

Experiments on Distributed Suction Through

 a Rough Porous SurfaceBy
The Cambridge University Aeronautical Laboratory

Ixporinents on Distrabutcd Suction Through a Rough Porous Surfoco
 - By -
 The Canbradec University Aeronauticol Laboretory

Comunicated by P.D.S.R. (A), sinnstry of Supply"

20th Junc, 1951

Sumary

Flicht tosts in which suction was appliod throush a slaghtly rough porous surface to maintain lamnor flow in the boundary layer have shown that when the pressure on the surfoce was unirom there was an upper limit to the aurspeed outside the laycr above which no reasonable suction mould prevent tronsition to turbulonec. Comparison between these and similar tests on a smoother surface suggest that thero will be, associated whth every porous surfoce, two laniting speeds, one above which no reas onable suction wall mantain laminar fiow and one below which the surfaco con bo rogordod as acrodymemically snooth. Consideration is alven to the way in Which these specds will vary with the kincantic viscosity of the air, in conditions which lead to dynaion similerity.

1. Introduction

1.1 The report describes a few experments which have a bearing on the anfluence of surface roustmess whon suetion is applied through a porous surface to mantain laninar flow in tho boundary layor. The apparatus and oxperimental technique are duscribed in dof. 1 which deals whth a shilar though more uxunsive sories of exporinerts on a very smooth porous surface of calendered nylon fabric whach occupied the rogion betreen $4 \frac{1}{2}$ " and $22^{\prime \prime}$ from tho looding caje of a nodel aerofoll exposed to tho aurstrean boncath the fusclage of an anson alrcraft. with the pressurc on thas surface uniforn, transation to turbulonce cecurred in the absence or suction at about $11^{\text {th }}$ from the loading edse of the model but, with suction, lamanar ilow could be maintamed over the ontire surioco provided that the ratio $\left(v_{S} / U\right)^{I}$ was not loss than about $1.5 \times 10^{-\frac{F}{4}}$, a value which was found to bo roughly indepentent of the flight spoed and of the heisht at which the oxperinent was poriomed.
1.2 For the experinents doserabed in the prusont roport the nylon was roplaced by a sheet of phosphor-bronzo sauze of $1 / 120$ " mush which although elcctroplatcd and rolled to roduce its porosity and roublincss was stall appreciably routher then the nylon. when tosts shmilar to those on the nylon were performed on this gauze it was found, at the lower filight speeds, thet the sarllest suction ratio which would prevent transition was substantially the sau as wath the nyion, but at haghor spoeds it incroasod pro, rossively until a spocd was roachod above which no suction avoilable would mantain the laminer flow.

$$
/ 1.3
$$

* v_{S} is the velocity of the air throunh the porous surfocc and U is its velocity outiade the boundery layor.
1.3 It 15 thought probablo that this behaviour obsorved with the gauze surface may be typical of what will happen when suction is applied through any porous surface and that there will be, for any surface tested undor gaven conditions, a speed below which it can be rezarded as acrodynomically smooth and a greater specd above which no rcasonable suction will mantain laminar flow. Since these two speeds nay be expected to depend upon the fom and nognitude of the surface irregularitios, the foct that they were not observed wath the nylon may have been due to its surface boanc smooth enough for the lower of the two linats to lie above the highost speed at which It was testod. Actually, the cratical suction ratio at the harhest speed was slaghtly greater than at the lowcr specds, but the inerooso was scarcciy suficient to be regarded as signaficant. Before discussing the detailed results obtained with the gauze it will therefore be convenient to consider the argumente upon which the above supposition is based and which throw some light on the way in which, in certain olroumstances, these limiting speeds for a given surface may be expected to vary wath the kinelatic viscosity of the air through which it is noving.

2. Prelininary Discussion

2.1 It can reasonably be assumed that when transition to turbulence is caused by surface irregulcrities thear slgnificance depends, anongst other thangs, on thear size rolative to the thickness of the boundary layor, and that when the relative size is uncrensed, a greator stability of the flow will bo required to suppress tronsition. Distrabuted suction increases the stabilaty of the florr withan the boundary layer but also decreases its thickness and this sujgests that, in given circumstances, there may be a Immt to the absoluto size of the irrcgularitics above which no suction will provent transition, the linit occurring when, os the suction is applied, the relatave saze becomes too large before the flow has been sufficiontly stabilised.
2.2 When the airspeed outside the boundary layor is ancreased while the suction is adjusted to maintan a given state of stability, the thickness of the layer is reduced and thas, in turn, sufgests that if there is, at any one speed, a limit to the sizo of the irrezularitics above which transitzon connot bo prevented, there will also be for any one size (i.e. for a given surface) a corresponding limit to the specd above which no suction will maintan laminar flow. Sance no porous surface can be entirely free from arresularities, if only at the holes through which the air is sucked, thas conclusion, If correct, must be applzable to any porous surface. From a samilar argunent we may expect, for every porous surface, a speed below which its irregularities have no significant influence on the suction that will prevent transition: in other words, below which it can be regerded as aerodynamically suooth.
2.3 In this report the least value of the ratio $\mathrm{v}_{\mathrm{S}} / \mathrm{U}$ that will maintain lamanar flow is called the "Critical Suction Retio", symbol ($\left.v_{S} / U\right)_{\text {orit, }}$ and the speed above which no suction will mantain it is called the "Cratical Speed", symbol U^{*}. In certain circumstances

2.4 If suction $1 s$ simalarly applied to bodies which are sinilar in all respects, including their surface irregularıties, and if the disturbances which cause transition arise solely from thoso arregularities and comprossibility con be neçlected, then the fom taken by the flow depends only on two parancters, $\mathrm{v}_{\mathrm{S}} / \mathrm{U}$ and U / v, where v is the kinenatic viscosity and l is a loneth which nay dofane eithor the sizu of the body or or the arrogularaties. In such circuastances, $\left(\mathrm{v}_{\mathrm{S}} / \mathrm{U}\right)$ crit. will be a function of Ul / v and, for a particular body, it wall bo a furction of U / v only and U^{3} / v will retain a constant value, the sauc at all hoights.
2.5 In thas roport, however, $\left(\mathrm{v}_{\mathrm{S}} / \mathrm{U}\right)$ orit. is for convenience oxprossed as a function or $v_{0} U / 0$ where v_{0} is the kincriatic vascosity of air at sea-level in tho standard etwosphere. Thas expression is represcnted by the synbol U_{0}, which is thus the sca-level specd corresponding to any given value of U / v; its oritical value is represented by $U_{0} \mathbb{F}^{*}$ and is called the "Standard Critical Spoed". In the carounstances defined in tho provious parograph, $\mathrm{P}^{*} / \mathrm{U}_{0}{ }^{*}=v / v_{0}$ and the true and indicated critical spoeds thereforc vary wath height in the standard atusphere in the mannor show in the followane table, which also applics to the speed below whach the surfece can, in this comection, be regarded as acrodynamionlly smooth. It rust however bo emphasiscd that $U^{\text {Fi }}$ aay not vary as show in tho tablc if transition is approciably influenced oither by comprossibilities or by cxtornal disturbances such as vibration or nolse which, on an aircraft, may not vary whth heaght in the manncr roquared for dynamieal smilarity.

$\begin{gathered} \text { Height } \\ \left(\mathrm{rt}_{\mathrm{t}}\right) \end{gathered}$	$U^{3 F} / U_{0}^{*}$	U^{*} Indicatom/ U_{0}^{*}
0	1.00	1.00
20,000	1.67	1.22
40,000	3.22	1.60
50,000	5.20	2.02

2. 6 The ideas discussed in the previous paragr phs wore suggested initially by a comporison between results obtainod with tho porous surface of cauze and those described in Chapter 4 of Ref. 1 obtaned when a singlo excrescence was attached on the smoothor suriace of nylon fabric. When the holght of thas exerosconce was chonged in successive experinonts in which the speed rominod unchanged, there was a hught abovo which no suction would provent transation and a height, about $2 / 3$ of this value, below which the excrescence had no measurable influence on the suction requared to provent transation. At a hearht betwoon these valucs, there was both a lower and an upper lanit to the offcetive suction, the lattor due preswimbly to the relatavo hoizht becoming sufficient to cause transztion, despito the increasud stebility.
2.7 In the experments on the gauze, in inich the speed was altored while the surface rerained unchonged, there was alvays a specd above which no suction was effective and a lower speed below which $\left(v_{s} / \mathrm{U}\right)$ erit. was the same as for the smoother nylon surfacc. Between these liuits, an some of the tests, uppor and lower linits wero observed to the affectave suction, as in the tests on the single excroscence.

3. Detailed Discussion of Ixperinents on the Gauze

3.1 The observations obtained with the porous surfoce of metal gauze are show in fies. 1 and 2, those at the lower heights in very difficult conditions in which the azr was so unstondy that no groat accurney could be expected. Since the tests were all mado with the model at one particular incidonce, nanely that which gave unafora pressure, it may be assumed that had transition boen consed solely by the surfece arregularities, the points in Fags. 1 and 2 would all have rallen, withan expurimental error, on a single curve and that the stondard critical speed $\left(U_{0}{ }^{*}\right)$ would have been the samo on all occosions, A glance at the fagures will show, however, that in fact $U_{0}^{\text {i }}$ varied wadely frow one vxperiment to another, the variotion appearing to depend manly on the heaght at which the experinent was perpomed. It will be noticed, however, thet those points for which the speed was below its critical value for the particular exporment do lie rouchly along a sirgle curve, and since no points lie significantly bolow this curve, it nay perhaps be inferred that at represonts approxuatoly the varmation of $\left(\mathrm{v}_{\mathrm{S}} / \mathrm{U}\right)_{\text {orit. }}$. When the disturbances which coused tronsition orose soluly from the surface arregularaties. Its value as shown on thas curve at the lowest speeds agrees, within oxperimentel error, wh thoso found for the much smoother nylon surface.
3.2 The results taken as a whole sugeost that when this lowor linat is exceeded and $\left(\mathrm{v}_{\mathrm{S}} / \mathrm{U}\right)$ erit beans to rase inth incruso of speed, transition may becone sonsitave to extermil disturbances such as vibration or nolse which are alweys prosent on an aircraft in flight. If thas is in fact the explanation of the ubserved variations of the standard critical speed, it sugcests that af distrabutcd suction is to be used reluably in service, it ray be necessary to make the surfree so snooth that there is no signaficant inorvase of (v_{S} / J) orat. up to the naximun contemplatod cruising speed.
3.3 From the few experiments perfomed on the gauze it has not been possible to ascertain the nature of the extcrnal disturbances which may heve caused the low cratical speeds at the rreator heights. At first it was thought that they would be found to depend on the engine revs. Which, in level flights wath U_{0} constant, were not the same at different heights. In the finnl tests recorded in liag. 2, obscrvations were therefore taken, not only in level filisht, but when descending throttled back and when clumbing with full throttle. These, as can be seen in the figure, showed sone variation of U_{0}^{*} with revs.: but not nearly enough to account for the much greater variation with height.
3.4 Another factor which might conceivably have influenced U_{0} is the change of temperature with heicht, which might have distorted the model. But this seems to be ruled out by the fact that one experinent at $7,200^{\prime}$ and $0^{\circ} \mathrm{C}$. gave a value that did not dirfer significantly from that obtamed in another exporiment at $11,000{ }^{\prime}$ and $-24^{\circ} \mathrm{C}$., wheroas $\frac{7}{x}$ a third experment at $2,500^{\prime}$ and $-5^{\circ} \mathrm{C}$., a much ereater velue of $U_{0}{ }^{\text {FK }}$ was recorded.
3.5 The alternative scelc of abscisse on the figures, showine the Reynolds number (R_{E}) based on the spacang of the holes in the gauze, has been added because at is thought that when dafforent gauzes of gaven type of woave are tasted under simalar condations, the variation of $\left(v_{S} / \mathrm{U}\right)$ crat, with a Reynolds nuaber basod eather on the spacang of the holes or the dimeter of the wares, masht convenzentily be regarded as defining the effectiveness of the treatment to which the graze has been subjectod.

4. Notes on the Indivadun Tosts

The following notes rolate mamly to observations which could not convenientily be recorded in Figs. 1 and 2, but which have helped to decide the foms eiven to the curves drewn through the recorded points.
4.1 In the first tust on $16 / 10 / 50$ at 7,200 ', no suction would provent transition when U_{0} was $112 \mathrm{~m} . \mathrm{p}_{\mathrm{o}} \mathrm{h}_{\mathrm{o}}$ or ircater. The three lower points in Fizg. 1 show the least suction ratios that would maintain laminar flovi at speeds lover than the criticol and the upper point at $U_{0}=110 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. shows the suction ratio above which the flow was turbulent. Similar upper limits to the suction ratio were found at the two lower speeds from very rough observetions made with a larger flowmeter; they showed upper limats to $\left(\mathrm{v}_{\mathrm{S}} / \mathrm{J}\right) \times 10^{4}$ of the order of 20 , and it $2 s$ for this reason that the upper part of the curve has been drawn nearly vertical. Sumilor tests on the same day at 1,800' gave tho pounts shown as carclos in Fig. 1 and here, although the cratical speud was not actually reached, the distribution of the points suggests that it mould have occurred at a value of U_{0} only slightly above $180 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
4.2 In the next exporimant on $13 / 3 / 51$, conditions were deteriorating so rapzdly that oniy four obsirvations wero obtained ot 4,000'. These, shown as square points in Fiz. 1, agree well with those previously obtained at 1,800'.
4.3 Fi.g. 2 shows results ubt. anca in two flicints on 30/3/51. The three points obtaince in level flitht at $11,000^{1}$ and shown as crosses, agree fairly well with those in $F 1 \mathrm{~g}$, 1 obtamed at 7,200' and, although no uppor lamit to the effective suction was observed, the standard oritical speed was vory prcoisely determined at $116 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. When thas tost was repoated at about the sane heaghts wath the engune throttled back and the amporaft desconding, the standard cratical speed was a little greater than in luvel flight, say $122 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. , for there was et $121 \mathrm{~m}, \mathrm{p}, \mathrm{h}$. a very definito upper limit to tho cfifective suction and no suction would provent tronsition at $130 \mathrm{~m} \cdot \mathrm{p}, \mathrm{h}$. or above. Tho sangle point shown as a star gives the loast suction that maintrinod lamanar flow when climbing at full throttlo at the same heaght.
4.4 A samilar test performed under very dirizeult conditions on the sane day, at $2,500^{\prime}$ gave the points shown as circlos an Fig. 2. Here, with $U_{0}=167 \mathrm{~m} . \mathrm{p} . \mathrm{h}_{*}$, no suction would provent transition and it was just possiblo to maintain lamar flow antermittently at $155 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. , with $\left(\mathrm{v}_{\mathrm{S}} / \mathrm{J}\right) \times 10^{4}$ round about 3.5 . The standarā critical speed at low heizhts wes thus apprwelably loss than in the carlicer tosts and this, together with tho rothur high values of tho cratacel suction obscrved when U_{0} was 116 and 129 11.p.h., suguests that the porous surface may have detoriorsted. The lower curve in Fig. 2 has been added meruly to facilatate comprison wath Fig. 1.
4.5 In the above discussion the merked difference of bchaviour with the gauze and nylon coverings respectively has been attrabuted to greater roughnoss of the gauze. This is probably right, but there is the possability that it may havo been due to some undetected defect of the surface, as for example, at the junction betioen the gauze and the solid nose of the model. The conclusions reachod aust, therefore, bo aceepted with rescrve until they have been cheokod by nore comprohensive experimonts on surfaces of different roughness. In particular it remains for futuro rescarch to discover whether systenatic variation of the standard critical spued wath heasht, obscrved in these experinents, was due to some unexplained fundamental cause or morely to the mannor in which the external disturbances happencd to vary with height on the particulor aircraft on which the experiments were perfomud

5. Concluszons

If it is assumed that the behaviour on the gauze, as compared with that on the nylon, was due to its greater roughness, the following tentative conclusions can be drawn:-
5.1 When distributed suction is applicd to a body through a porous surface, there wall be, in any given circunstances, a lower Iunit to the flight speed below which the surface can be regarded as aerodynamically smooth and an upper lanit beyond which no suction wall prevent transition even in the absence of external disturbences.
5.2 Between these linits, transation is likely to be sensitave to external disturbances of a kind which will always be present on an aircraft in flight and which may vary in an unpredictable mannor in different curcuistances.
5.3 It may be, thererore, that if complete reliance is to be placed on obtainıng laminn filow by distributod suction, the porous surfeces wll heve to be so smooth that the lower of these tivo lmits is not greatly exceeded.
5.4 If the influence of compressibilaty on transition is found to be negligible and ir the disturbancos which initaato transition arisc solely from the surface irrogularitios of a given body at given incidence, then these limitang specds nay be expected to vary in proportzon to the kinematic viscosity of the alr in which the aircraft oporates.

No.
Author
1
I. R. Head

Tatle, etc.
Tho Boundary Layer with Distributed
Suction. R. \& il. 2783. April, 1951.

FIG. I

FIG 2

$U=$ AIR SPEED OUTSIDE THE BOUNDARY LAYER
$v_{s}=$ AIR SPEED THROUGH THE POROUS SURFACE
$\epsilon=$ hole spacing of the gauze
$\nu_{0}=$ KINEMATIC VISCOSITY OF THE STANDARD ATMOSPHERE AT SEA LEVEL

C P. No. 84

$(14,099)$
A.R.C. Technical Report

CROWN COPYRIGHT RESERVED

PRINTED AND PUBLISHED BY HER MAJESTY'S STATIONERY OFFICE
To be purchased from
York House, Kingsway, london, w.c. 2429 Oxford Street, london, w. 1
P.O. Box 569, London, sel

13a Castle Street, edinburgh, 21 St. Andrew's Crescent, Cardiff
39 King Street, MANCHESTER, 2 Tower Lane, BRISTOL, 1
2 Edmund Street, birmingham, 380 Chichester Street, belpast
or from any Bookseller
1952
Price 1s 6d net
printid in orgat britaln

