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SUMMARY 

Bernatein'e nnalyaie of the laminar boundary layer develop 

merit aft of e shook wave in (1 shook tube im oorreoted inthe 

light of more recent theoretical results. The analysis is 

extended to include oertain preesure gradient oorreotiona. 

Aokroyd'e analysis of the rwning time in a shook tube, whioh 

was based on Bernetein's work, is also reexamined. The 

oorreoted results show a aignifioant ohange in boundary layer 

oharaoteristios and running time as oompared with Bernotein's 

results. However, the effects of the additional pressure 

gradient oorreotiona are shown to be nee;ligible. 



coNTEms 

Page 10. 

f Introduction. 4 

a The Channel Flow Integral Momentum and Mass 
Flow Equation& 7 

IzThe Form Parameter, gii, and the Wall Friction 
on e Moving Plate. 

1o 

n The Boundary Layer Development end Running 
‘Time in a shook tube Channel. 17 

1 Corrections to H and I for the Effeote of 
Pressure Gradient.’ 21 

E mecueeion and Conclusions 

Aoknowledgmenta. 

Botation. 

References. 

Figa. l-9. 

27 

31 

32 

35 



4 

I Introduction. 

Bernstein, In his analysis presented in ref.1, examines the 

unsteady growth of the laminar boundary layer induced by the 

passage of the primary shook wave along the channel of a shock tube. 

He has assumed that there is no attenuation of the shook wave 

and is able, therefore, to reduce the equations of motion to a 

quasi-steady form by considering the flow relative to the shock 

wave. The analysis is based on the channel flow integral momentum 

and mass flow equations and the solution of these equations 

requires knowledge of the nature of the wall friotion in the channel 

and the form parameter (which is the ratio of the displacement 

and mdmentum thicknesses for the channel flow boundary layer). 

Thus, in order to solve these equations, Bernstein makes two 

important assumptions. The first is that expressions for the 

channel flow wall friction and form parameter may be taken to be 

the same as those on a moving plate whioh experiences the same 

external flow conditions as those existing in the invisoid core 

of the channel flow. The second assumption is that relative to 

the wall the velocity profile for the shock-induced boundary laxer 

is similar to the velooity profile for a steady laminar 

compressible boundary layer. The first assumption is valid 

provided that the boundary layer in the ohannel does not beoome 

so thlok as to be oomparable to the radius of the ohannel. 
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This esaumption te retained in the present paper. In ref.3. it io 

shown that the velooity profile for a laminar ehook-induced 

boundary layer dependa prinoipally on the ratio of the wall velooit;J 

to that of the inviaoid flow (the flow being viewed relative to 

the moving ahook wave). Clearly, the aeoond of Bernstein’e . 

aeemuptions is unjustified and work presented in refs. 2 end 4 is 

used to correct Bernstein’e work here. 

Althou& the effects of pressure gradients are aocounted for 

in the major part of the work outlined above, it is neoeesary to 

aeeume that pressure gradients are zero in developing expreeaione 

for two important parameters. These parameters are both based on 

velooitiee measured relative to the wall, in which case a etrolyl 
, 

similarity is noted in the behaviour of these parameters when 

compared with the behaviour of the corresponding parameters for 

the steady boundary layer. The parameters are the form 

parameter, Ii, and a shape parameter, I, which is shown to be the 

ratio of a transformed boundary layer thioknese end the 

momentum thiokness. Sinoe the work involved in correcting these 

for the effects of pressure gradient wae felt to be unwarranted by 

the smallness of the oorrectiona, the latter were taken to be 

those established in ref.‘/. for the ateady laminar compressible 

boundary layer. These corrections are not rigorously juetifiable 

end may be viewed with aoepticiam. However, because pressure 

gradients in shock tube channel flows are unlikely to be large and 



the oerreotiona themeelves are ~311, it vae felt that the ultimate 

effeote of these oorreotione on the channel flow may be inetruotive. 

In fact, the reeulte sweet that pressure gradient oorreotione 

to the two parameters mentioned above may be, in general, neglected. 

In aeotion II ve present the basic integral momentum and 

maea flov equations for the channel flov 88 derived by Bernstein . 

Seotion III presente the correotione to Bernatein’e vortc for the 

changing velocity profiles inherent in shook-induced boundary layer 

flow*. In eection z we use the work of the previous tro seotione 

to find the ultimate behaviour of the shook tube boundary layer, the 

inviaoid oore flow in the ohannel and the channel running time. 

The preesure gradient oorreotions to the form end shape 

parameters mentioned earlier are discussed in section E. 



II The Channel Flow Intearal Momentum end Yaas Plov Fkwatione 

Referring to Fig. 1, in vhich the ehook tube ohennel flow 

ie ooneidered relative to the ooncrtant etren@h shook waves 

velooity UN t it may be ehovn ’ that the integral momentum 

equst ion 18, 

ii2 

The diatanaea 19 y and a are respeotively the boundary layer 

development length from the foot of the ahook vave, the radial 

distance from the channel wall and the radius, or hydraulio 

radius, of the ohannel. The upper limit of the integrals of 

equations II.29 z, is come convenient radial distance frm the 

wall to a point which is alrapa outside the boundary laker; K 

m\let also be invariant rith x. The euffix e refers to quantitiee 

evaluated in the inviacid core flow at the distance I from the 



orl.&n of the boundary layer aud ouffir o demotes ohannal flow 

parameters. The quantities p and t; ar* reapeotivel7 the dmoit7 

. and the wall friotion rhilet u is the velooit7 parallel to the 

X oo-ordinate ario and is meaeured relative to the llhook wave. 

Ilot.0 that the foxm of equation II.1 in the uoual form of the 

pipe flow integral momentum equation but that the dire&ion of 

the well friction ia reversed. Thie is due to the fsot that, in 

the oo-ordinate eystem taken relative to the shook wave, the wall 

moves with the velooity v,,, which ie always greater then ee 9 the 

inviscid core flow velqcitg. 

The maee flow equation may be written as 

where suffix eo refers to quantities evaluated directly behind 

the shook wave. 

By the direot differentiation of equation II.3 with respeot 

to X it is possible to obtain an expression for d&/d%. 

Consequently, the ellmlnetion of ac betreen equetioae II.1 end 

11.3. may be shown to yield, 



Berneteln assumes In ref. 1. that the form of the invlecld core 

flow may be represented by the one-dlmenalonal leentroplo flow 

equationa, In which oaee the flow quantltlee In the core flw 

e~+ch aa the density, pe, the Mach number, Yet and the vleooaltyt 

/ue 9 may be expressed In terma of the core floe velocity, uc. 

Hence, In terms of their values aft of the shook wave, these 

quantltlee are written aa 

Conaequmtly, It would appear that,provlded relationships can be 

found for the channel flow boundary layer form parameter, ?ic, and 

the wall friction, Zw , then we may determine the variation 

of the lnvieoid core flow velocity, Ue , with the development 

length, x. 
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III. The Form Parameter, t, and the ‘#all Frlotion on B Moving 
m. 

Bernstein haa shown in ref.1. that the integral momentum 

equation for the boundary layer induced by the paeeage of a plane, 

constant velocity ebock rave over a plate hee the came form ae 

equation X1.1, vhen the floe is considered relative to the rave. 

Here again, an in equation 11.1, pressure gradient effeots are 

included but we note that the expresslone for the momentum and mass 

floe thickneasee together rith the form parameter must be re- 

defined. They are now, respectively, 

Here we have dispensed with the suffix o to dietinguleh between 

plate flow and channel flow boundery layer parameters. 

Bernstein notes that the definitions of the two boundary 

layer thiokneaseet both in equation III.1 and equation 11.2, are 

not the conventional once in the eenee that velooitiee are not 



11 

referred to well or plate. Conventional definltlono ,of theso 

thlokneeaea ares therefore9 

and9 alsot 

Br the use of the transformation, 

Bernstein wab able to show that, 

iii.3 
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Hemoo, euff%x I is used to denote an ‘equivalent’ inoompreasible 

boundary lwer. 

In order to derive an expreeeion for If, the form parameter 

for the flow relative to the plater Bernatefn mekee use of the 

differential form of Croooo’e eero pressure gradient plate floe 

energy equation. Writing thin equation in the steady owordinats 

system relative to the shook wave end heeding the boundary condition 

that at y-0, u= ky 9 he find6 on integration that, 

where T ie the temperature. 

Hemet it follows that H is given by 

For the purposes of calculation, Bernstein aaaigna to Hi 

the Blaslue value of 2.59. Horevert work reported in ref.2, 

which ia baaed ou erect eolutiona to the problem of the ehook- 

induced boundary leyer on a flat plate provided by Mire18 (ref.).), 

ehors that Hi varies with UW/UL . Valuea of Hi against G/Q 

are ahown la Fig. 2. For the purpoeee of the present asloulations 

we ehell take a value of Bi oorresponding to a particular value 

of %l/U~ 9 although u+,lu~ inoreaeee nonotonioally with x 
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im tha preneat problam. Tim lrtter varimtion~ howeva?, lo dw 

to press-e gradient @ifeats only and Lo not dus to l dependawe 

on the shook strength l II ooluldered by Hirel#. Authoaoro, the 

variation of I$ with u,/u, fn not lorga between the valuom of, 

say, %+, -2 and uwpl- m . 

In order to obtain an expreneion for the wall friotion r,. 

Bernstein rritee the velooity profile relative to the plate in the 

Pohlhausen qusrtio 8pproximete form,b., 

where T it3 given by eqdion 111.3, 

6 being the effective edge of the velooity boundary layor and, 

COnnrquentlJ, the expression for & nay be written in non- 

dlmeneional form 00. 
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Bernstein showa, wing equation 111.4, that, 

T =(*j 

Benoet equation 111.10 may be m-written ae, 

3 12. 

Wote that in the formation of the Reynolds ngnberc Reo, 8 ia used 
88 the eignifioant length. For the moment, a may be taken to 
denote any aignifioant length, say the length of the plate. However ( 
its ultimate purpose is to reoonoile the expreaelon_ior 5, 
equation 111.10, with equation II.4 at which etage e, will again be 
taken to mean the channel radius. 
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In order to provide values for f in our present oaloulationm 

wo take l ooount of the variation of f with I) 9 the index in the 

vlmooaity-temperature relationship ,~a?). With the aid of the 

reaulte presented in ref.4, the approxiwte expression for f for a 

flat plate boundary layer may be ehom to be, 

where f31 is a funotion of uw/uc , 8, may be taken to be 0.31, 

f is the Prandtl number and, 

where 9 

( I 

n 
2 - a I+2 - 0 OS5 z-1 ) 

n = - 0 IpI) + 0 34 I 

In hie oaloulations presented in ref.1.t hm&d.n takee 

V-L., * to be 9.072 (the value obtained by matching the Blaefus 

solution to the Pohlhauaen profile, equation 111.7, with uw/u+ 

I 0). whilst B1 and 8, are taken to be the valuea given br Young 

(ref.5.) for h/u0 -0, namely 0.45 and 0.18. The index 2 ia also 

ohosen in accordance with the work of ref.59 l e 0.5. Again, ae 

wae the oaee for H 1 t results obtained from Yirele’ work in ref.3 

(eee ref.2) show that the parameter 1fL varies with c/UC. 
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A maph of thim variation is inoludod in ?l#.2. ?or thm WI 

roammum mm thorn* outlined marlior in the disousmion on the oholom 

of Hi9 we mhall take in our present oaloulatioam valumm of [{L., 

oorrenpendi~ to the psrtiotllmr raluma of ~w/ho ohomen. 

Biailarly~ the variation of pl with uw/uL given in rd.4 m.q 

be modified in thie remppoot to &vo, 
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z The Boundary Layer Ikvelosment end Bunninu Time in a Shook 
Tube Channel. 

Bernstein argues in ref.1 that in order to solve the aombined 

momentum end mace flow equation (equation 11.4) we may approximate 

to the two unknome, ii0 and 2, , by the uee of the valuee of 

the equivalent plate flow parameters presented in eeotion III. 

Coneequently, we may uee equations III.4 end III.6 together with 

the approximation, 

which la then uned with equation 11.4. w. Ben from B oomparieon 

of equationa II.2 and III.1 that the above approximation is moat 

l oourate when the values of Y/C ineide the boundery layer 

are very muoh lose than unity. Howavert a* Bernstein argues, 

einoe z. and E represent the ratio of two boundary layer thlckneaeee, 

the approximation may roll be adequate for larger values of y/z. 

We may elao make we of the equations III.4 and III.6 to obtain em 
UC - 

expression for the term r;, dHr 
T;, dz&) 

which ocoure in equation 

11.4. Bernstein ahows that this relationship isr of the form, 

Ae haa been argued for the approximation to go, f(or i) 

represents the ratio of the two boundary layer thicknesses and 

Bernstein therefore cisee in equation II.4 the approximatlont 



f 
0 

= f, E.3 

rhiah ia used in oonjunatlon with equation 111.13, the tern in $ 

being eliminated from the latter by the ~$0 of equation II.3 

Bote that the approximationa used above for B and f are 

atrlotly valid not only for plate flora but alao for flow with 

5ero pressure gradient. In section z tentative correctiona to 

H and f for the effects of pressure gradient are suggseted. 

We denote the oondltiona ahead of and Immediately aft of the 

ahook wave by euffioee 1 and 2, writing a1 for the sound epeed 

in region l,l&$, for the Uaoh number of the shock nave ( M,, P ~,/a, ). 

Aeeuming that the temperature in region 1 is the sam as the wall 

temperature aft of the ehook wave, Bernstein show that, 

where 

end 
3.4 

Thus, with the aid of equations E.1 - E.4, equations 111.4, 

III.6 and 111.13, Bernstein shore that equation II.4 reduoea to the 

form, 
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‘fhe numerioal Integration of equation E.5 now yields the 

variation of we with 11. 

In the oaae of the shook tube, the point x I 0, t - 0 (the 

time t being measured from 

represente the ‘origin’ of 

tho shook rave and contact 

the contact surface in the 

first particles of gas set 

the instant of diaphragm burst) 

the shockwave. At this point, therefore, 

surface ooinoide (see Fig.J).Bow, einco 

invlsoid core flow represents the 

in motion by the shock wave, we *e* that 

develop 

iSC 

the time taken for the core flow at the contact surfaoe to 

to a velcloity ur at a distance x from the shook wave 

I 

x 
t= ” 

0 e 

With the aid of equations E.5 and z.6 the time t may be shown 

to be, 

z-7 

?urthermore, ooneiderations of the geometry of Fig.3. chow that the 
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naming time, or hot flow duration between shock nave and contact 

eurface, is, 

end that the corresponding distanoe from the diaphragm at which thin 

running time occure is, 

x' = t .uw-xx. E.10 

Following rer.6, WC are thus able to form the Pollouing nor+ 

dimenaionel parameters: 

In ref.6. valuea of X,T,X', and TR were calculated using values of 

Ii and f provided by Bernstein and which, in q ection III, are ahown 

to be In error. Consequently, values of X,T,X' and TR have been 

rswosloulated in the light of the work of section III. The 

effeote of preaaure gradient on the values of these non-dimensional 

perameters are considered in the following section. 
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1 Correotione to H and I for the Eifeote of Prsasure Gradient 

We reoall that in section III erpreeeions were provided for 

H and f which were derived from oonsideratione of ahook-induced 

boundary layers on flat pletee. Since preeaure gradient effects 

mra inaluded In all the relevant expreseions required for the 

integration of equatione E.5 other than those for B and f (equationa 

III.6 and 111.14) it would be of interest to examine how the affects 

of pressure gradient may modify these and, ultimately, the effsot 

upon the variation of uc with x. Although no rigoroue 

oorreotions are availablr C&P this type of boundary layer when 

B pressure gradient is introduoed along the wall, oorreotions are 

available for the oa8e of the steady oompreeeibls laminar 

boundaq layer (which oorrespo;de to the case for which u&-O). 

How, in considering the latter oarse in their ‘first simple method’ 

Luxton and Young in ref.7 ahow that the form parameter Ii may ti 

written a.89 

and this sxpreeaion ie shown to be valid for zero or small 

pressure gradient flowa. We may compare equation x.1. with the 

oorreeponding equation III.6 for the shook-induced boundary layer 

oaae and we note that the latter equation reduced to the former 

if I+ -0 and Hi is ohosen appropriately. We note that in 

equation III.6 (the shook-induced case) and in equation 1.1, 
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and Ye respectively both denote the Msoh number of.the flew 

oxterns to the boundary layer relative to the wall. Henoep we 

see that there is a strong similarity in the behaviour of the Ions 

parameter 14 baaed on velaaitlea whioh are referred to the wall. 

This similarity in the behaviour of If may be sssn to extend to f 

since, acoording to Luxton and Young, 

for the steady flat plats boundary layer. This expression may 

be oompared with equation III.14 for the shook-induced oaee but 

in equation i.2 pl - 0.45, p2 I 0.18 and we note a slight 

disorepancy in the index to the Prsndtl number, Q . Also in 

equation I.2 [Fl,,, must be ohosan to agrse with the condition 

that u+ -0. 

In order to correot equations 4.1 an& I.2 for the effeots of 

pressure gradient, Luxton and Young in ref.7 suggest in their 

‘oompleto method’ the corrected quantities H’ and f’ where, 
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xs. , 

3.6. 

Tr being the recovery temperature. The origin or the non- 

dimensional pressure gradient team, A, may be found In the 

representation of the velooity profile as a Pohlheuasn quartio 

in v/a (defined In equations III.3 and 111.8). Bon, in 

section III It was seen that from a Pohlhausen point-of-view, 

the relevant non-dimensional pressure gradient parameter for 

the shock-induced boundary layer was -!L , defined in equation 

x11.9. Consequently, in considering an appropriate correction 

for the shock-induaed boundary layer we shall write, 

H’ - +Hi + 
e 

. 

2.7 

The index 2 is given by equation 111.15. In the choice of 

values of 5 and K;, we are restricted to the values given by 

Luxton and Young for the case of &,,/u, ~0. In ref.‘lc values 
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of 5 and K2 are plotted agaimt the parameter s,,, P rhoret 

s 5-1, w’ 1 y.10 
I- 

and in determining Kl and K2 from this aource,we shall take Tr 

to be given by equation y.9 . Also, it is noted that the values 

of Kl and K2 aa given by Luxton and Young depend upon whether 

or not the pressure gradient is favourable or adverse. The 

sign of A for the shook-induced boundary layer oaee implies 

that the pressure gradient Is favourable, and indeed,oonaidering 

the oore.flow relative to ths wall, it will be seen thet gas 

element8 will always aooelerate. Consequently, values of Kl 

and K2 will be selected from those given for a favourable 

pressure gradient. 

Although the approximations I.7 and E.8 are extremely 

tentative, it is felt that,slnce the pressure gradients induoed 

In the oora flow of a shock tube are unlikely to be large, the 

approximations may be permitted. However, we note that even 

if the forms of the corrections lnoorporated in equations i.7 

and I.8 are oorreot, the parameters Kl and K2 will probably be 

funotions of, say uw /%o - 

For the purposes of calculation we shall retain the rule 

explained in seotion III that, In the seleotion of values for 



Hi and If],., , w. shall chooss values agpropriste to the valuer 

of U&b . We shall oaloulate valuee of ‘ii and? wing 

squatione III.4 and III.2 an before , equating these quantities to 

EC and To aa suggested In section E . However, the erpresaiona 

for 8’ and f' (equations i.7 and y.8 ) will replsae those for B 

and f (equations 111.6 and 111.14) in equations III.4 and III.12 

Furthermore, it in now necessary to develop an extended erpresaion 

‘& dc baaed on our new relationship for A’, equation 
for ~‘ipJ 

1.7. This mey be shown to be, 



In order to integrate equation ES wing the proosura 

gradient oorreotions oontained in oquatione x.7, I.8 and in 

y.11 16 ia neoessary to devalop some iterative proosdurs to find 

the oorrsot value of A . Comparing equation III.9 for A 

with equation z.5 and making une of equation II.3 It follow 

that A met satisfJ the oonditiosr 

Consequently, starting at u,/u(,-1 and A -09 wo may UB~J equation 

z.12 am a oheok end basis for an iterative procedure at eaoh 

muooessiv~ interval in the numerioal integration of equation E.5 

Onoe the oorreot value of A ha6 been found, the time t may 

be oaloulated and hence further values of X,fpX' and TB obtained, 



zrn ecusalon and Conclusions 

The numerical integration of equations E.5 and E.8, 

together with the various supplementary equations which desoribe 

the behaviour of the boundary layer and the running time, has 

been carried-out on the University of London Atlaa computer. 

The results of the oalculationa based on the analysis of 

seotions II to 3 are compared with Bernstein’s available results. 

Thus, Fig.4, which shows the variation of u~/uee with 815, 

lnoludea Bernstein’s result8 for a shook Mach number of &a 2 

only. It is seen In this figure that the agreement is very 

olose. A similar egreement may be noted in Fig.5, which shows 

the variation of ?io with Q/U, . Values of A. shown In 

Fig.6 and provided by the present work (none of Bernstein’s results . 

for A are available) indioate that pressure gradient sffsots 

become increasingly important as the shook Mach number deoreesee. 

Thus we sse that the analysis presented in sections II to z may 

beaome increasingly approximate as the shook Mach number 

deoreaaes. As has bean noted in ref.6, boundary layer thl& 

nesses generally increase with deareasing shock Mach number. 

The increase of A. with deoreaaing shook Mach number appearo 

to be consistent with this fact. Thus the ssro pressure gradient 

expressions for H and f presented in section III beoome inorsaslngly 

suaoeptible to error with decreasing shock Mach number. Furthermore, 
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our earlier assumptions that To -‘ii, To s 7 a may be Invalid 

beoauss of the thickness of the boundary layer at low shook 

Xaoh numbers. 

Fig.7 showa the variation of X witha&and here we sac that 

appreciable differences ooour between the present work and 

Bernstein’s analysis. We note that these differences occur 

only because of our adjustments to Bernstein’s values of Ifi and f 

(see eeotlon III). Thus the marked ohange in X due to these 

adjustments must be due to the accumulation of the less 

significant individual changes noted earlier for ‘i, and g/X.. 

Orapha of TR against X’ are shown in Figs. 8 & 9 in which 

are Included values of running time measured erperimentally. 

Ue eee in Fig.8 that for 1 -T/5 the present analysie is In better 

agreement with the experimental values at the higher shook 

Mach numbers (Me, -5 and 6, data by Xuegrove (ref.8) and Ackroyd, 

reapeotively), whilst for the case of MS, -3 the present analysis 

appears to underestimate the running time by approximately the 

oame amount by which the running time was overestimated in ref.6. 

The results for Ms, -1.6, Y -5/3, shown in Fig.9 indicate the 

same tendency aa that noted in Fig.8 for low values of shock 

Mach number. The experimental results shown in Fig.9 were 

obtained by buff (rof.9) and are the only consistent set of 

results available for y -5/3. Their other claim to importance 
*However, as Bernstein has noted, these approximations will be more 
valid than a_tate;ents oonoerning the individual terms In Ho and H; 
for example q N- e . 



is the low value of the shook &oh number at whioh they were 

obtain& The analytioal roaults for A , Y,, -1.6, f= 5/3, 

whioh are not included in Fig.6,indicate that JL reaohee a 

maximum value of approximetely 0.7 near %/\-0.3. Again9 

thr oonolusione drawn from Pigs. 8 and 9 throw doubt on the 

validity of the essumptione that go = ‘ii, To 2 f and the asaumod 

mro pressure gradient nature of H and f shorn in aeotion III. 

Eorever~ we may hope that the reeultr of the preaeura gradient 

oorrectione to A and f presented in l eotion 1 indioate the 

likely order of magnitude of the l rrore in the latter assumption. 

We shall disouee these results preeently. Improvements to the 

analpis to remove the aeaumption (z. Cz, To= f) do not appear 

to be worthwhile, einoe any oorreotione to the analysis that 

theee improvements provide may well be leee signifioant than 

the effect8 of ahook attenuation which, atriotly, ahould also 

be inoluded in the analysis. As whom in ref.69 this type of 

enalysia, based on the integral momentum and mace flow equations, 

appear8 to be more reliable than any other in predioting the 

behaviour of the ohennel bounds= layer and the running time. 

Thus it would be of interest to examine what the effeote of ehook 

attenuation would have on thir type of analyeis. Another 

phenomeaon whioh may be oomperetively significant, and which 

bee not been inoluded in the analysiat is that of the diaphragm 

opening time. This may be inferred from mome of the more 



detailed l rperimental results shorn in ref.6. lfote that transition 

to turbulenoe in the ohannel boundaq layer haa baan dealt with 

in some detail in ref.6 and that those experimental pointa ahown 

in Fig.8 rhioh mey be affeoted by transition 110 at the lower 

valuee of Ta and X’ and, therefore, do not interest ue here. 

The oorreotions to H and f for the effeote of prseeure 

gradient suggested in aeotion z generelly produoe reaulta which 

agree closely with the reeulte based on the simpler erpresaiono 

derived in section III. The preeaure gradient-oorreoted results 

ore not inoluded in Fige.44 for this reaeon, although the 

reaulta show that A deoreaeee progressively from the valuee 

shorn in Fig.6 ae the shook Mach number decreaoee. In the 

iterative procedure used to determina the final value of A 

an aooeptable dieagreement of 1% wee specified between the 

values of A taken at the beginning and end of a oyolo. ThUB 

the number of iterative cycles required to determine h 

increased with deoroaaing shock Mach number. Preaeure gradient 

oorreotiona ere inoluded in the results for Ta againat X’ (In@. 

8 & 9). If we accept theee correctiona ae indicating the order 

of magnitude which preaoure gradient oorreotions to H and f may 

provide, then we eee that these corrections to H and f are not 

likely to be am signifioant ae the inolueion of shook attermation 

and the finite bursting time of the diaphragm in the analyeim. 
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EOTATION 

‘Y 
Sound speed in region j . 

- 
a radius, or hydraulio radius. 

f boundary layer parameter defined in equation 1X1.11. 

f' boundary layer parameter oorreoted gor the effeote 
of pressure gradient9 eee equation I.8 

a function defined in equation z.6 

i7 radial distance from wall to a point which is alreps 
outside the boundary layer. 

E boundary layer form parameter, defined in equation III.2 

H’ boundary layer form parameter oorr=ctsd for the effsotn 
of pressure gradient see equation X.7. 

Kl,K, oreeeure nradient oorreotion Darameters which are 

Y 

n 
B 

5 
t 

T 

IpY 
U 

’ iunctlone~of SW . 

Mach number 

x’ 

X’ 

Index defined in equation 111.15. 

Reynolds number. 

parameter equal to 2- 19 eee equation 3.10 

time. 

non-dimensional time, eee equation E.11 

temperature In region j. 

velocity in the x-direction and measured relative to 
the shook wave. 

dietence from the diaphragm 

non-dimen&onal dietance from the diaphragm, eee 
equation Iv.11 
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L ‘&%-ordinate parallel to the wall measured from the foot 
of the shook wave. 

X non-dimensional form of I) *ee equation E.11 

Y co-ordinate perpendicular to the wall and measured 
from the wall. 

T trsndomed form of ye eee equation III.3 

s index defined in equation 1X1.15. 

p1,p2 parametere defined in equation 111.16. 

ratio of the speoific heata of the gas at oonetant 
pressure and constant volume. 

value of y which denotes the edge of the velocity boundery 
layer. 

mass flow thicknees of the boundary layer, eee equation 
III.2 

transformed form of 6, eee equation III.8 

momentum thiokneea of the boundary layer, eee equation 
III.2 

nowdimen=ional pressure gr-adient parameter, eee 
equation x.5. 

ooeffioient of visooaity. 

deneity. 

Prendtl number. 

ehear strew 

index in the empirioal vieoosity - temperature 
relationship, /” ti T”’ 

non-dimensional presaurs gradient parameter, see 
equation 111.9 



34 

SUBSCRIFTS 

1 refers to oonditiona ahead of the shook wave. 

2 refers to conditions iannediately aft of the shock wave. 

0 refers to channel flow parameters. 

0 refers to conditions in the inviscid oore flow outside 
the boundary layer at a distance x from the origin of 
the boundary layer. 

BO refers to conditions in the inviscid core flow immediately 
aft of the shook wave. 

1 refers to an ‘equivalent’ incompressible boundary layer. 

r refers to recovery conditions in the boundary layer. 

R refer8 to running times. 

w ’ refers to a shock wave moving into region j. 

w refers to wall conditions. 

Rote that the superscript-refers generally to quantities which 

are measured relative to the shook wave. 
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