10	15	20	25	30	35	40
Climb and descent (excluding	0	1000 2600 4,500	59 2011 4914	160 5953 15820		CV	50	24 26	14 160 310	310 580	53	+ 77+	- 10	~~		
initial climb and final descent intervals)	5500-9500 9500-13500 13500-17500 17500-21500 21500-25500	7200 11300 14500 18800 23500	7794. 988 48 24	26780 12299 3679 184 110	~ ~	MN	4.04	27	002386200	370 52 0 0	57 32 37	920	~ 0 ~	. .		<u> </u>
TOTALS			19241	64,985	N	-	27	121	874	1488	248	હ	1	5		
Cruise	0-1500 3500-3500 5500-5500 5500-9500 9500-17500 17500-21500	530 5700 4400 7700 15300 15300	262 809 1273 13362 11554 8995 797	697 2668 14,34 14,34 14,3709 14,3326 314.7 314.7		~ ~~~		252 mf 200	061 051 051 051 00 150 00	200 230 250 250 250 250 250 250 250 250 250 25	50 19 15 15	512mg m	07 M	N N	4	-
LOTALS			37052	137 581		<u>ک</u>	23:	106	639	910	183	37	1 0	4	N	-

· · · · · · · · · · · · · · · · · · ·					in the second second		an a	-				Construction Web Constant			-	
	174547.	Mean	Recorded			Num						speed n ft/s			eded	
Flight condition	Altitude band	altitude	time ninutes	Statute miles				Dow	In					Up		
	feet	feet	minutes		40	35	30	25	20	15	10	10	15	20	25	30
Climb and descent (excluding initial climb and final descent intervals)	0-1500 1500-3500 3500-5500 9500-13500 13500-17500 17500-21500 21500-25500 29500-33500 33500-37500	1000 2600 4600 7600 11300 15700 19600 23600 23600 27600 31300 34800 38400	83 458 11 64 501 6 4351 4333 5121 6363 7754 7753 2902 197	238 1497 4130 20723 20863 22737 28401 37063 47329 50199 20699 1538	1	2	2 1	4 7 1 1 1	6 1 20 3 4 5 2 1	14 14 95 14 12 14 4 2 2 1	54 140 556 115 61 76 22 27 18 8 0	9 1 35 292 980 1 97 95 109 33 27 28 11 0	1 24 59 193 19 13 29 4 4 4	4 16 39 3 2 7 1 1	1 6 5 2	3
TOTALS			- 45495	255 417	1	2	3	15	42	172	1077	1916	350	74	14	4
Cruise	0-1500 1500-3500 3500-5500 9500-13500 13500-17500 17500-21500 21500-25500 25500-29500	900 2100 5000 6000 - 15100 19200 22600 28600	432 159 55 18 - 171 54 45 451	11 34 521 204 77 876 272 243 3036					9	83 1 2	353 32 23	549 37 59 5 2	125 11 1 1 3	25 3	6	1
Maryania e vicinariye Lottan - Milanda	29500-23500 29500-33500 33500-37500 37500-41500 41500-45500	32200 35400 38600 42800	491 17114 35157 7502 56	121 442 260 273 57985 436			1	1 2	1 8	8 29 2	49 169 16	57	9 52	3 18 1	2 2,	1 1
TOTALS			61214	! 446 499			1	3	18	125	647	957	204.	50	11	3,

<u>Table 7</u> <u>Comet 1 - Gust frequency distributions</u>

Bristol Freighter (S.C.A.) - Gust frequency distributions

	Altitude	Mean	Recorded	Statute		Nu					h gust peed i					ed	
Flight condition	band feet	altitude fect	time minutes	niles			Do	wn						Up			
					35	30	25	20	15	10	10	15	20	25	30	35	40
Initial climb	0 1 500	400	2991 ₁₋	7577	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100			2	40	359	1033	122	21	3	1		
Climb and descent	0 -1 500 1500-3500 3500-5500	600 2200 4400	2256 259 45	5262 696 123	ar - ant privaçõe	1	2	3	11	125 7 3	254 17 5	29 1	3				
TOTALS			2560	6081		1	2	3	11	135	276	30	3				allan fan in a
Cruise	0 -1 500 1500 -3 500 3500 - 5500 5500 - 9500	800 2100 4200 6000	15201 3683 623 119	39276 9991 1732 323				5 3	68 18	644 186 1 1	1 391 492 4 5	171 51 1	27 3	6 1	2		
TOTALS			19631	51322				8	86	832	1892	223	30	7	2		

,

Bristol Freighter (G.C.A.) - Gust frequency distributions

Flight	Altitude	Mean	Recorded				١٧	Number cf Verti	er cf ti Vertical	14	င်း လို့	gus	it speed in ft/se	W2 SC		exceeded A.S.	àd		
condi- tion	band feet	altitude feet	time minutes	miles				Down	_						Up		`		
					-10 1	35	30	25	20	15	10	10	15	8	25	30	35	40	45
Initial climb	0-1500 1500-3500	500 2200	2389 376	5991 968	~ -	،	5	M	- 23	118 10	758 79	2095 192	307 33	56	12	-			
TOTALS			2765	6559	-	-	2	Σ	24	128	837	2287	340	61	12	-			
Climb and descent	0-1500 1500-3500 3500-5500 5500-10500	800 2300 1,1400 7000	1945 1224 594 228	4877 3346 1651 611	~	-	0	- 7 t-	2024- 2054-	141 16	455 258 62 11	1636 1627 96 4	237 104 15	50 37	μ. M. M.	νΩ	m ·	N	-
TOTALS	-		3991	104.85	-		2	5	R	136	736	2383	356	2	18	2	m	N	1
Grúise	0-1500 1500-3500 3500-5500 5500-9500 9500-13500	1000 24,00 4,300 6800 10600	13145 8031 4086 2512 67	34839 21803 11105 6881 185			0	N-0-0	22 18 20 27	172 121 45 23	1505 707 307 101	,3560 1859 553 90	371 220 71 30	- 1 - 1	010	Mt N	∼ √		
TOTALS			27841	74,813			 -:+ -:	7	57	361	2622	6063	692	114	25	6	2		

,

Hernes LA (Airwork) - Gust frequency distributions

	Altitude	Mean	Recorded	Statute				Num			s each ist spe	-	•			d					
Flight condition	band	Altitude	time minutes	miles					1	Down							ប	Þ			
	feet	feet	minuces		40	35	30	25	20	15	10	10	15	20	25	30	35	40	15	50	55
Climb and descent (excluding initial alimb and final descent)	01500 15003500 35005500 55009500 950013500	1000 2690 4510 7100 10450	100 1733 3550 9269 915	246 5086 11273 31639 3200	b		2	2 1 4	3 17 11 14	18 117 68 55 1	186 832 452 356 33	234 1177 597 559 27	32 184 107 100 3	6 31 24 20 1	3 3 5 4 1	2 1 1 1	1	1			
TOTALS			15567	51462			2	7	45	259 <u>'</u>	1859	2594	426	82	16	5	2	1			
Cruise	0-1500 1500-3500 3500- 3500 5500- 9 500 9500- 13500	870 2270 4830 8680 10290	110 150 292 69309 56746	306 445 981 241473 199937	1	2 1	1 5 7	3 1 19 23	24 6 2 84 90	67 46 8 319 300	167 436 90 1653 1172	434 347 123 1857 1154	62 9 412	41 14 2 106 100	14 3 22 24		4 3 4	-		2	1
TOTALS			126607	43142	1	3	13	46	206	740	3 518	3915	927	263	63	25	11	7	5	2	1

.

.

Herries 4 (B.O.A.C.) - Gust frequency distributions

Altitude Me	Me	Mean	Recorded	Statute					Numbe Ve	er of ertica	Number of times each gust speed was exceeded Vertical gust speed in ft/sec E.A.S.	each gu speed	ist spe in ft/	speed was ft/sec E	B. exce	eede	Ð		
altitude time	time		miles			Į		Down	E								8		
leer numres		sannute			57	9	35	30	ম্ব	ଝ	15	9	2	15	8	ង	R	35	9
135	135		M.	36							S	5	184	8	20	ŝ	-		
2300 866	866		ਨ	2			<u> </u>		-	9	ର	7	275	59	প্র	Ś	ŝ	-	
5000 1899	1899		8	26					m	12	त्म	136	208	59	14	m	*-		
870 .0 6332	6332		220	80					N	5	78	286	560	164	4 0	4		-	•
12000 4890	0681		1801	q				ຸດາ	ŝ	19	٩	77	318	104	27	9	N		
	1414		555	 0			•••				t	16	19	r)					
	173		5	5	_		_					1	•	-	-†	-1	-1		1
12,2019			550	θ				m	12	-23	216	752	1564	61	2	ະລ	8	N	
	145		Γ ^m	5				}	 	+	3	239	199	જ	19	9	N		
8	8		21	<u>-</u>						2	ŝ	18	59	ې ئ	-#			•	
4700	102		R	œ								4	~				·		
8400 1612	1612	•	8 <u>5</u>	64		-	-	•	N	18	R	64	136	2	Ξ	m			
12000 70933 2	26607		2636	ស្ត	1		Ē	Ś	<u>5</u>	148	8 N	802	1100	274	89	18	æ	t -	
15000 17494	17494		6670	9						~	ጽ	213	190	34	10		-		
18500 8498 34	8678	•	3418	<u>v</u>				***	m	~	17	5	02	ະລ	9	***	-+ - 2		
	6		77	6								1	1		 				
98945 371613			3716	3		Ξ.	2		18	86	306	1397	1761	1460 L	114	8	10	t,	

٠

٠

•

٠

٠

1.0.98

Stratocruiser	- Gust	frequency	distributions

Flight	Altitude	Mean	Recorded	Statute	Ve	Numbortica	er of al gu	time: st spe	s each eed in	gust ft/se	speed c E.A.	was .S. (-	exce +Up,	eded -Do	wn)
condition	band feet	altitude feet	time minutes	miles]	Down					Up		
	1666	1000	minutes		30	25	20	15	10	10	15	20	25	30	35
Initial climb	0–1500 1500–3500 3500–5500 5500–9500	1000 2100 4800 7200	664 209 42 17	2192 676 160 69		1	1 7	16 23	136 112 2 5	245 201 6 10	30 46 2	4 8	1 2		
TOTALS			932	3097		1	8	39	255	462	78	12	3		
Final descent	0-1500 1500-3500	500 2200	576 25	1552 89		1	8	29	197 4	411 8	110	21	2	1	1
TOTALS			601	1641		1	8	29	201	419	110	21	2	1	1
Climb and descent	0-1500 1500-3500 3500-5500 5500-9500 9500-13500 13500-17500 17500-21500	1000 2700 4500 7500 11500 15400 18800	142 1868 3032 7509 5156 4781 1248	397 6370 11302 30535 22040 21017 5719	2	1 1 2 5	3 11 12 8 3 13	4 27 65 57 33 9 32	33 255 401 362 158 42 144	71 780 740 686 194 60 145	18 126 138 124 45 8 58	3 21 22 18 15 .1 24	1 1 2 2 4		
TOTALS			23736	97380	2	9	50	227	1395	2676	517	104	10		T
Cruise	0-1500 1500-3500 3500-5500 5500-9500 9500-13500 13500-17500 17500-21500 21500-25500	1000 2400 4400 7600 11000 15500 19100 22900	581 1629 1761 26378 57991 40397 49593 2636	1825 5830 6792 104969 235332 171556 220115 12270	1 2 3	2 3 1 5 9	6 3 26 15 18 36	35 19 34 128 84 65 97 3	145 124 187 742 574 306 725 83	314 311 313 981 806 437 734 70	74 30 67 251 148 80 136 5	13 1 14 57 22 15 32	5 3 11 4 2	3 1 1	1
TOTALS			180966	758689	6	20	112	465	2886	3966	791	154	29	5	+-

Super-constellation - Gust frequency distributions

•

,

	cltitude	Mean	Recorded						1		of ti ertical										
Flight condition	band	altitude	time	Statute miles						Down							U	P			
	feet	feet	minutes		45	40	35	.30	25	20	15	10	10	15	20	25	30	35	40	45	50
Initial climb	0-1500 1500-3500	1500 2000	1541 129	4768 409				5	17	31	119 3	693 3 5	1377 67	151 7	33	19	5				
TOTALS			1670	5177				5	17	31	122	728	1444	158	33	19	5				
Final descent	0-1500 1500-3500	500 2000	1095 10	2925 27				2	4	15	67	388 2	1135 8	223 1	58 1	22 1	11	4	2		
TOTALS	·		1105	2952				2	4	15	67	390	1143	224	59	23	11	4	2		
Climb and descent (excluding initial climb and final descent intervals)	0-1500 1500-3500 3500-5500 5500-9500 9500-13500 13500-17500 17500-21500	1000 2600 4500 7600 11500 15500 18100	1133 4106 3827 8158 7214 5518 425	3189 13564 13951 32001 30119 24229 1932		1	1	1 4 1 1	3 4 4 14 6 2 1	15 11 16 35 11 6 1	63 62 54 115 28 21 3	288 383 298 427 122 84 5	889 1172 582 780 249 110 11	146 169 98 142 33 21 1	36 37 29 33 9 4	8 12 10 15 2 1	2 3 1 5	2 2	2	1	1
TOTALS			30381	118985		1	1	7	34	95	346	1607	3793	610	148	48	11	4	3	1	- 1
Cruise	0-1500 1500-3500 3500-5500 5500-9500 9500-13500 13500-17500 17500-21500	1000 2500 44,00 8300 11200 16100 18700	48 144 170 3137 60729 91037 36037	136 504 598 13278 266542 418792 171717	2	1, 2 1	ŧ -	2 11 12 6	1 4 38 29 14	1 2 7 117 78 47	3 5 29 278 223 133	16 20 20 139 1261 897 598	54 40 49 170 1634 1459 565	8 5 11 24 277 244 100	1 2 6 92 78 33	1 1 24 26 10	5				
TOTALS		i i	191302	871567	¹ 2	4	9	31	86	252	671	2951	3971	669	212	62	15	2	Ì		

-

Viking (B.E.A.) - Gust frequency distributions

+ +	Altitude	Mean	Recorded	04040 04040		Numbé Ve	ber of ti Vertical	times e 1 gust	ach gu speed	1 1	speed was exceeded ft/sec E.A.S.	excee A. S.	ded	
ringht condition	band feet	al titude feet	time minutes	miles			Домп					Чр		
					30	25	8	15	10	10	15	20	25	8
Climb and descent	0-1500	- VO	Q	506				٦	82	126	92	<u>م</u>		
(excluding initial	150	24,00	2059	5640		.	2	5	367	642	93	18	m	۰.
climb and fingl	3500-5500	4500	2867	8860		7	7	40	259	392	đ			
descent intervals)	5500-9500	6800	2605	8460	Managit - Maria Sanata an Ing			2	108	162	23	2	~	
TOTALS	, ,		1731	23466		5	14	108	816	1322	188	33	-4-	-
	0-1500	6 00	620	1740			3	37	250	450	57	5	4	
	1500-3500	2500	2709	8030	~~	2	Ś	45	360	520	55	6	2	~
Cruise	3500-5500	700	001717	13700		.	4	22	198	235	29	9	4 ,	
	5500-9500	7500	19478	62800		~	14	02	844	4,08	59	14	2	
	9500-13500	10100	2373	0627			-	8	72	88	6	2		
TOTALS			29580	94.050		9	26	1 86	1328	1701	209	36	Ъ.	~~~
					Î									

Viking (C.A.A.) - Gust frequency distributions

		Mean		<u> </u>		1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 -	Num		f time ical g							ded		
Flight condition	Altitude band	alti- tude	Recorded time	Statute miles		an a	Dow	n						Up				
	feet	feet	minutes		30	25	20	15	10	10	15	20	25	30	35	40	45	50
Climb and descent (excluding initial climb and final descent intervals)	0-1500 1500-3500 3500-5500 5500-9500 9500-13500 13500-17500	1000 2400 4700 7500 10600 14500	10 48 403 4408 816 19	22 143 1180 13641 2636 68		1 2 1	2 1 2 13 1	5 2 13 108 12	19 7 89 850 109 -	24 3 145 1281 149 -	3 29 149 15	1 21 1	5	1				
TOTALS			5704	17690		4	19	140	1074	1602	196	23	5	1				
Cruise	0-1500 1500-3500 3500-5500 5500-9500 9500-13500 13500-17500	1000 2800 4800 7900 10700 14000	29 144 442 13603 7315 115	77 426 1262 42750 23498 384	2	5	1 1 6 7 18	5 6 23 133 112		28 32 216 1701 705 7	8 7 44 174 115 2		1 1 4 9	1 1 6	1 2	1	1	1
TOTALS			21 648	68297	2	5	33	279	1774	2689	350	59	15	8	3	1	1	1

-

	Altitude	Mean	Recorded					Numb	er c f Vertic	times cal gus	each r st speec	ost spee 1 in ft/	ed was sec E.	excee A.S.	ted			
Flight condition	lani	altitude	time	Statute miles				Dow	m		,				Up			-
	feat	feet	minutes		40	35	30	25	20	15 1	10	12	15	2:	25 ;	30	35	49
Initial climb	0-1500 1500-3500 3500-5500	1000 2200 42 0 0	694 3080 49	21.59 10075 159				2	1 19	11 134 2	112 1153 25	182 1703 29	229	2 39	4	1		
TOTALS		1	3823	12693			İ	2	20	147	1290	1914	251	41	4	1		
Final Jescent	0-1500 1590-3500 3500-5500	790 2200 1 4300	1385 394 21	3835 1217 74				1	5	54 ¹ 6 '	524 86	1000 179 2	139 15 1	22 2	5 1	1	1	1
TOTALS			1800	5176			1	1	5	60	610	1181	155	24	6	1	1	1
Clic end jescent	0-1500 1500-3500 3500-5500 5500-9500 9500-13500 13500-17500 17500-21500 21500-25500 25500-29500	1000 2600 4600 7500 11700 15500 19200 2690 2690	411 2863 4308 10305 13691 18935 7385 1664 74	11 19 8351 14368 44931 51252 79479 328/3 7873 356		1	1 3 2 1	3 7 3 18 3 1 1	8 31 13 47 14 12 11 6 1	24 124 63 125 55 55 55 55 12 75 17 12	171 841 051 800 252 272 171 93 25	327 1461 1012 12.2 452 309 175 97 52	49 244 126 197 88 51 38 14 10	11 52 18 39 18 11 13 4 1	2 15 2 4 1 5 6 1	4 1 2 2	1	
101/15		1	61324	242 272		1	7	41	143	1,93	7.69	5107	817	167	37	9	1	1
Cruise	0-1500 1500-3500 3500-5500 5500-9500 9500-13500 13500-17500 17500-21500 21500-25500 25500-29500	900 2400 4300 7600 11400 15000 19909 23000 26500	676 954 825 1122 2515 7015 46558 45307 4078	1000 3510 2933 4614 11023 37023 229 606 230 432 20615		<u> </u>	e 1	2 1 1 19 4 1	7 3 1 3 1 2 48 18 3	95 17 6 8 12 5 101 89 14	1,52 2,1 46 51 59 41 50 492 75	733 403 116 44 151 303 516 80	115 70 14 8 34 3 99 93 93 93	29 12 3 2 3 7 27 5	1 1 14 14	1 1 1 7 3	1	2
TOTALS	1 		109 84,9		- 	4	10	28	86	347	1331	· 2577	451	. 124	. 35	15	7	2

.

Table 16 Viscount (E.E.A. and Arr Lineas) - Gust frequency distributions

.

.

Tableto I Bestini

.

.

Number of times each gust speed was exceeded Vertical gust speed in ft/sec E.A.S. Recorded Mean Altitude Flight Statute band altitude time Up Down condition miles feet feet minutes 40 45 30 [†] 15 i 0-1580 Initial **CO-**3500 climb 3500-5500 63 1 TOTALS 0-1500 Final 1500-3500 45 1 descent 3500-5500 5500-9500 TOTALS $2l_4$ 0-1500 1500-3500 3500-5500 Climb 8 | 5500-9500 and 9500-13500 descent 13500-17500 26 ; 17500-21500 -21500-25500 -127 | TOTALS 0-1500 1500-3500 3500-5500 3 ! 5500-9500 9500-13500 Cruise 13500-17500 2 | 17500-21500 21500-25500 25500-29500 -406 113 31 10 1 2 5 14 TOTALS

.

.

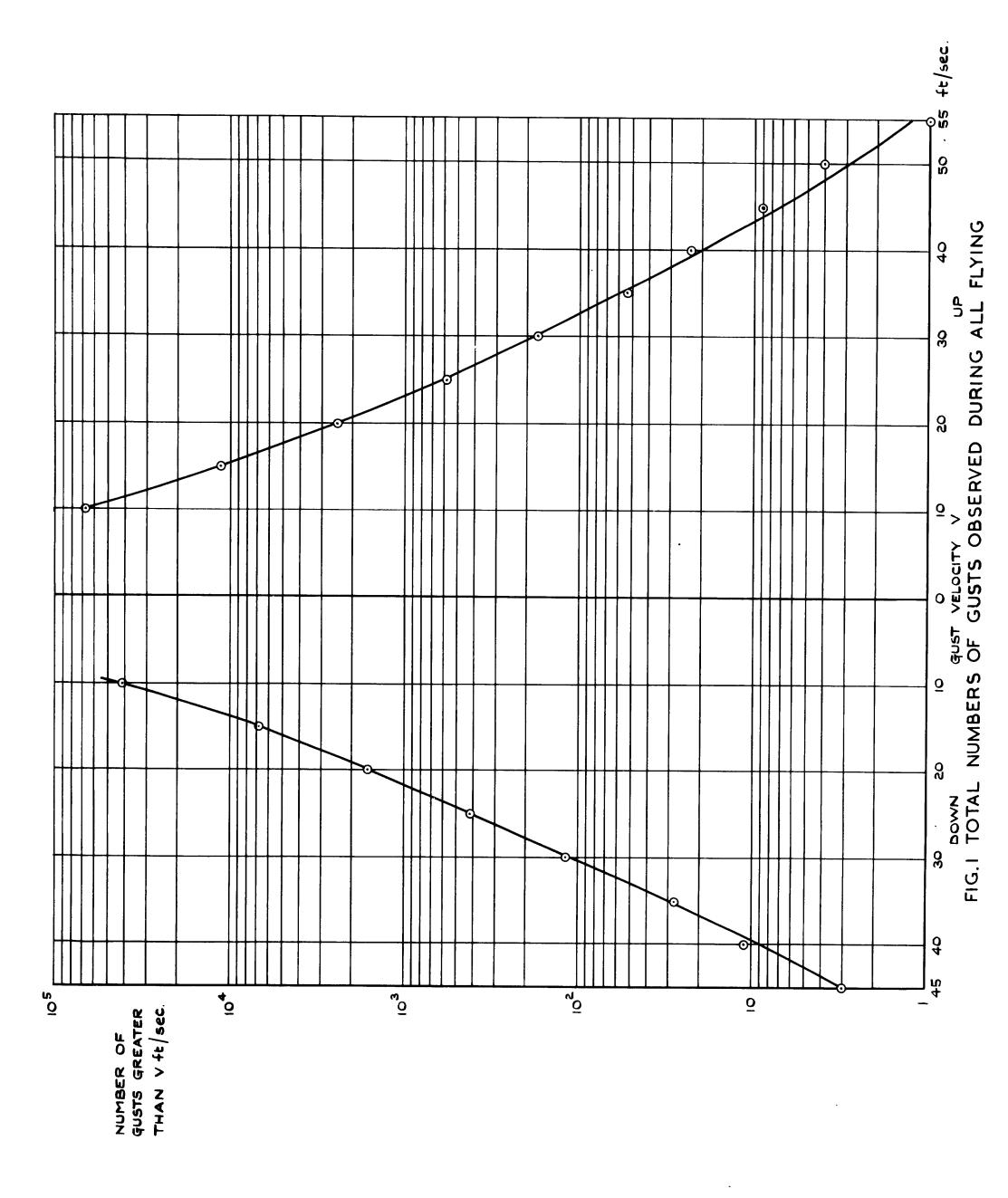
Table 17 Viscount (C.A.A.) - Cust frequency distributions

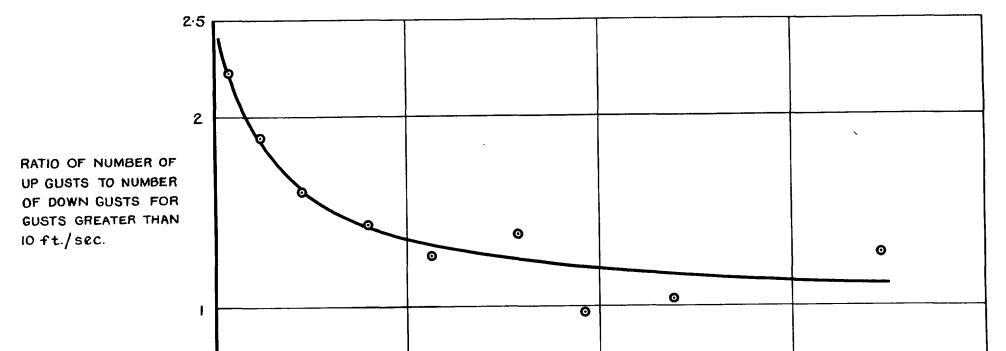
.

REFERENCES

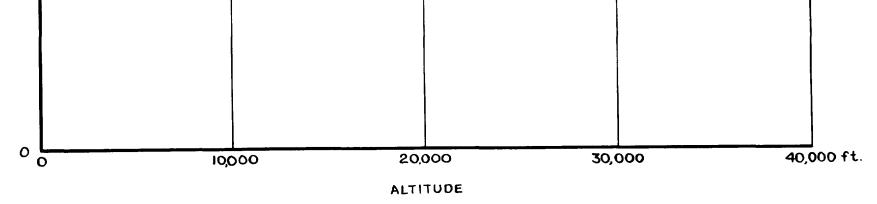
<u>No</u> .	Author	Title, etc.
1	J. Taylor	Design and use of counting accelerometers. A.R.C, R. & M. 2812, June 1950
2	J. Zbrozek	Gust alleviation factor A.R.C. R. & M. 2970, August 1953
3	J. R. Heath-Smith	Turbulence encountered by Comet 1 aircraft. A.R.C. Current Faper 248, May 1955
4	J. R. Heath-Smith	Turbulence encountered by Viking aircraft over Europe. A.R.C. Current Faper 311, July 1956
5	J. R. Heath-Smith	Atmospheric turbulence encountered by Hermes aircraft. A.R.C. Current Paper 334, January 1957
6	J. R. Heath-Smith	Atmospheric turbulence encountered by Bristol Freighter aircraft in U.K., Nest Africa and New Dealand. A.R.C. Current Paper 429, October 1958
7	J. R. Heath-Smith	Atmospheric turbulence encountered by Super- constellation aircraft A.R.C. Current Paper 432, January 1959
8	J. R. Heath-Smith	Atmospheric turbulence encountered by Viscount aircraft over Europe. A.R.C. Current Paper 463, July 1959
9	J. R. Heath-Smith	Turbulence encountered by Ambassador aircraft over Europe. A.R.C. Current Paper 572, December 1960
10	Judy E. Aplin	Atmospheric turbulence encountered over the Atlantic by Stratocruisor aircraft. A.R.C. Current Faper 533, August 1960
11	Judy E. Aplin	Atmospheric turbulence encountered by Comet 2 air- craft carrying cloud collision warning radar. A.R.C. Current Faper 713, June 1963

REFERENCES (Contd.)


No.	Author	Title, etc.
12	Judy E. Aplin	Atmospheric turbulence encountered by Hermes aircraft on routes to Africa and the Far East. A.R.C. Current Paper 785, May 1964
13	N. I. Bullen	Gust loads on aircraft. Proceedings of a symposium on atmospheric turbulence and its relation to aircraft held at the R.A.E. November 1961, H.M.S.O.
14	Anne Burns	Unpublished M.O.A. paper
⁻ 15	Harry Press Roy Steiner	An approach to the problem of estimating severe and repeated gust loads for missile operations. NACA Tech. Note 4332, September 1958
16	CAADRP Special Events Working Party	Civil Aircraft Airworthiness Data Recording Programme. Special events of an operational nature (February 1964 - December 1964), R.A.E. Tech. Report No. 65242, November 1965
17	R. F. Jones	Radar echoes from and turbulence within cumulus and cumulo-nimbus clouds. Meteorclogical Office, Professional Notes No. 109, 1954
18	N. I. Bullen	The combination of statistical distributions of random loads. R.A.E. Tech. Note Structures 326, March 1963
19	H. B. Tolefson	Summary of derived gust velocities obtained from measurements within thunderstorms. NACA Tech. Note 3538, October 1955
20	K. G. Pratt	A revised gust-load formula and a re-evaluation of V-g data taken on civil transport airplanes from 1933 to 1950. NACA Report 1206, 1954


REFERINCES (Contd.)

•


٠

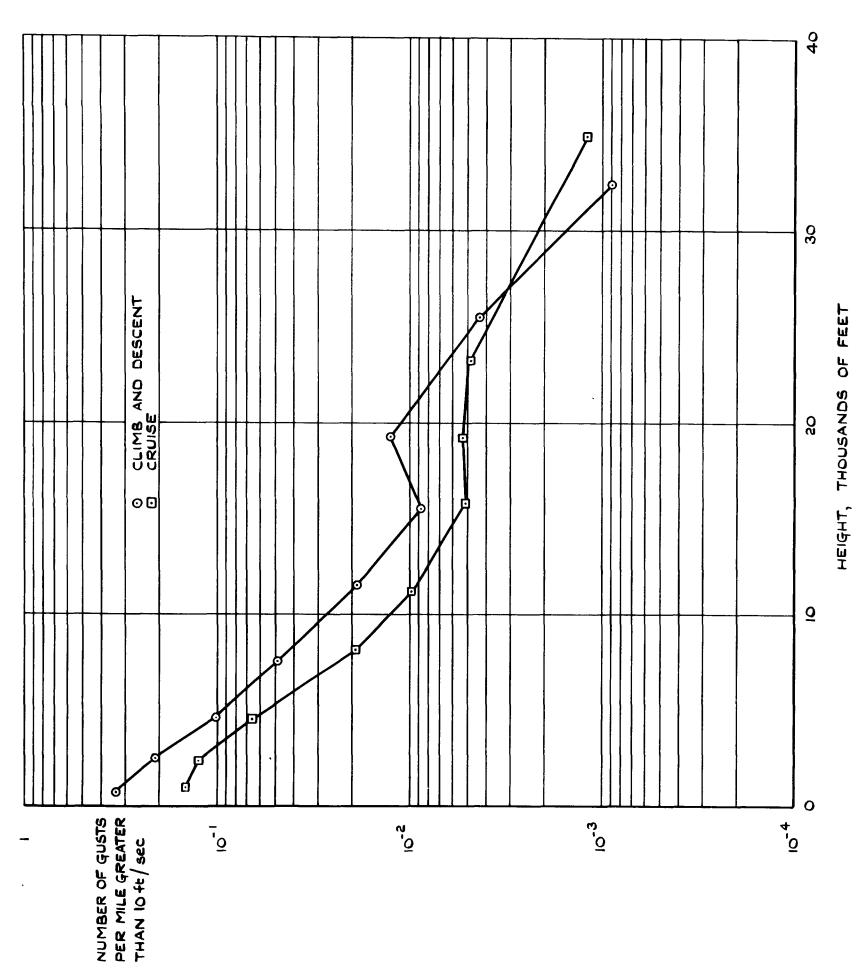
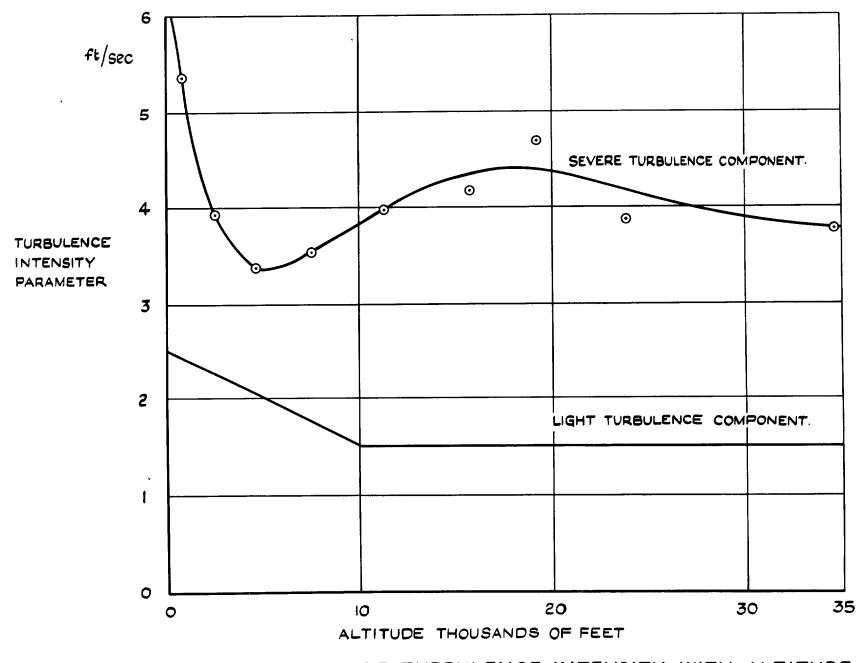
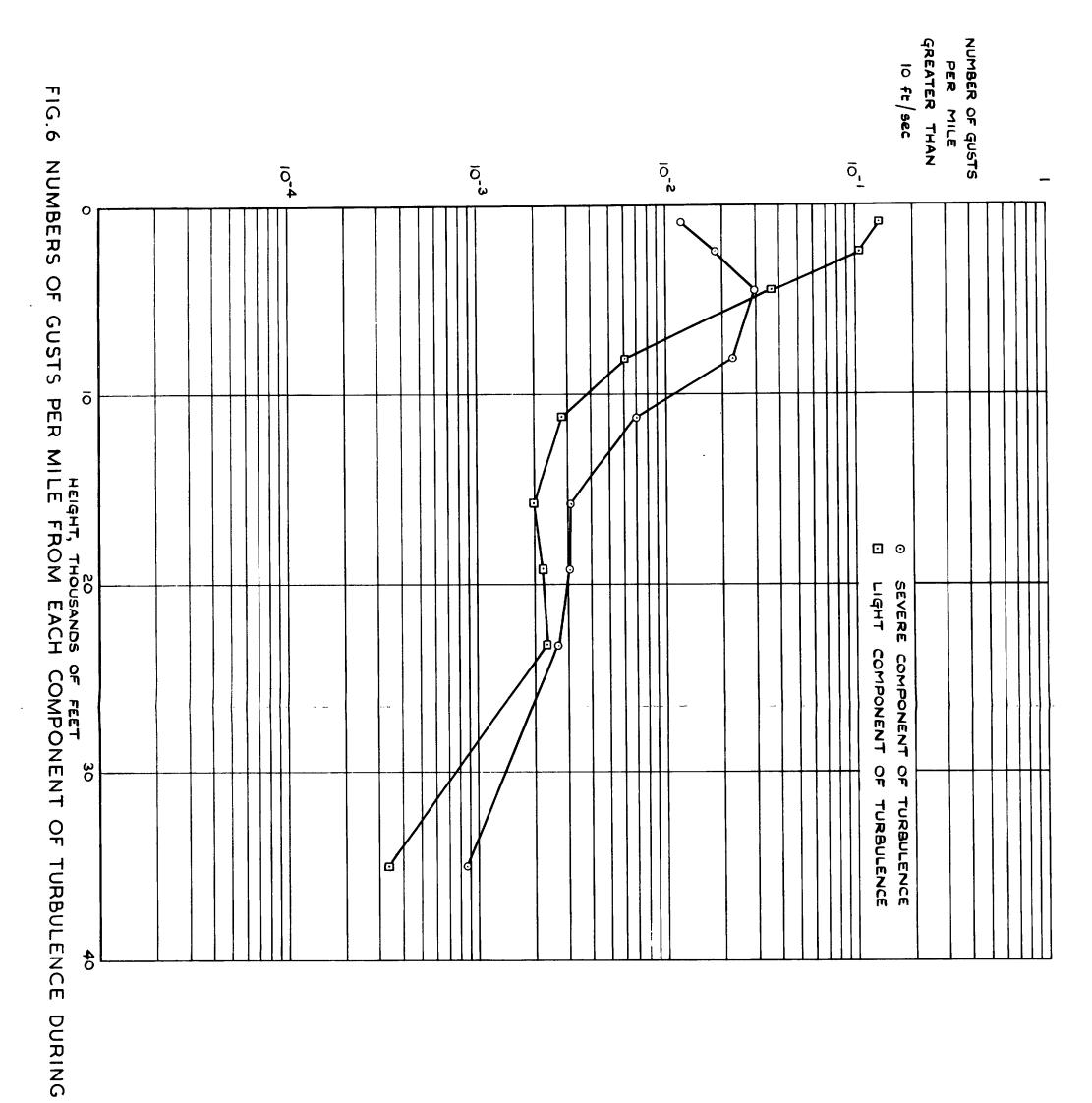

No.	Author	Title, etc.
21	A. R. Wicker	Turbulence and radar studies of thunderstorms. W.A.D.D. Tech. Note 60-303, January 1961
22	E. W. Wells	Froject TOPCAT. Summary of meteorological observa- tions and aircraft measurements during routine flights in the Australian jet stream. R.A.E. Tech. Report 66122, April 1966

FIG. 2 VARIATION WITH ALTITUDE OF RATIO OF NUMBER OF UP GUSTS TO NUMBER OF DOWN GUSTS

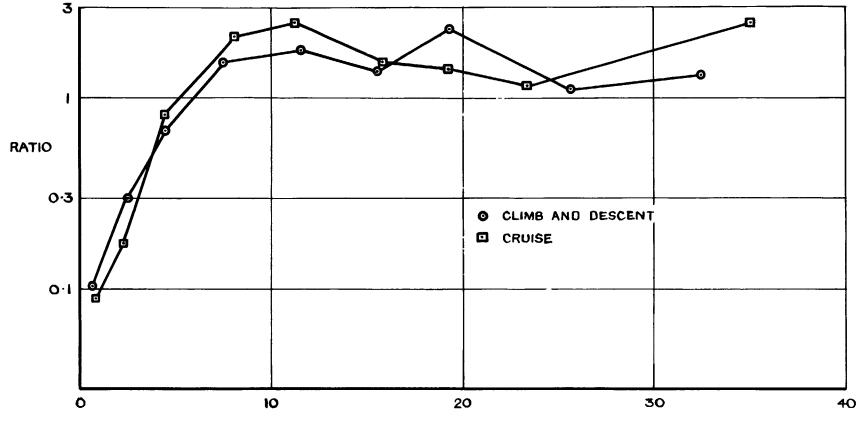
FIG.3 NUMBER OF GUSTS PER MILE GREATER THAN IO ft /sec. IN CLIMB AND DESCENT, AND CRUISE

-




FIG. 4 VARIATION OF TURBULENCE INTENSITY WITH ALTITUDE.

HIG. 5 NUMBERS OF GUSTS PER MILE FROM EACH COMPONENT OF TURBULENCE DURING CLIMB & DESCENT


-

		20
		40
F TURBULENCE	D F	30
SEVERE COMPONENT OF LIGHT COMPONENT OF		HT THOUSANDS OF FEET
		20 HEIGHT
		- 9

NUMBER OF GUSTS PER MILE GREATER THAN 10 ft./sec. 10

CRUISE

HEIGHT, THOUSANDS OF FEET.

FIG. 7 RATIO OF THE NUMBER OF GUSTS GREATER THAN IO ft./sec. FROM THE SEVERE TURBULENCE COMPONENT TO THE NUMBER FROM THE LIGHT COMPONENT

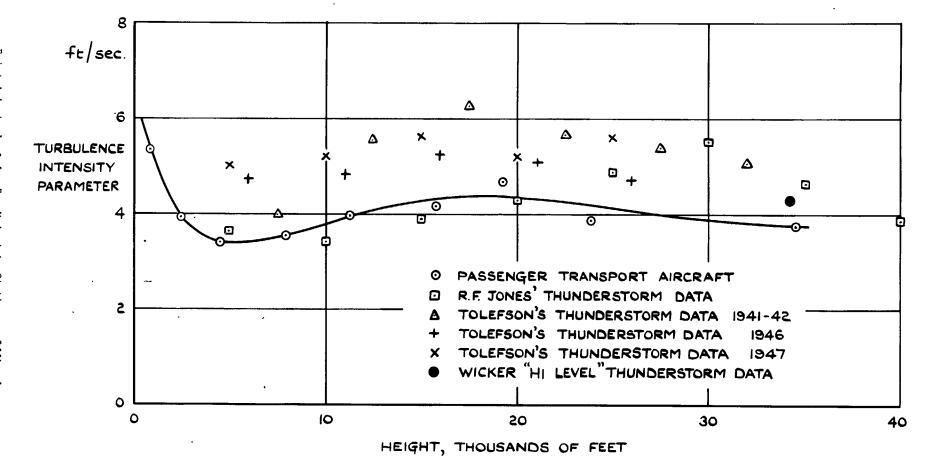


FIG.8 INTENSITIES OF STORM TURBULENCE

A.R.C. C.P. NO. 933July 1966Bullen, N.I.S51.551A REVIEW OF COUNTING ACCELEROMETER DATA ON AIRCRAFTGUST LOADS	A.R.C. C.P. NO. 933 July 1966 533.6.048.5 : Bullen, N.I. 551.551 A REVIEW OF COUNTING ACCELERCHETER DATA ON AIRCRAFT GUST LOADS
Counting accelerometer data collected over a period of several years on a number of passenger transport aircraft are summarized and the derived gust frequency distributions studied. The intensity of the turbulence encountered is compared with that observed by research aircraft in storms and clear air.	Counting accelerometer data collected over a period of several years on a number of passenger transport aircraft are summarized and the derived gust frequency distributions studied. The intensity of the turbulence encountered is compared with that observed by research aircraft in storms and clear air.
	A.R.C. C.P. NO. 933 July 1966 533.6.048.5 : Bullen, N.I. 551.551 A REVIEW OF COUNTING ACCELEROMETER DATA ON AIRCRAFT GUST LOADS
	Counting accelerometer data collected over a period of several years on a number of passenger transport aircraft are summarized and the derived gust frequency distributions studied. The intensity of the turbulence encountered is compared with that observed by research aircraft in storms and clear air.

à

.

C.P. No. 933

© Crown Copyright 1967

Published by HER MAJESTY'S STATIONERY OFFICE

To be purchased from 49 High Holborn, London w.c.l 423 Oxford Street, London w.l 13A Castle Street, Edinburgh 2 109 St Mary Street, Cardiff Brazennose Street, Manchester 2 50 Hairfax Street, Bristol 1 35 Smallbrook, Ringway, Birningham 5 7-11 Linenhall Street, Belfast 2 or through any bookseller

C.P. No. 933

S.O. CODE No. 23-9017-33