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SUMMARY

An expression ls derived for the wall pressure gradient in attached
flow with both compressible and incampressible turbulent boundary layers,
From this gradient, the pressure distribution may be determined by an
integration process, and it 1s seen that the agreement with experiment is

encouraging, Of the various potential applications of thls technigue,
separation is here considered,
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1. Introduction

In a variety of serodynamic problems, a knowledge of the bhoundary
layer wall pressure distribution is of interest, This wall pressure distribution
governs the rate of thickening of the boundary layer, and conversely the rate
of thickening of the boundary layer governs the pressure distribution along its

free-stream edga, Consequently the details of the flow are determined by the
equllibrium of these two effects,

Many formulae have been evolved which claim to compute the growth of
incompressible boundary layers., By the use of such a formula, it will be
shown how an expression for the wall pressure gradient may be derived for
compressible flow with the aid of a transformation technique. Turbulent
behaviour is covered in some detail, and the same general approach may be used
for laminar flow., On equating this pressure gradient with that of the free-
gtream at the edge of the boundary layer, the expression may be numerically
integrated to give the variation of pressure with streamwise distance,

Such a technique has a number of relevant applications in various
fields of aerodynamics. In this paper, its spplication to the prediction of
separation is considered,

2. Determination of the Pressure Distribution

An expression 1s derived in Appendix IIT for the wall pressure gradient
in attached flow with a compreassible turbulent boundary layer.

2.1 Theory

In any application of the analysis to boundary layer problems where
the pressure distribution is required, a relation is necessary between an
angle ¢ (as in Fig, 1) and the free-stream flow conditions, It is assumed
in this instance that the effect of the boundary layer on the free-stream flow
is equivalent to a displacement of the wall surface by an amount equal to the
displacement thickness of the boundary layer, Some theoretical justification
for this statement is given in Ref, 1.

The required relation for supersonic flow is simply cobtained. As is
well known, the thickening of the boundary layer leads to the emergence of an
infinite number of compression waves from the free-stream surface, These
eventually coalesce to form the familiar oblique shock wave, Clearly there
is a loss of total pressure through this shock, but this loss is much reduced
near the boundary layer surface by the "cushioning effect" of the boundary
layer itself, It is therefore plausible to assume that the flow near the
edge of the boundary layer is locally i1sentropic, and so to employ the familiar
Prandtl-Meyer equation in order to relate the angle of the flow to its Mach
number,

The Prandtl-Meyer equation with supersonic flow enables the pressure

gradient at any point to be calculated. By a simple process of numerical
integration, the whole distributlon can be determined since

X gp
P = P + f — . d&x eeo(4)
x 4x

In/
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In the turbulent case, calculation of the Inciplent boundary layer
functions must entail an allowance for any initisl region of laminar flow.

Before moving to the numerical integration proocess itself, it ia

perhaps warthwhile to consider some of the assumptions involved in this
technique,

(1) Two-dimensional flow

As 1%t stands, the analysis is only true for two-dimensional flow.

(11) Nature of the free-stream flow

Compressible flow is assumed, and it is tsken to be isentropiec, with
y = 4.40.

(111) Boundary layer assumptions

The usual assumptions are made, and although generally wvalid, their
aceuracy diminishes in steep pressure gradients.

(4v) Boundary layer relations

In this paper, the following relations have been employed:
(a) Maskell for incampressible momentum thickness,

(b) Maskell for incampresaible shape parameter behaviour,
(c) Tudwieg and Tillman for skin friction,

(d) Power law relation for viscosity.

(e) Stratford and Beavers for compressible momentum
thickness,

Al are of sufficlent standing to justify confidence in their use, but’

as with most boundary layer solutions, one tends to be wary of their accuracy
near separation or reattachment,

(v) Free-stream flow direction

It has been assumed here that the equivalent boundary of the lnviscld
flow 1s obtained by displacing the wall surface by an amount egqual to the
displacement thickness of the boundary layer,

(vl) Free-stream behaviour

The Prandtl-Meyer equation is used in conjunction with an assumption
of incompressible flow near the boundary layer surface. It is conceivable that
a8 better approximation to the truth may be made by tesking the compression at

the boundary layer edge to occur through a series of small shocks, instead of
through a Prandtl-Meyer turm,

(vii) Transform

Mager's modification of the Stewartson transform has been used,
largely because of the ease with which the various parameters of interest can be

transformed/-
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transformed, Nevertheless, a certain amount of justifiable suspicion 1s
inevitably attracted to work involving transforms of the turbulent boundary
layer, and only a successful comparison between theory and experiment can
wholly Justify such an approach,

The numerical integrations were carried out on a digital computer.

2.2 Practice

The first problem to arise concerned the initisl data., Unless
otherwise stated, it is taken throughout this analysis that the flow is two-
dimensional and supersonic, Up to the incipient point there is no pressure
gradient, and the boundary layer is always fully turbulent, At the incipient

point 1tself, it 1s assumed that the boundary layer veloclity profile is given
by a power law,

Six further variables are now required to define completely the
inclpient conditions. These are the stagnation pressure EPtg and temperature
ETt;, and the incipient Mach number (M;), x co-ordinate %, }, shape parameter
H, and boundary layer slope (¢y ). In fact, were randam values given to
these quantities, the flow model would be fully defined, and the incipient
dM dM
value of ( ——-) could be calculated, However, we know that ( *_.> &t the
dx : dx
incipient point is zero, and one of the six parameters is therefore redundant.
aM
Unfortunately, were the calculation started with < ~—-) equal to zero, the
' dx

exponential nature of the pressure rise would ensure that separation occurred
only at infinity., This is cleasrly ridiculous, and the problem was overcome

aM .
by seleciing a value for the term ( -—-) , and using this ss an inciplent

. dx /4 .

point condition, From the limited quantity of accurate experimental data

aM
available, 1t was found that when ( ——-) is put equal to - %, reasongble

ax /4
agroement with experiment occurs. This value was used throughout, and the angle
¢, omitted from the set of initisl conditions. It should be pointed out

M
that the only effect of a change in ( —*-) is upon the scale in the x
dx 7/

direction of the foot of the distributionj the gradient and pressure rise of
the steep portlon, and the pressure rise of the foot remain oconstaent,

Heving defined the initial conditions the question of step length
arose, Varlous lengths were employed, and eventuslly it was found that the
best compromise of speed and accuracy was such that the change in Mach number
at each step was equal to 0.4% of the incipient Mach number %;1).

It is now possible to consider an example of the method. Stagnation
conditions of 2 atm and 3%00°K were arbitrarily chosen, as were the inclplent
Maech mumber of 2, x co-ordinate of {1 ft, and velocity profile power law
exponent of 5, These lead to an incipient flat plate Reynolds number of 7.3
million, Fig, 2 gives the resultant pressure distribution, Although the

initial/
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initial part of the pressure curve is sensible, the method indicates that it
becomes horizontal as separation is approached, and this portion of the curve
is omitted from Fig. 2. Experience leads one to believe that this inaccuracy
near separation might occur, and there appear to be three contributory factors,
First, the failure of the famillar Prandtl assumptions in steep pressure
gradients. Second, the inaccuracy of the expression for Cg nearing
separation, And finally the Maskell relations, which becoms suspect as
separation is approached, If the technique is to be of any use at all, this
prcblem must be overcome,

In this instence there is a means of evading the trouble, Reference
to separation pressure distributions, such as those of Chapman et al®,

demonstrates that beyond the initial foot of the distribution, ( w-) is
dx

effectively constant up to separation, It is therefore possible to obtain a
more realistic pressure curve merely by extrapolatlng the predicted curve from
its point of inflectaon. The modified curve is given in Fig. 3. It should
be pointed out that the scale of plotting the curve differs from that normally
used for experimental separation data, the ultimate pressure gradient here
appearing to be much less steep,

Adequate curves of the pressure rise associated with turbulent flat
plate separation are rare, This is especiglly true of the initial foot of the
rise, and even in the data of Chapman et al? here used, the shape 1s far from
certain, For the same incipient conditions, a comparison between theory and
experiment is given in Fig. h. It can be seen from Fig. 5 that the dependence
of the theoretical curve upon the incipient value of n is critical, and
unfortunately this is the one oondition which cannot be simply determlned.

With a seventh power law profile, the agreement is poor, with a fifth, good.

It is possible to determine n, by first calculatlng Rel,, from
Egn, (A89) Maskell? presents a relation between H* and Ree for flow on a
flat plate with zero pressure gradient such as occurs at the incipient polnt.
From H* one can obtain H, by Eqn. (A90), whence n, is found., If this
procedure is adopted for the incipient flow relevant to Fig. &, n, is found
to be equal to 5.0,

One can now proceed to examine the effects of several variables,
Keeping the stagnation temperature at 300°K and the incipient Mach number at 2,
it is possible to vary the stagnation pressure and incipient x co-ordinate.
In turn, changes in these quantities affect the incipient flat plate Reynolds
number,

Keeping all except stagnation pressure and hence flat plate Reynolds
number the same, the effect of alterations in these two quantities is shown
in Fig. 6.

Turning to the question of length, Fig, 7 demonstrates the results
of modifications to the incipient x co-ordinate whilst maintaining constant
the flat plate Reynolds number by adjusting the stagnation pressure, It is
interesting that the gradient of the steep slope is no different, the whole
dm
effect belng similar to that caused by a shift in ( ——-) . VWhen plotted on an
dx /1
sebsclute length scale, a sizeable difference is to be seen.

A similar treatment, but now changing merely the value of x and not
the stagnation pressure, is given in Fig. 8.

Sq/
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So far, work has been confined to Mach number 2, 1In order to
complete the picturs, examples of the method were carried out at other
conditions, bearing in mind that the flow must never become subsonic. A ocass
&t Mach number 1.5 is presented in Pig, 9, demonstrating a noticeabls changs
In the steepest gradient when compared with Mach number 2 results,

At Mach number 2.5 sensible curves were obtained, but near 3 the
method failed, Since the technique as a whole appears to be sound, one must
conclude that the values of A, B, C and D are incorrect, One immediately
suspects the transform, end other work, notably on base pressure problems,
seems to confirm this suspicion.

3. Prediction of Separation

Having examined the present method as a means of determining the
distribution of a pressure rise In a compressible turbulent boundary layer, ons
can now turn to the prediction of separation, Several Incompressible techniques”
exlst to caloulate the point of separation, and it should therefare be possible
to adapt these to compressible flow by means of a transformation, All requirs
& prior knowledge of lhe pressure distribution, and this is now available.

Of the incompressible {reatments, five of the more important will be eonsi&ered,
namely those due to Buril", Maskelﬂ, Spence”, Stratford.6, and Truckenbrodt™,
A paper by Smith? considers them in detail,

(1) Bumt

Buril derives an expression for the change with distance of
his own boundary layer parameter, and claims that separation
occurs when this parameter reaches a chosen value.

(11) Maskell

Using his equations3 for the rate of change of shape parameter,
the local skin friotion ccefficlent may be determined. Since
this coefficient is inaccurately determined near separation,
it is necessary to extrapoclate the curve to zero, at which point
separation takes placs,

(111) Spence

Having presented equations similar to Maskell, but in a simplified
form, Spence-’ proposes that separation occurs when the shape
psrameter is betwsen 2 and 3.

(iv) Stratford

Stratford6 demonstrates that there is an equation relating
several variables which is only true when the skin friction has
fallen to zero - e.g., at separation,

(v) Truckenbrodt

In & menner comparable to that of Maskell’ and Spence®,
Truckenbrodt™* derives an expression from which the shape
parameter can be found, He then proposes that separation
takes place when the shape parameter lles between 1.8 and 2.4,

Time/
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Time and space prevent a detalled consideration of all five methods,
Maskell's relations for the rate of change of shape paremeter have already
been used, For the determination of separation, the skin frictlon technique
of Maskell and the critical shape parameter concepts of Spence and Truckenbrodt
willl be employed,

Taking first the skin friotion extrapclation, Fig., 10 shows the baale
pressure distribution, together with curves of skin friction and shape parameter,
As can be seen, the skin friction method greatly overestimates the separation
pressuxre rise, That this is no isclated example is indicated by Figs. 3 to 9.
An improvement might follow the use of a direct compressible skin friction equation,
but such & development is probaebly not worthwhile, since the inherent error in
the use of a skin friotlon technique makes it less attractive than the shape
parameter method,

Passing to the critical shape parameter, experiment suggests that
separation occurs when the incompressible shape parameter is 2,14 (see Fig, 10},
. This is almost mid-way between the limits proposed by Truckenbrodth, and is
also contained by those of Spence?, It thus seems plausible to take the mean
of the values quoted by Truckenbrodt as giving the separation point
(1.e4, H* = 2,1), For M = 2, Figs, 3 to 10 show this to be reasonably
accurate for an initial compressible power law profile exponent of 5, but it
becomes progressively less accurate as the exponent inoreases (i.e., H¥ deoreases).
This leads us to the conclusion that some account must be taken of the inciplent
shape parameter, and the use of a constant ratlo of separation to incipient
incompressible shape parameter is one such possibility, With this ratio equal
to 1.541, Figs, 9 and 11 demonstrate that there is indeed an improvement, but
further refinement is precluded by the lack of evidence as to the precise effect
of n, upon the separation pressure rise.

4. Possidle Future Work

The prevlious sections desoribe a method of predicting the distribution
of & pressure rise in a turbulent boundary layer with compressible flow. There
seem to be four main routes along which future development could possibly proceed. ,

In first place there 1s the extension of the technique to deal with
laminar flow., This should present no great diffioulty.

Then there is the application to separation, as discussed in Section 3.
Beaides improving the means of predicting separation, factors such as the effect
of wall shape on the pressure rise to separation might be examined. In the
light of Reference 8, knowledge of the effect of longitudinal wall curvature
would be of especial interest,

Thirdly, by considering various types of solid surface geometry, the
distribution of pressure over several flow models might be determined. As
an instance, the unseparated pressure distribution of flow over aerofoils or
oylinders could be calculated,

Finally, several aspects of reattachment behaviour could be investigated.
Since the skin friction at resttachment is zeroc - as at separation - the
relation between the reattachment pressure and theeventual downstream pressure
might be derived in much the same way that the separation work was carried ocut.

5./



5. Conclusions

An expression has been derived for the wall pressure gradient in
attached flow with a compressible turbulent boundary layer, From this
gradient, the pressure distribution may be determined by an integration
procesa, and the agreement wlth experiment 1s encouraging. Of the various
potential applications of this technique, separation has been here considered.

I
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APPENDIX 1
Notation
a0
dx
38
oM
)
oY
ax

local skin friction coefficient

i )s|

S ——

3Ma

transform function
{ranaform function

gravitational acceleration

5%
boundary layer shape parsmeter ( ——— )
a

Mach number at boundary layer free-stream edge

velocity profile power law exponent

pressure (static unless with suffix t)

PI

Re
Re

Re

-4
4 a
M, (1 + 0.2 Me )

Reynolds number per unit length

Reynolds number based upon X

Reynolds number based upon ©

gas conatant
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Suffices
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temperaturs (static unless with suffix

free-gstream veloclty

equivalent flat plate length
Cartesian co-ordinate

Maskell function

Maskell function

Maskell function

ratlo of specific heats

boundary layer displacement thickness

boundary layer momentum thiclkmess

;] Reeo-Q:I.EB

viscosity
density

Maskell function

., a8*
tan? ( ——->
dx

t)

viscosity -~ ‘temperature relation exponent

boundary layer free-stream edgse
turbulent
total head

incipient

transformed - 1.e., incompressible (except &%)

undisturbed free-stream,

APPENDIX II/



Equivalent flat plate

length

Flat plate Reynolds
nunber

Momentum Reynolds
number
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X

Re

Re

APPENDIX TI

Definitions

That length over which a boundary
layer growing on a flat plate at
the local Mach number would attain
the same thickness as the actual
boundary layer

(PeUe) <
“B

where the denslty, veloclty and
viscosity are those at the free-
stream edge

( Pe Ue ) 0
He

where the densit&, veloclty and
viscogity are those at the free-
stream edge

- mw em Ak wr MM owm e me = e Em mm W e R AR mm MR mr mm wh mm b W ok SE Em EE b me R Em Em EE WE W we we w

Incipient pressure

Separation pressure

Pressure at the inclpient point,
just ahead of the separation
pressure rise .

Pressure at the separation point

e wm W e Am e e e e e mr v e e mk Em e mm v WE m= M WE W em e mem e R ae e e ms me oAm e o aw
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APPENDIX III

Compressible Flow

General Expression for Pressure Gradient

By definition 5* = H.# veo (A1)

whence a%* = H, a0 + 6 , aH veel(A2)
a6*

By definition — = tan ¢ eee(A3)
dx

i.e., 46* = dx tan ¢ e o{Al)

It will be shown later that the inorements .d® and di may be expressed as

ae a6
ae = — « X + . dme t-o(AS)
ax BMe
dH gH
&nd dH = " e d-x'.‘—'-"_. dM co.(Aé)
ax oM e
=]
a0
Let A = —
ax
a6
B = =
M
8
dH
C = —
ax
dH
D = — oo o(A7)
oM

e

Then Eqns. (A2) to (A7) give

dx tan ¢ = H(Ad_x+BdMe) + B(Cd_x+DdMe) ... (AB)

i

which,/
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which, when rearranged and taken to its limits, ylelds

dMe tan ¢ - HA ~ 6C
—2 . |: :I ves{A9)
dx HB + 6D ’
For y = 1,40,
P e .
= = (1 + 0,2 Ma)a --0(A10)
a8’
P .
Assuming Pt to remain constant
dP 144 Me P
= ‘[————-:l oo s(A11)
aM 1 +0,2M
e e
ar 1o Me P tan ¢ -~ HA - 6C
whence — oz = . eeo(A12)
dx 1 + 0,2 M: HB + 6D

The various terms

It 1s suggested in Ref., 12 that for free-stream flet plate Reynolds
numbers of the order of 10%, the momentum thickness of a turbulent boundary
layer can be expressed as

1

Q7 g
8 = 0.0% (1 + 0.4 Mg) X Rey oeo(813)

this expression being valid in an arbitrary pressure gradient, where

1
X = —_— rP' d.]( .oo(A11")
P
(o]
- M 4
and P' = !"""—_"e_"""-"] oo-(A15)
. L1 + 0.2 M‘;

It 18 to be understood that these last three equatlons are only valid for air
with Y = 1.40,

Rewriting/



Rewriting Eqn,

6 =
1
It - df =
0
Eqn. (A14) glves
1
—dx =
X

and Eqn, (A15) gives

1

— dP' =
Pl
By definition
Re =
U =
e
Pe =
H
He
o.o Re =
... W -

- 16 =
(413}

~“Q+7
0,03 (1 + 0.1 M:) X Re

Ouih ¥ N 1
- i + ~—3dX - -—- dRe
1+ 0.1 M2 8 5% 5Re
1 1
—dx - — @p'
X P!

L (1 -0,2 mg)

i
M (1 +0,2M2)
e [ ]

Po Uq

Ho

1 1
z a\~y
(yg RG Tt) Me (1 + 0,2 Me)

8
2 T2
Pt (1 + 0.2 Me)

1
z 2y W-8
— (yg Ry T)% M (1 + 0.2 12)

| dRe 1 4+ (040 =1) M:

2
Re QM M, (1 +0,2 Me)

ees(216)

ves(A17)

ooo(A18)

eeo(A19)

...(Azo)_

ees(A21)

veo(822)

..o (823)

veo(A24)

ees(A25)

Combining/
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Combining Eqns. (A417) to (A19) and Egqn. (A25) yields

46 7 -1
A = — = 0.01255 (1 + 0,1 ¥2)® Re, * ...(A26)
5% °
0. 1% M 3.2 (4 - 0,2 M) W
B = - e + © + ‘_:] .l.(Aa?)
(1 + 0.1 M‘;) M, (4 + 0.2 M:) 5

For free-stream flat plate Reynolds numbers near 407, Stratford and
Beavers!? quote

1
-0 7 -

8 = 0.022 (1 + 0.4 ¥)  XRey & .. .(A28)
In this case analysis as above gives

58 ~0 *84 -%

A = — = 0,00855 (1 + 0.1 M3) Re ...(A29)
e )
6X
0.14 M 5,334 - 0.2 M) Wo

B = - elﬁ S e + ‘—] oco(ABO)

+
2 2
~ {1 + 0.1 me) M, (1 + 0.2 Me) 6

An al ternative means of deriving A and B involves the use of a

suitable transform, Here, the Mager!3 modification of the Stewartson transform
1s used, This employs two functions:

F| = <T—e>% ees(831)

Ty
2
¢ = (EE)FM ... (432)
He

Now it is & condition of the transform that when the pressure across the boundary
layer perpendicular to the wall is assumed to be constant

.EE y
He



P

although Eqn. (A23)

Now, by definition

6 =
S, dae =
dRe
But —_— =
daM
e
-.. d.e =

- 18 -

+3
ot

15 a more accurate form of this relation.

1
(1 + 0.2 )%

7

(1 + 0.2 1) R

A 023155
6’1.2155 Re 1 42158

0 _ 0.21550
e 40 = —————— dRe
1.21550 1.2155 Re
W Re

] _  O.2155We
——— 3 - — M
1.21556 1.2155

The trensform ylelds three relations:

Fa-4315
F¥ dx
Fru
e
7
6431 1 _
dF + ::ﬁﬁ
P 6

«e.(£33)
Fory = 1.4

eeo(A34)

e (A35)

eee(836)

e (A37)

eeo(A38)

o(439)
v« o (ALO)

veo (A1)

.o o (AL2)

and/
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and aF = - 0,2 M F am_ «os (AL3)
Ferdtg 1.2862 M_ F?0 0.2455 Wo
Thus 0 = ——— 30" « e Q| - e M ... (A 4h)
1.21559 1.2155 1,255  °
- 6*
Further! d8* = 0.01173 ax* - 4.200 — au_* o oo {A45)
-
Ue
and QU * = -F2U QF « Ft QU oo (AUE)
] - 1 a8
or U = U F oMt oM «o o (ALT)
whence ab* = 0,01173 F® dx - 4,200 6 F® 431 Mt A o.. (ALB)
Combining Egns. (Ah4) and (a48) glves
-0+ 7848 -0 e24585
A = 00,0095 (1 + 0,2 M;) Rey, oo (ALD)
3,455  1.0582 M
B = - e[ - + 0,4773 w] +++(A50)
Me 1 + 0,2 MZ

Eqns. (A49) and (A50) are in close numerical agreement with Eqns. (A26)and
(429), and (A27) and (A30) respectively,

C and D are also derived by transforming Maskell's” incompresaible

relations,
dH#
d_xlll
where ™

kel *"0 *+388
6%  Re, o (r*, H*) ees (AS1)
0,246 6% au *
— .= evo(A52)
»*
Cf Ue dx‘
10/

and



- 20 -

10 -1 5814 H* -0 e-288

= - »
and Cf = 0,246 e Ree

&(I*, H*) 1s shown’ to be capable of expression as

&(r*, H*) = Y + zr*

.o (453)

oso{ASL)

with Y and Z functions of H* alone, although the functions themselves

change according to the magnitude of T*, Thus

]

-1 ~0 +288 1 *561 Hu -1
an* = a* Reg Ydx* + e Ue* Z
As before dx* = F° ax
and U= - F'_1 ]
=] a
It can be shown that
6* = 8
Reg = F? Ree
H = H* (1 + 0.2 43) + 0.2
-y -0 +288 1 s484 1 581 H¥
Thus dH* = 6 Reg YF dx + o z

But, on differentiating Eqn. (460)

dH = (4 + 0.2 M:) aH* + O, M_ (1 + H*) a

whence it is olear, from Egns. (A61) and (462), that

a
e

=1

M
e

.o (A55)

.+ (A56)

v+ (A57)

eo.(458)

ve o (A59)

o+« (A60)

auM

e

... {861)

... (AB2)

-



-2 -

0 .268 -1 -0 +2688
(1 + 0,2 M:) 6 Re Y . ees(863)

C
1l

-1 14561H*

O.b M (1 +H*) « (1 + 0,2 Mz) M, o A oo (A6Y)

L)
i

As with incompressible flow, the technique may also be applied to

laminar boundary layers by replacing the appropriate turbulent equations by
therir laminar counterparts.

MH
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