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SUMMIARY
An empirical epproach to the representation of observed creep strain
behaviour for a wide range ;f tines, stresses and tenperatures i1s oubtlined.
The formulae nre unusual in permitting the representation of primaery and
tertiary creep behaviour without forfeiting the convenience of explieit
expressions for the sirein rate using either the strain or time hardening

hypotheses. They are therefore particularly suited for use in stress

redagtribution calculations.
A comparison is made between the usuel expressions for stress depen-
dence. A table lists the arbitrary constants chosen to fit the creep

behaviour of the Finonic alloys 804, 90, 100 and 105.

*peplaces N.G.T.E. R.284 = 4.R.C, 28481



CONTENTS

1.0 Introduction

2.0 Use of a hyperbola to represent log{creep strain) versus
log(time) results

3.0 Variation with stress and temperature

4.0 Cartesian and parametric forms for a hyperbola in terms
of 8, ¢ and A

5.0 A comparison of some formulae for describing the siress
dependence of the time scale

6.0 The calculation of creep strain rates
6.1 Tinme hardening hypothesis
6.2 Strain hardening hypothesis
6.3 Parametric hardening hypothesis

7.0 Comment

8.0 Conclusion

Acknowledgments

References

Detachable Abstract Cards

No.

It

TABLES
Title

Creep properfies of some Nimonic sliloys

Units
APPENDICES
Title
Notation

Numerical example

10
10

10
10

11

12

13

14
15



Fig. No.

-3 -

ILLUSTRATIONS

Title
Typical creep results

Typical logarithmic creep curve fitted with a
hyperbola

Stress and {emperature variation of time scale
Stress and temperature variation of stramm scale

Temperature variation of time gcale - zero
stress intercept (D)

Temperature variation of time scale - stress
derivative (E)

Stress dependence formulae - a comparison

Strain, parametric and time hardening hypotheses
contrasted



1.0 Introduction

This Report describes a method used at N.C.T.H. for the reduction of
an experimentally obtained set of creep strain values over a range of
stresses, temperatures and times into empirical formulae which are parti-
cularly suitable for use in stress redistribution calculations. The
formalae have the property of allowing either time or strain to be derived
explicitly from the other three variables while permitting the representa-
tion of both decelerating and accelerating creep rates. This feature per-
mits time and strain hardening hypotheses’” to be used without successive
approximations. The constants by which the creep properties can be repre-
sented are obtained by simple geometric means.

The methods described have a value pertinent particularly to the
numerical solution of creep problems involving time-varying stresses and
temperatures, but are not presumed or intended to throw any new light on the
fundamental nature of creep processes.

2.0 Use of a hyperbola to revresent log(ecreep strain) versus log(time)
results

Creep tests during which the stresses and temperatures are maintained
constant show considerable similarities in the shapes (to some scales) of
the strain versus time curves for widely different values of stress and
temperaturej. 4 typical set of resultsd for Nimonic 80 1g shown in Figure
te The shape of the curve fitted to these results has propagated the wide-
spread use of the terms 'primary', 'secondary' and 'tertiary' to describe
the periods of decreasing, constant and increasing strain rates. Because
the strain versus time results cover a large range of strain and time it is
convenient to plot the results in the form log(creep strain) versus 10g(time).
Figure 2 shoss the same results plotted in terms of natural logarithms.

The shape of the curve is typical for all the alloys of the Nimonic series
and in this Report 1t is assumed that 1t can be adequately described by a
hyperbola such as the one drawn on Figure 2.

The general hyperbola requires the specification of five independent
parameters. Three of these parameters can define its shape while the other
two determine its position. The varistion of these parameters with stress
and temperature is discussed in the next section.

3.0 Variation with stress and temperature

Txamination of the results of creep tests on Nimonic alloys 80, 90
and 100 (Reference 1) shows that the shape of the hyperbola (described for
example by the values of 6, ¢ and A shown on Figure 2) remains substantially
unchanged for e wide range of values of stress and temperature. On the
other hand 1ts position with respect to both 1n(strain) and In(time) scales
dees vary. The position can conveniently be defined by the values of
strain (A) and time (t) ab the interception of the hyperbola's asymptotes.

fsection 6.0 considers the erleulztlcn of strein rotes uging these hypotheses
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Figures 3 and 4 show the variation of In(t) and 1n{A)} for one cast of
Nimonie 90. It 1s evident that a straight line stress dependence emerges
in both cases. Temperature influences both the slope and level of the
lines for 1n{T) buit no systematic temperature variation is evadent from the
In(\) results. These results are typical for all the Nimonic series alloys
for which the creep properties have been analysed in this way.

The stress (o) and temperature {T) variation of the creep strain
results can therefore be represented within the nommal experimental range
by

l = eXp {B + C'O.lL 00-.(1)
] 1
T = exp ‘{_D + E.O"i- s 0(2)

where B and € are constants but D and E are temperature dependent,

Table I summarises the creep properties of Nimonic alloys 80t 90*, 400
and 105 by giving appropriate values to 6, ¢, A, B and C and values to v and
E at all the experimental temperatures. Figures 5 and 6 illustrate the
temperature dependence of D and E, and show that fairly simple expressions
could be used to represent this dependence if they hapnened +to be more con-
venient than tabulated values for some particular calculations.

4.0 Cartegian and parametric forms for a hyperbola in terms of 6, ¢ and A

A hyperbolic relation between In(creep strain) and 1n(time) may be
described in general terms by

1.1n2<$) + m.1n2(%) + nln(%)].n(%) - A% eeee(3)

where t and € are time and creep strain respectively and T, A and A have
the meanings shown on Figure 2. For convenience the co-ordinates x snd ¥
are introduced, defined by
£
g et

IE:
¥y = lm\'i_.) -.-¢{5)

L
!

I}
>

They have their origin at §t =7, ¢

- - n “ - " -

®denry Wiggln and Company have remariked that the data for these alloys 1s old end that their
current production has & signiflcantly improved creep resistance,
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It can be shown geometrically that the coefficients 1, m and n are
related to the gradients of the asymptotes (6 and ¢) by the formulae:

~ .-,/95.}.6\\‘ 2’@-}-9\ 3/0’:-—6\
1 = sm‘\ 5 /!-cosf\ 3 /t \‘*——-2 )
2/ P + G\ .2/¢ + 0 2/ P - O

m = cos( 5 /-sm\\—--—z )'ba.n(\ 5 / S eerl(6)

a3
[

fgp - ©
- sin(e + o) seczl\ %—)

Alternatively the same hyperbola as given by Equation (3) may be
expressed in the parametric form

1w'2) = o4 s (2 - %) ){
eeeeT)
/ LY
lnf\%\ = gA sunh (z + s)

where the coefficients p, q, r and s devend on the gradients of the asymp-
totes as given by the formulaes

/ : \ 4
oo (@0 = (1= vt 50
) /
\ /
j , \4
R R s
\ ‘ / ,f/
/ \ > )
P = ocos (8__;_@) Ktan(\ia—) cosh (r)
/
/ A
q = sin (_6_;_52) (tan(gl;—) cosh (s)
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and the parameter z changes from - « when x and y apprvach - « to + « when
x and y approach + ». The closest approach to the origin 1s when z = 0 and
then x® + y° = 4% and x/y = - tan(§—§-¢>.

A special case of the above formulae, which is 1mportant gince it is

often observed and is symmetrlcal in x and y, corresponds to 'primary' and
"tertiary' time exponenis of 3 and 3. For this case

Q

@
i

arctan ¥ = 18+5

arctan 3~ 71.5°

T

and ¢

so that Equation (3) becomes

3 In® % + 31n - 10 In 7 .1n-% = 8A® vera(9)

>lo

and BEquation (7) becomes

{ £\
in &;7 ji A sinh (z - 0+55)

$ ... (10)

/
1ni§) - fg A sainh (z + 0-55)

The usefulness of the hyperbolic representation arises from the
simplicity with which values for 6, ¢ and A can be chosen from experimental
results and the ease with which Equatlon (3} can be solved from given
values of straan or time. Equation (3) can be regarded as a guadratic in
elther x or y leading to the solutions

- i

y = 5%5 - nx + ((n2 - 4.1m)¥® + 4.mAa)2> eena(11)
o 2

X = E%T (} ((n2 - 4.1n)y® + 4.1 ”) e {12)
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A numerical example 1llustrating the use of the above formulae for
theoevaluatlon of the time to 0.2 per cent creep strain of Nimonic 90 at
815°C and 10 ton/in® is given in Appendix II.

5.0 A comparison of some formulae for describing the stress dependence
of the time scale

Fquations (1) and (2) amply finite values for A and T when the stress
(o) is zero and their use therefore leads to the questionable conclusion
that finite creep strains take place even when o =+ ¢! This situation can
be avoided if Equation (2) is extended to

Al=
i
o
]
o
—
'
o
]
L
Q
=
q
A
i

s
1}

1
% eeee{13)

1 b 1
- v 1 - £ = =
E.0 exp 1 D},G‘ 5

where the expressicn chosen for the low stress values is linear in stress
(as for viscous flow) while the two expressions are continuous and have a

. . 1
continuous stress derivative st o= - o
E
. . . 6 .
Alternative expressions summarised elsewhere and alsc containing two

arbitrary constants are

S

F sinh (Go) veee(14)

1l

Ho? + Jo® vee (15)

and

Al

where F, G, H and J are the arbitrary constants.

Figure 7 shows Equations (13), (14) and (15) fitted to the same
experimental data. It can be seen that all three formulae give a reasonsble
representation of the experimental results and that Equations (13) and (14)
are almost 2dentical. A disadvantage of Equation (15) 1s that other stress
exponents are required at other temperatures so that a more widely appli-
cable formula of this type generally needs more than two constants.

6.0 The calculation of creep strain rates

In order to calculate creep strain rates some extensions of the above
formulae will now be given. It follows from the definitions of x and y in
Equations (4) and (5) that the creep strain rate is given by



de _ dy . &
G T a1 .o {16)

The gradient %ﬁ of the hyperbola 1s most easily obtained by implicit

differentiation of Equation (3); then BEquation (16) can be written

de | _Z2.lx+ny g (17)
at 2.my +nx % T

Alternatively the gradient may be expressed in terms of the parameter
z by differentiation of Equation (7) and Equation (16) can then be written

de g cosh(g_+ s) . £
dt = pcosh{z - r}) 1 ceen(18)

The creep test results to which the formulae have been fitted were
obtained at constant stress (sometimes constant load) and temperature. In
order to estimate a strain rate after a change 1n either of these variables
1t is necessary to specify at least one other which represents the influence
of previous loading history. Since this third variable represents the
accumulation of effects from prevaous loading it should remain unchanged
during any rapid (ideally instantaneous) change in stress or temperature.

The calculation of strain rates from the creep formulae using stress,
temperature and either time (time hardening hypothesis) or strain (strain
hardening hypothesis) or 'z' (parametric hardening hypothesis) as the
higtory dependent variagble i1s now described.

It is assumed in the procedures which follow that the values of 1, m,
n, p, q, T and s are already availzble. Because they depend only on the
slopez of the agymptotes they do not generally change with stress or
temperature.

6.1 Time hardening hypothesis

4

Given ¢, T and t, the variables A, T and x are obtainable from
Fquations (1), (2) and (4). Fquation (11) then gives y from x and
Fquation (5) gives e from y. The variables x, ¥, t and € are then avail-
able for substitution into Equation (17) for strain rate.

6.2 Strain hardening hypothesis

Given o, T and €, the variables A, T and y are obtainable from
Equations (1), (2) and (5). Equation (12) then gives x and y and Equation
(4) then gives t from x. The variables x, y, t and € are then available
for substitution into Equation (17) for strain rate.
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6.3 Parametric hardening hypothesis

This hypothesis follows directly from the uniform shape observed for
the In{creep strain) versus ln(tlme) curves, which are merely displaced for
different stresses and temperatures. TFigure B8 shows two such curves. The
points Pi, Pz and P3 on the new curve have the same values of strain, para-
meter and tame respectively as the point Py on the old curve. It will be
noticed that if the constant € in Equation (1) is zero then all displace-
ments are parallel to the time axis and the strain and parametric laws
coincide. TFor positive values of C the parametric hypothesis implies
strain rates intermediate between those of the time and strain hardening
hypotheses. In this connection it has heen observed by Johnson! that for
some materisls the most satisfactory description of variable stress effects
with increasing stress requires a compromise between strain and time
hardening.

Given o, T and z, the variables kA, v, x and y can be found from
Equations (1), (2) and (7). The values of t and & follew from Equations
4) and (5) so that z, € and t are available for substitution inte Equation
18) for the siraan rate.

7.0 Comment

The use of empiricism to describe experimental results inevitably
requires some compromise between complexaty and accuracy. The particular
method described in this Report has been found to be accurate for the
Nimonic series of alloys while being particularly suitable for stress redis-
tribution calculations. The author has no reason to believe that it would
not be equally satisfactory for other alloys but has had no experience with
them.

8.0 Conclusion
The creep strain behgviour of several Nimonic alloys is concisely

represented by the numerical data in Table I together with the follewing
formulaes

3}‘2 + 3y2 "‘10}!."\]' = BAE L] III(19)
where X = Int-D-~ Ko ....(20)
¥y = ln€e -3 - Co eeae(21)

The numerical values in Equation (19) srise from 'primary' and
'tertiary' time exponents of 3 and 3 respectively; different exponents can
be introduced using Equations (3) and (6). .

ACENOWLEDGMENTS

The author gratefully acknowledges the Nimonic alloy 105 creep data
communicated by Henry Wiggin and Company Limited and Rolls-Royce Limited.



K.

R.

GI

A

A,

Authoris

F., A. Walles

¥. Rudley

. 3. W, Mann

R. Tremain

W. Ridley
S. W, Mann
R. Tremain

Buchan

G. Baker

J. Kennedy

'E. Johnson

Henderson

. Mathur

-1 -

REFERENCES

Title, ete.

A quantitative presentation of the creep
of Wimonic alloys

AR.C, 20935 March 4959

Theooreep Bropertlesoof Nimonic 80A at
700°C, 750°C and 815°C, and the fatigue
properties at 750 C for periods up to
2000 hours

N.P.L. Engineering Division

NO. 477/51

The creep and fatigue properties of
Nimonic 90 at 700°C, 750°C and 815°C.
N.P.L. High Temperature Mechanical
Properties Section

HT.3/51

Private communication on behalf of
Henry aiggan and Company Limited

Private communication
Rolls-Royce Limited

Processes of creep and fatigue in
metals
Oliver and Boyd, 1962, p.153

Creep under changing complex stress
systems
The Engineer, p.209, Vol. 206, 1958



Nimonice
alloy No.

80AF

, Reference 2

907

Reference 3

90F

' Reference 1

100
Reference 1

105
Reference 4

105
Raference 5
(Polls-Royece

heat
treatment)
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TABLE I

Creep properties of some Nimonic alioys

o* ¢ A¥ B¥* c*¥  Temp.

7.88 0.055 700 c

750 c
815°C

0.35

7.5 0.40 - 8.00 0.065 700 c
750 G
815°¢

0.60 = 7.44 0.050 650°C
700°¢C
750 C
815_C
870°¢C

71.5

OOO

[=)

18.5 1.05 - 7.00 O 700 c

750 c
81500
870.C
940 ¢

715

26.0° 79.0

0.92 - 5.90 0.020 50 c
815°¢C
e7o°c
9807C

0.92 -11.94 0.140 650°C

1 i

0.64 -5.54 O 57756
800 C

975 C
1100°¢

(26.0° 79.0

0

18.5° T1.5

- e U R - % - L - it

®Refer to Teble I for units.

}These results for alloy 105 at 650°C did not fit
the normal patterns, The tests Involved used s
slightly smaller size of speeimen than those used
for the other temperatures.

*The data fram these references are old and current
production batches have a significantly improved
creep resistance,

D*

12.25
10.37
9.15

15.00
12.00
10.20

16.12
13.50
11.75
9.87
8.85

15.70
14.25
13.35
10.80
10.60

15.00
12.80
10.60

8.40
12.60

19.90
12.90
8.10

6.45

-0.282
-0-318
-0.442

-0.375
-0- 350

-0.457

"0. 338
-0.330
-0.375

-0.493
-0.760

~0.320
-0.350
-0.515
~-0.560
-1.260

-0.360
-0.430
~0.520
-1.000
-0. 158)%

-0.234
-0.400
-0.970
-3.750
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TABLE IT

Units

Units

Angle in degrees of arc

Angle in degrees of arc

Natural logarithm cycles

Natural logarithm cycles

¥atural logarithm cycles/(ton/in?)
Natural logarithm cycles of hr

Natural logarithm cycles of hr/(ton/inz)

1+



D, E

F, G, H, J

1, m, n,
Dy, a4, Ty

Pr
t

Xy ¥

8, ¢

.
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APPENDIX T
Notation

shortest distance from the hyperbola to the point of
intersection of its agymptotes

constants describing the stress dependence of the strain
gcale

tenperature dependent variables describing the stress
dependence of the time scale

arbitrary constants used in formulae for stress dependence

variables dependent on the gradients of the hyperbola's
asymptotes

positions on Figure 8 dastinguished by the subscript
time
co-ordinates on In{strain) - ln(time) plane

parameter of the hyperbola

creep strain

angles between hyperbole asymptotes and x direction
a reference strain

stress

a reference time
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APPENDIX IT

Numerical example

To find the time te 0:2 per cent creep strain at 81500, 10 ton/m2
for Nimonic alleoy 90.

Table I gives the necessary creep constants at 81500 for Naimonic 90
(data from Reference 3) so that interpolations from Figures 5 and 6 are not
reguired.

Fquations (1) and (2) become

In{A) = =-8.00 + 0.065 x 10

~7.35

i

and n{vt) = 10.20 - 0.457 x 10 5.63

For 0+2 per cent creep strain we have from Equation (5)

1n(0.002) - 1n(?)

e
]

“6:21 + 7-35 = 1.14

Since 0 = 18:5° and ¢ = 71-5°, Equation (9) applies and Fquation (12)
becomes

/ /s 2\&
x = &% (10y - k64y + 964 )2

\

Now A = Q.4 so that, substituting for y and 4,

[ {3

x = (114 -9-4) = 033

Finally from Equation (4)

In{t) = x + In{7)
= 5.96
log,o(t) = 222 = 2.59

o.o t = 390 hr
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