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1. Introduction 

In a variety of aerodynamic problems, a knowledge of the bcundary 
layer wall pressure distribution is of interest, This wall pressure distribution 
governs the rate of thickening of the boundary layer, and conversely the rate 
of thickening of the boundary layer governs the pressure ~stfibuticm along its 
free-stream edge. Consequently the details of the flow are determinedby the 
equilibrium of these two effects. 

Many formulae have been evolved which claim to compute the growth of 
incenpressible boundary layers. By the use of such a fcrmula, it will be 
shown how an expression for the wall pressure gradient may be derived for 
compressible flow with the aid of a transformation technique. Turbulent 
behaviour is covered in some detail, and the same general approach may be used 
for laminar flow. On equating this pressure gradient with that of the free- 
stream at the edge of the boundary layer, the expression may be numerically 
integrated to give the variation of pressure with streamwise distance. 

Such a technique has a number of relevant applications in various ' 
fields of aerodynamics. In this paper, its application to the prediction of 
separation is considered. 

2. Determination of the Pressure Distribution 

An expression is derived in Appendix III for the wall pressure gradient 
in attached flow with a compressible turbulent boundary layer. 

2.1 Theorv 

In any application of the analysis to boundary layer problems where 
the pressure distribution is required, a relation is necessary between an 
angle $ (as in Fig. 1) and the free-stream flow conditions. It is assumed 
in this instance that the effect of the boundary layer on the free-stream flow 
is equivalent to a displacement of the wall surface by an amount equal to the 
displacement thickness of the boundary layer. Some theoretical justification 
for this statement is given in Ref. 1. 

The required relation for supersonic flew is simply obtained. As is 
well known, the thickening of the boundary layer leads to the emergence of an 
infinite number of compression waves from the free-stream surface. lke‘se 
eventually coalesce to form the familiar oblique shock wave. Clearly there 
is a loss of total pressure through this shock, but this loss is much reduced 
near the boundary layer surface by the "cushioning effect" of the boundary 
layer itself. It is therefore plausible to assume that the floe near the 
edge of the boundary layer is locally isentropic, and so to employ the familiar 
Prandtl-Meyer equation in order ta relate the angle of the flow to its Mach 
number. 

The Prandtl-Meyer equation with supersonic flow enables the pressure 
gradient at any point to be calculated. By a simple process of numerical 
integration, the whole distribution can be determined since 

I 

XdP 
P=P* + -.dx 

Fib 
. ..(I) 
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In the turbulent case, calculation of the incipient boundary layer 
functions must entail sn allowance for any initial region of laminar flow. 

Before moving to the numerical integration process itself, it is 
perhaps worthwhile to consider some of the assumptions involved in this 
tsahnique. 

(i) Two-dimensional flow 

As it stands, the analysis is only true for two-dimensional flow. 

(ii) Nature of the free-stream flow 

Compressible flow is assumed, and it is taken to be isentropic, with 
y = 1.40. 

(iii) Boundary layer assumptions 

The usual assumptions are made, and although generally valid, their 
a~c~ncy diminishes in steep pressure gradients. 

(iv) Boundary layer relations 

In this paper, the following relations have been employed: 

(a) Maskell for inconpresslble momentum thiakness. 

(b) Maskell for incompressible shape parameter behaviour. 

(c) Ludwieg and Tillman for skin friction. 

(a) Power law relation for viscosity. 

(e) Stratford and Beavers for compressible momentum 
thickness. 

All are of sufficient standing to justify confidence in their use, but- 
as xith most bpundary layer solutions, one tends to be wary of their accuraay 
near separation or reattachment. 

(v) Fr ee s ream flow d.irection - t 

It has been assumed here that the equivalent boundary of the invisdd 
flow is obtained by displacing the wall surface by an amount ewal to the 
displacement thickness of the bounaary layer. 

(vi) Free-stream behaviour 
I. 

The Prandtl-Meyer equation is used in conjunction dth an assumption 
of inccanpressible flow near the boundary layer surface. It is conceivable that 
a better apprcxiuation to the truth may be made by taking the compression at 
the boundary layer edge to oocur through a series of small shocks, instead of 
through a Prandtl-Meyer turn. 

(vii) Transform 

Mager's modification of the Stewartson transform has been used, 
lar&y because of the ease with which the various parameters of interest aan be 

transf orElea/- 
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tmmsf ormea. Nevertheless, a certain amount of justifiable suspicion is 
inevitably attracted to work involving transforms of the turbulent boundary 
layer, and only a successfil comparison between theory and experiment can 
wholly justify such an approach. 

The numerical integrations were oarried out on a digital computer. 

2.2 Practloe 

The first problem to arise conoerned the initial data. Utile 33 
otherwise stated, it is taken throughout this analysis that the flow is two- 
dimensional and supersonic. Up to the incipient point there is no pressure 
gradient, and the boundary layer is always fully turbulent, At the incipient 
point itself, it is assumed that the boundary layer velocity profile 1s given 
by a power law. 

Six further variables are now required to define corn 

I P 

letely the 
incipient conditions. 

t 1 

These are the stagnation pressure Pt and temperature 
Tt , and the inaipient Mach number 

and boundary layer slope (I&)). 
(&), x co-ordinate 4 , shape parameter 

%. In fact, were randan values given to 
these quantities, the flow model would be fully defined, and the incipient 

al! 
value of - 

( ) 

m 
could be calculated. However, we know that - at the 

dx ( ) dx 
incipient point is zero, and one of the six parameter3 is therefore redundant. 

aM 
Unfortunately, were the calculation started with - 

( 1 
equal to zero, the 

dx 
exponential nature of the pressure rise would ensure that separation ocourred 
only at infinity. This is clearly ridiculous, and the problem was overcome 

ard 
by selecting a value for the term - 

.( > 
, and using this-as an incipient 

ax i 
point oonditi.on. From the limited quantity of accurate experimental data 

aId 
available, it was found that when - 

( ) 
is put equal to - 5, reasonable 

ax i 
agreement with experiment ocCUra. This value was used throughout, and the angle 
4 omitted from the set of initial conbitions. It should be pointed cxlt 

ad 
that the only effect of a change in - 

( > 
is upon the scale in the x 

&I 
direction of the foot of the distributions the gradient and pressure rise of 
the steep portion, and the pressure rise of the foot remain oonstant. 

Having defined the initial conditions the qUestiOn Of step leneth 
arose. Various lengths were employed, and eventually it wa8 found that the 
beat compromise of speed end accuracy was such that the ohan 
at each step was equal to 0.1% of the incipient Mach number %)* r 

in Mach number 

It is now possible to consider an example of the tiethod. Stagnation 
conditions of 2 atm and JOO°K were arbitrarily chosen, as were the inCiPknt 
Mach number of 2, x cc-ordinate of I ft, and velocity profile power law 
exponent of 5. These lead to an incipient flat plate Reynolds number of 7.3 
million. Fig, 2 gxves the resultant pressure distribution. Although the 

initial/ 
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initial part of the pressure curve is sensible, the method indicates that it 
becomes horizontal as separation is approached, and this portion of the curve 
is omitted from Fig. 2. Experience leads one to believe that this inaoouraoy 
near separation might occur, and there appear to be three contributory factors. 
First, the failure of the familiar Prandtl assumptions in steep pressure 
gradients, Second, the inaccuracy of the expression for Cf nearing 
separation. And finally the Maskell relations, which become suspect as 
separation is approached. If the technique is to be of any use at all, this 
problem must be overcome. 

In this instance there is a means of evading the trouble, Reference 
to separation pressure distributions, such as those of Chapman et a12, 

( > 

dP 
demonstrates that beyond the initial foot of the distribution, - is 

dx 
effectively constant up to separation. It is therefore possible to obtain a 
more realistic pressure curve merely by extrapolating the predicted ourvs from 
its point of inflection. The modified curve 'is given in Fig. 3. It should 
be pointed out that the scale of plotting the curve differs from that normally 
used for experimental separation data, the ultimate pressure gradient here 
appearing to be much less steep. 

Adequate curves of the pressure rise associated with turbulent flat 
plate separation are rare. This is especw+lly true of the initial foot of the 
rise, and even in the data of Chapman et al* here used, the shape is far from 
certain. For the same incipient conditions, a comparison between theory and 
experiment i,s given in Fig. 4. It can be seen from Fig. 5 that the dependence 
of the theoretical curve upon the incipient value of n is critical, and 
unfortunately this is the one oondition which cannot be simply determined. 
With a seventh power law profile, the agreement is poor, with a fifth, good. 

It is possible to determine n, by first calculating ReB,, from 
Eqn. (A@). Maskell3 presents a relation between H' and Ree for flow on a 
flat plate with sero'pressure gradient such as occurs at the incipient point. 
Frcm Iq one can obtain K by Eqn. (Ago), whence IQ is found. If this 
procedure is adopted for the incipient flow relevant to Fig. 4, n, is found 
to be equal to 5.0. 

One can now proceed to examine the effects of several variables. 
Keeping the stagnation temperature at 300°K and the incipient Mach number at 2, 
it is possible to vary the stagnation pressure and incipient x co-ordinate. 
In turn, changes in these quantities affect the incipient flat plate Reynolds 
number. 

Keeping all except stagnation pressure and hence flat plate Reynolds 
number the same, the effect of alterations in these two quantities is shown 
in Fig. 6. 

Turning to the question of length, Fig. 7 demonstrates the results 
of modifications to the incipient x co-ordinate whilst maintaining constant 
the flat plate Reynolds number by adjusting the stagnation pressure. It is 
interesting that the gradient of the steep slope is no different, the whole 

( > 

ti 
effect being similar to that caused by a shift in - . When plotted on an 

dx 1 
absolute length scale, a sieeable difference is to be seen. 

A similar treatment, but now changing merely the value of x and not 
the stagnation pressure, is given in Fig. 8. 

so/ 



-7- 

So far, work has been confined to Mach number 2. In order to 
oamplete the pioture, examples of the method were carried out at other 
conditions, bearing in mind that the flow must never become subsonic, A case 
at Msoh number 1.5 is presented in Fig. 9, demonstrating a notioeable change 
in the steepest gradient when oenpared with Mach number 2 results. 

At Mach number 2.5 sensible curves were obtained, but near 3 the 
methoa failed. Since the technique as a whole appears to be sound, one must 
conclude that the values of A, B, C and D are inoorreot. One immediately 
suspects the transform, and other work, notably on base pressure problems, 
seems to confirm this suspicion. 

3. Prediction of Separation 

Having examined the present method as a means of determining the 
distribution of a pressure rise in a compressible turbulent boundary layer, one 
can now turn to the prediction of separation, Several inocmpressible techniques 
exist to calculate the point of separation, and it should therefore be possible 
to adapt these to compressible flow by means of a transformation. All require 
a prior knowledge of the pressure distribution, and this is now available, 
Of the incompressible treatments, five of e more important will be consi 
namely those due to Burik, Maskellj, Spenoe , Stratford, and Truokenbrodt 9 t 

ered, 
. 

A paper by Smith7 considers them in detail, 

(i) gl& 

Burik derives an expression for the change with distance of 
his own boundary layer parameter, and claims that separation 
occurs when this parameter reaches a chosen value. 

(ii) Maskell 

Using his equations3 for the rate of change of shape parameter, 
the local skin friotion coefficient may be determined. Since 
this coefficient is inaccurately determined near separation, 
it is necessary to extrapolate the curve to zero, at which point 
separation takes place. 

(iii) Spenoe 

Having presensed equations similar to Maskell, but In a simplified 
form, Spenoe5 proposes 
parameter is between 2 

(iv) Stratford 

Stratford6 demonstrates 

that separation occurs *hen the shape 
end 3. 

that there is *n equation relating 
several variables which is only true when the skin friction has 
fallen to zero - e.g., at separation. 

(v) Truokenbrodt 

In a manner comparable to that of Maskel13 and Spenoe5, 
Truckenbrcd& derives an expression from which the shape 
parameter can be found. He then proposes that separation 
takes place when the shape parameter lies between 1.8 and 2.4. 

Time/ 
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Time and space prevent a detailed consideration of all five methods. 
Maskell's relations for the rate of change of shape parameter have already 
been used. For the determ$nation of separation, the skin friotion teohnique 
of Maskell and the critical shape parameter concepts of Spence and Truokenbrcdt 
will be employed. 

Taking first the skin friction extrapolation, Fig. 10 shows the basic 
pressure distribution, together with curves of skin friction and shape parameter. 
As can be seen, the skin friction method greatly overestimates the separation 
pressure rise. That this is no isolated example is indioated by Figs, 3 to 9. 
An improvement might follow the use of 8 direct compressible skin friction equation, 
but such 8 development is probably not worthwhile, since the inherent error in 
the use of .s skin friotion technique makes it less attraotive than the shape 
parameter method. 

Passing to the critical shape parameter, experiment suggests that 
separation occurs when the incompressible shape parameter is 2.14 (see Fig. IO). 
This is almost mid-way between the limits proposed by Truckenbrodd+, and is 

' also contained by those of Spences. It thus seems plausible to take the mean 
of the values quoted by Trvckenbrodt as giving the separation point 
(i .eb, H* = 2.1). For M = 2, Figs, 3 to 10 show this to be reasonably 
accurate for an initial compressible power law profile exponent of 5, but it 
beoomes progressively less accurate as the exponent increases (i.e., @ deoreases). 
This leads us to the conclusion that some account must be taken of the incipient 
shape parameter, and the use of a constant ratio of separation to incipient 
incompressible shape parameter is one such possibility. With this ratio equal 
to 1.541, Figs. 9 and 11 demonstrate that there is indeed an improvement, but 
further refinement is precluded by the lack of evidence as to the precise effect 
of n, upon the separation pressure rise. 

4. Possible Future Work 

The previous sections describe .s method of predioting the distribution 
of .s pressure rise in a turbulent boundary layer with canpressible flow. There 
seem to be four main routes along which future development could possibly prooeed, , 

In first place there is the extension of the technique to deal with 
laminar flow. This should present no great difficulty. 

Then there is the application to separation, 8s disoussed in Section 3. 
Besides improving the means of predicting separation, factors such as the effect 
of wall shape on the pressure rise to separation might be examined, In the 
light of Reference 8, knowledge of the effect of longitudinal wall curvature 
would be of especial interest. 

Thirdly, by considering various types of solid surface geometry, the 
distribution of pressure over several flow models might be determined. As 
an instance, the unseparated pressure distribution of flow over aerofoils or 
cylinders could be calculated. 

Finally, several aspeots of reattachment behaviour could be investigated, 
Since the skin friction at reattachment is zero - as at separation - the 
relation between the reattachment pressure and theeventual downstream pressure 
might be derived in much the same w.ay that the separation work was carried cut. 

5./ 



5. Conolusiona 

An expression has been derived for the well pressure gradient in 
attached flow with a caopressible turbulent boundary layer. Frm this 
gradient, the pressure distribution may be determined by an integration 
process, and the agreement with experiment is enoouraging. Of the various 
potential appliaations of this teahnique, separation has been here considered. 
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APPENDlx I 

Notation 

ae 
- 
ax 

ae 
B 

C 

% 

aH 
- 
ax 

local skin friotion acefficient 

aH 
D 

H 

M, Me 

n 

P 

P' 

Re 

ReX 

Reel 

RG 

transf 02-m f%nc ti on 

transform function 

gravitational acceleration 

boundary layer shape parameter 

Maoh number at boundary layer free-stream edge 

velocity profile power law exponent 

pressure (static unless with suffix t) 

-4 
Me4 (I + 0.2 Me”) 

Reynolds number per unit length 

Reynolds number based upon X 

Reynolds number based upon 0 

gss constsnt 

T/ 
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temperature (static unless with suffix t) 

free-stream velocity 

1 aRe 
-.- 
rte aMe 

equivalent flat plats length 

cartesian co-ordinate 

Maskell function 

Maskell function 

Maskell funotion 

ratio of specific heats 

boundary layer displacement thickness 

boundrtry 1aJrer manentum thickness 

viscosity 

dS!lSity 

Maskell function 

as* 
tan-i‘ - 

( > ax 

viscosity - temperature relation exponent 

Suffices 

e boundary layer free-stream edge 

T k turbulent 

t total head 

i Incipient 

* transformed - i.e., inocunpressible (except 6*) 

00 undisturbed free-stream. 
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APPENDIX II 

Equivalent flat plate 
length 

Flat plate Reynolds 
number 

Momentum Reynolds 
number 

Definitions 

X That length over which a boundary 
layer growing on a flat plate at 
the local Mach number would attain 
the same thiolo7ess as the aotual 
boundary layer 

ReX 

Xee 

Pe ‘e 

(3 
.X 

pe 
where the density, velocity and 
viscosity are those at the free- 
stream edge 

PU ( ) - .e 

"e 
where the density, velocity and 
viscosity are those at the free- 
stream edge 8 . 

Incipient pressure Pressure at the incipient point, 
just ahead of the separation 
pressure rise 

Separation pressure P s 
Pressure at the separation point 

% 
___-________-__-___--------------------- 
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APPENDIX III 

Ccmressible Flow 

Generd Expression for Pressure Gradient 

By definition v = H.0 ,..@I) 

whenoe ati* = H. ae+e.aH . ..@z) 

as* 
By definition - = tanf#l . ..(A31 

ax 

Le., as* = a.xtan+ . ..w 

It will be shown later that the inorements .de and dH my be expressed as 

and 

de ae 
de = --.&+--.a 

ax aMs s 

aH aH 
aH = -.a.x+~.ald 

ax aMe 
e 

. ..(A51 

. ..@6) 

Let 
ae 

A=- 
ax 

ae 
B =, - 

me 

aH 
c = - 

ax 

aH 
D =- 

aMe 

. ..(A71 

Then Eqns. (A2) tb (A71 give 

ax tan $a = H(A dx + B dMe) + e(C dx + D as) . ..(A@ 

which,/ 
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which, when rearranged and taken to its limits, yields 

dA4 
e= 

L- 
tan $I - HA - BC 

dx HB + BD 1 
For y = 1.40, 

Pt - = (1 + 0.2 Id& 
P 

Assuming Pt to remain constant 

whence 

d.P 1.4 Me P 
- = - 

ae I + 0.2 M; 1 
ClP 1.4 Me P tan $ - HA - ec 
- = - . 
d.x 1 +0.2M; HB + BD 

. ..(A91 

. ..(Ald) 

. ..(All) 

. ..(A12) 

The various terms 

It is suggested in Ref. 12 that for free-stream flat plate Reynolds 
numbers of the order of 10e, the momentum thickness of a turbulent boundary 
layer can be expressed as 

e = 0.036 (I + 0.1 M;)-"~ 
i 

X Rex6 . ..@13) 

this expression being valid in an arbitrary pressure gradient, where 

. ..(A14) 

and 
M 4 

P' = 
[ 

e 

1 +0.2$ 1 
It is to be understood that these last,tkree equations are only valid for air 
with y = 1.40. 

Rewriting/ 
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Retitfng Eqn. (Al31 

4 

8 = 0.036 (I + 0.1 M;)-"'7 x" be' . ..(&6) 

:. 
1 0.14 4 1 
-de Me = - dMe + --.3x - - dRe 8 I + 0.1 bf; . ..(dl7) 

5x 5Re 

Eqn. (d14) &ws 

1 
-a = 
X 

%nd Eqn. (dl5) gives 

1 
- dp' = 
P' 

By definition 

Re = 

ue = (yg RG Tt+ Me (1 + 0.2 I$)-; 

Pe = 

I 1 
-&--rpdp’ 
X P' 

4 (1 - 0.2 $1 

Me (1 + 0.2 My 
93 

p* utl 
% 

pt (1 + 0.2 M;)-’ 

(Z) =c;i , 
Re = pt (Yg Rc Tt+ Me (1 + 0.2 M;) CO-* 

- I-it 

I ate 1 + (0.4 w - 1) MP 
w = - e .- = 

Re dM e Me (I + 0.2 Id",, 

. ..(d18) 

. ..@19) 

. ..(d20) 

,.*(d21) 

. ..(A221 

. ..(A231 

. ..(A241 

. ..(A251 

Cambinin$ 
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Combining Eqns. (Al7) to (Al9) and Eqn. (A25) yields 

4.e 7 ¶. 

A = - = 0.01255 (1 + 0.1 M"e)' Ree-' . ..(A261 
5x 

0.14 Me 3.2 (1 - 0.2 M",, W 
B = -0 

(I + 0.1 "6",,+ 
+- 

Me (I + 0.2 M;, 5 1 
. ..(A271 

For free-stream flat plate Reynolds numbers near 10', Stratford and 
Beaversi quote 

-0.7 
e = 0.022 (1 + 0.1 M",) 

-; 
x Rex , . ..(A28) 

In this case analysis as above gives 

50 i 

A = -  zz 0.00855 (1 + 0.1 M;)-' *ad Reg-; . ..@29) 
6x 

. 

c 

0.14 Me 3.33(1 - 0.2 M”,, w 
B = -8 + +- 1 . ..(ANo) - (1 + 0.1 M",, 16~ (I + 0.2 M",) 6 

An alternative means of deriving A and B involves the use of a 
suitable transform. Here, the MagerlJ modification of the Stewartson transform 
IS used. This employs two functions: 

. ..(A311 

. ..(A321 

Now it is a condition of the transform that when the pressure &cross the boundary 
layer perpendicular to the wall is assumed to be constant 



- 18 - 

. ..(A33) % - = 
CL, Te 

although Eqn. (A?j) is a more accurate form of this relation. For y = I.4 

F = (I + 0.2 M;)" . ..(W) 

7 
G = (1 + 0.2 M"e)-' = F' . ..(A35) 

Now, by definition 

. 
.* 

But 

. 
. . 

8 0.21558 
de = aii - aRe 

1.21557j 1.2155 Re 

aRe 
- = WRe 
al! e 

8 0.2155we 
de = G - 

1.2155g 1.2155 
dMe 

The transform yields three relations: 

ue* = F-i u 
e 

On differentiation 
I 

1 6.431 1 
- aF* = - dF+-G 
iiz F 5 

. ..(A36) 

. ..(A37) 

. ..(A38) 

. ..(A39) 

. ..@4.0) 

. ..(Alcl) 

. ..(A42) 

ana/ 
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and a?? = - 0.2 Me I? dhl, . ..(A43) 

Jjl-‘..Sie 
Thus 

1.2862 Mu Pe 0.2155 we / 
de = s* + 

1.2155T 1.2155 
dMe - 

1.2155 
dEn,...(OJ+) 

3 
Further' d+ = 0.01173 a.2 - 4.200 - au * 

ue+ e 
. ..(A45) 

and au,* = - Fa ue dF + P due . ..(A461 

or Clue* = Us F-I Ms-l dMe . ..(A47) 

whence a75* = o.Oql73 p dx - 4.200 F p-49* Me-" dMe . ..(A481 

CombinjnC: Eqns. (AN+) and (A4.8) giW?S 

-0.7.34s 

4 = 0.00965 (I + 0.2 M;) 
-0 .a55 

Ree . ..(ti9) 

3.4554 
B = -8 

1.0582 Me 
+ 0.1773 PI 1 . ..(A50) 

Me I +0,2M; 

~q~s. (N+9) ana (~50) ars in clove numerical agreement with Eqns. (~26)and 
(A29), and (A27) and (A30) respeotlvely. 

c sna D are also derl.ved by transforming Mnskell's3 inocmpressibls 
relations. 

aH+ -1 -o.ass 
-= O* Re* 0 a (I-'. II*) . ..(A51) 
a2 

0.246 e* au + 
where r* = --..-..-.L?.- . ..(A52) 

C* f ue* &* . 
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and' O 
-I .swH* -0 .ae* 

cf* = 0.246 e Re* e . ..(A53) ’ 

@(I’+, p) is shown 3 to be capable of expression as 

‘p(r*, H*) = Y + Zr” . ..(A%) 

with Y and Z functions of H* al one, slthcugh the functions themselves 
change according to the magnitude of l'*. Thus 

-1 -c.aee I .S.siHU 
dH" = W+ Re; Y&t+ + e u/ z q . . . (A55) 

As bef.cre a.3 = Fe dx . ..(A561 

u+ = F-“,, 
e e . . . (A57) 

It can be shown that 

0’ = Fde . . . (A58) 

R.9; = Fa Ree . ..(A59) 

H = H* (1 + 0.2 M;) + 0.2 M; . ..(A60) 

Thus 
i .eslH+ 

dX+e e 
. ..(A61) 

But, on differentiating Eqn. (A60) 

123 = (I + 0.2 M;, dH’ + 0.4 Me (1 + H*) dM e . ..(~62) 

whence it is clear, from Eqns. (~61) md (A62), that 

C/ 
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0 .asa -1 -0.288 
C = (1 + 0.2 M;) 8 93 Y . . . (~63) 

D 2 0.4 Me (1 + II*) + (1 + 0.2 M;) M -I e 
i.sslH" 

2 e . . . (~64) 

As with jncomprcss~ble fl.ow, the technique may also be applied to 
lamnar boundary layers by replamng the approprmts turbulent equations by 
them laminor oountwpnrts. 
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An expression is derived for the wali pressure 
gadient ir. attached flov m.tn both compressible and 
mcompresslble turbulent bowdar~ 1a;ers. From this 
gradient, the pressure tistributlon nay be detexzined 
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various potential applications of tnls techriqle, 
separation is here considered. 
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An expression is demved for the wall pressure 
gradient m at:acned flow mth both comsresslble and 
incozpressrble turbulent boundary layers. From this 
gradlent, the pressure dutributlon may be determined 
by an mtegratlon process, and It is seen that the 
agreement with experiment 1s encouraging. Cf the 
varxous potential applrcations of this te&nique, 
separation 1s &z-e considered. 
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TYHS ~ISTRISUTION OF .A %'ALL PRZSSURE RISE 
IN A T'muT.,aT amNDARY L4m 

An expressIon is derived for toe wall pressure 
gradient in attacked flow ?nth both compressible and 
incompressible turbulent boundary layers. :Frcm this 
gradlent, the pressure drstributron nay be determined 
by an integration process, and it is seen that the 
agreement m.tt experiment is encwaging. Of the 
various potential appllcatlons of this techruque, 
separation is here considered. 
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