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As in the case of single cascade, the potential theory of tandem 
cascade can be divided into two main categories, one using the method of 
singularities and the other using the method of conformal transfonnatlon. 
Various workers9," have used the method of singularities, but these are 
approximate only. The method of conformal transformation offers the only 
exact method. Sprag1i.11'~ has stated rigorously the method of conformal 
transfoxmatlon applied to a tandem cascade. In this method the two rows of 
blades are transformed, through two rntennediate stages (namely two rows to 
twu irregular shapes, then to two circles) to twu ooncentrx ox&es, 1~1th two 
smgularlt~es within the annulus formed between the cxdes. The method of 
mirror images 1s then employed to solve the flow in the annulus. Thema3.n 
difficulty arxses when the two singular shapes we transformed into two ciroles. 

The method employed here by the authors is not an exact method but 
intermediate between the two mentioned above. On the assumptions that the main 
blade carries the bulk of the loading and the second blade acts as a flow 
deflector, the emphasis is on the investigation of the loading on the first blade 
and the effect on it of czrcdation of the second blade. Accordingly, the 
tandem cascade IS "separated" xnto two parts, the first row of blades 1s 
transformed into a olrcle whde the second is represented by a smgdarlty. 
The whole transformation IS based exoluslvely on Howell's method whxh IS 
explained in Section 2. 
two studies are included. 

Regarding the representation of the sin.gular+ty, 
The first study only takes account of the circulation 

effect whxh is represented by a vortex. The second study mcludes.the effect 
of blade thxkness whxh 1s represented by a doublet. A numerical example for 
the first study is included in this report (Seotlons 4 and 5). 

In apply- the transformations by Howell's method, It has been the 
authors' az.m to achieve a completely automatic process by dlgltal computer for 
numerical solution from which the pressure distrlbutlon can be obtained when the 
basic profile is fed in. The maLn difficulty in using Howell's method arises 
III the transformation from a near circle to an exa t circle, whwh 1s carried out 
by means of the K&m&-Theodorsen transformation 3 73: 9 In this report, the 
numerical method to overcome such dzifflcultles and the programming technique is 
described III full detail. 

The dxgital computer program is dxlded into two parts, wrltten 111 
"Mercury Autocode"'. The first part deals with the initial transfonnatlons and 

reqw.res/ 
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requires 3 minutes on Ferranti 
or English Electric "KDF 9"). 

"Mercuyt Computer (can also be run on "Atlas" 
The second part which deals wl'ch the final 

tramfOrmatiOn and pressure distrlbutlon requires approxmately 40 seconds of 
computing time. 
for input blocks.) 

(The actualtme required mcomputingtime plustimetaken 
This part can only be accepted by Ferranti "Atlas" computers 

in the form in which it has been programmed. 

Sections 2 and 3 deal with the theory of transformation. Details of 
programming techniques and numerical applications are described in Sections 4 
and 5. TWO numerical examples sre given in Section 6. 

2. The Conformal Trsnsfonnatlon 

2.1 Potential flow 

The problem of the tandem cascade is assumed to be of two-dunenslonal,' 
mcom&esslble and inviscid flow. The flow in z-plane satisfies the following: 

Cauchy-Riemann equation: 

w w 
U =-=- 1 

ax ax ay ay 

a$ a$ w  w  
v = - = _- v = - = _- 

ay ay ax ax 
1 1 

. ..(2.1) 

Potential function; W = $ + iJr . ..(2.2) 

Velocity function: w = u - iv. . ..(2.3) 

2.2 Outline of the method 

The conformal transfonnatlon method employed here is based on the 
Howell's method, assuming the ohord of the second blade is not greater than a 
quarter of the combined chord, i.e., CO < 0*25c. The second blade 1s then 
replaced by a singularity at the position of nmzumum thichess on its camber 
line. Its effect is represented by a vortex either with or wIthout a doublet6. 
After the substitution, the tandem aascade is reduced to a single cascade with a 
row of singularities and can be dealt with as an ordinary oascade (Figs. 1 and 2). 

The first transformation function used is CL = tanh u tiich, 
having a period of x, transforms the cascade -into an 9" shape (Fig. 4). 
This transformation introdunes two singularities at ?I points in & plane 
wrresponaing to the points at ibo in the la-lane. Two successive applications 
of Joukowski's transformations turn the "S" shape into a near oval and then to a 
near circle. In most cases, this near circle can readily be transformed into 

a tIve cimle by means of the Theodorsen t-formation. The method of images 
is used to solve the flow about the circle. The strength of the singularities 
do not alter throughout the processes of transformation except for the doublet 
which depends on the resultant aoefficient of transformation. 

2.3 The Vmhn transformatlm: & = tanh q 

This transformation whxh maps the first blade having a pitch x Into 
in "SW shaped figure is written as 

L/ 
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e2= - 1 
r, = 

.2a + 1 
. . . (2.4) 

and its transformation coefficient is 

As pointed out in the last paragraph, the (+m,O) points in the 
a-plane are mapped to the (51,O) points in the &-plane. It can be shown 
that singularities here of a definite type correspond to the uniform flow 
conditions upstream and dowmtresm of the oascade as follows: at the (-i,o) point 
in the &-&me, the potentisl function is represented by a s-e of %a 
and a vortex (in anti-clockwise direction) of strength KWM. Similarly, at 
the (1,O) point in the &-plane, the potential function is represented by a 
source of strength *a and a vortex (in clockwme direction) of strength m, 
In addition, the circulation x(m - fi) remains unchanged around the 
configuration. 

Regaxdjng the representation of the second blade, its location must 
be determined before the transformation. The vortex is of strength Xki where 
k is an arbitrary value. !l!he strength of the doublet is determined graphically 

and represented by 
a -k 

V(a e - Bde"). The meanings of the symbols of this 
expression can be found in Fig. 3. 

For different relative positions of the second blade, aifferent 
positions for the singularity muat be predetermined. 

2.4 The Joukowski transformation 

* 

52 = &+' 

Or & = (f;$J-x . ..(2.6) ’ 

where cn is defined as a quarter of the distance joking the centres of 
ourvature at leading and trailhg edges. This will produce a near oval shape. 
The third transformation is similar to the above one. 

& = (~)@jTi . . . (2.7) 

where & is now the quarter distance between the centres of ourvature of the 
configuration by the major ds. 

Before performing these transformations, suitable axes of the 
configuration have to be obtained (see Figs. 4 and 5). 
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The transformation coefficients are:- 

aa G 
-2S 
dz.¶ g-0: 

. ..(2r8) 

a&3 r2 
and -Z 

aa 2g - w” l ..(2.9) 

2.5 The F2!m&-The0dor~en transfomation 

The approximate oircle is transformed to a true oircle by means of 
this well-known transfomation of 

log2 9 *n + tin 

-24 8 
.*.(2.10) 

where 

ma 

~(new oimle) = a.'+" 

tj(em0t cFmle) = ae'+ie 

. . . (2.11) 

. . . (2.12) 

Tn.3 areas in both planes am assumed to be the same. 
equations (2.11) and (2.12) 

From 

n 

r 
co8 ne - isin ne 

(1 - $1 + i(# - e) = (A, + '=,I 
1 

(ae$), l 

Separatingreal and imaginaryparts 

A e A-$ = 7 ($i (~cosne+BnsinnO) 

e.na a 61 g-0 = i, (-$J (BnoosnO-4,sinnO). 

I 
Prom (2.13) the following Fourier series equations cm be deduced:- 

q. = L 
i 

2x 

2x 0 
loaf3 

A’ = An n ’ 2x A 00s neae 
(aeqo)" p Z 0 I O 

2% 
B,: = Ao sin neae* o 

. ..(2.13) 

. ..(2.14) 

. ..(2.15) 

. ..(2.16) 

. ..(2.17) 

Supfix o denotes the values in the original y plane. AsswIng 
e is wry near to #, Jr, s and B; can easily be found. The disadvantages 

Of/ 
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of this assumption will be discussed more fully in Section 5. It may be noted 
that the Jr0 will be zero if the area of the near and exact circles are equal. 

For singularities Jr can be found from 

n en $0 @O 

x-g P 

II ( 

A' 
n2 

00s n0 + B' sinne 
nenJr > 

.:.(2.13a) 

1 

by iterating $ until both sides of the equation become equal. !&en the 
angular difference can be obtained from 

n 

T( 
en% 80 

g-e = 
% 

-oosnO -A' 
en* n> 

sine3 . 
> 

. ..(2.1&4 

1 
From equations (2.11) and (2.12) the expression far the velocity 

coefficient can be developed. Rewriting the equations: 

Y 

& 

Hence 
“9 
-, = 
au 

= .,x+1+ . ..(2.11) 

zn ae*+ie , . ..(2.12) 

2; ’ - (WW 
- '41 + (aA/d$)' 

. ..(2.18) 
54 

Assuming 8 is small so that the squares and higher powers of ds/d$ and ah/d$ 
oan be neglected, Howell argues that 

n 
a4 
- v I+ 

T 
[(n-l)AA COB no0 + (n-1)B; sin nOo]. . ..(2.19) 

azc 
I 

3. Pressure Distribution 

3.1 Velooity on oirole 

The velocity on the aerofoil points can easily be calculated on the 
circle using the method of images (Fig. 7). Referring to Howell's paper, it aan 
be sunmwrisedasfollowsr 

u E fC, + gWul + hWus + jk% + 6Wsi 
I 

are-iap' - ad= hl 
I 

az: 

. - 
a5 

8 

v 
- = f+gti +hf. *jli, +4&i ' . ..(Xl) 

% 

where/ 
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1 
where f = ImpEu-tof- 

2r 

r 1 i ‘1 I 

1 
B =ImpEu-tof- 

1 ' WBI ---e 
m 1 

1 
h = Impartof- 

1 ' ub --e 
na 1 

1 
j P ImpEu-tof- 

ws '.j 
I --e soa 

m I 

1 

[ 

-p -ih e a 
c = Impartof- 

2xr (1 -&@") 
+ 

rrFj l--e 

( 

’ gas 

I l - 

m > I’ az 
s 

0 P modlilus of (ase-ia= - s&e*=). 

It aan be seen that there are three unhovms in equation (3.1) which 
is solved in two steps. Firstly, by neglecting the effect of the second blade, 
the outlet angle and velocity opi and W-i oan be found by satisfying the 
Joukowski hypothesis that the velocity at the first trailing edge is zero. 

Rewriting equation (3.1) we have 

f+gk +htsi = 0. . ..(3.2) 

Thu the coefficient which introduced the doublet effect of the 
second blsde can be then calculated. 

The second step is to assume an arbikery aa for the oorresponaing 
rig this will impose a certain h, the strength of the vcu-tex. Consequently, 
the ratio of oirculation osn be evaluated In relation to the lift ooeffioient 
of the first blade. 

In the case where the thickness effect is neglected, the last term 
in equation (3.1) becomes zero. Then f;l can be osloulated by assuming am. 

3.2 Pressure distribution 

The velocity on this profile is found from the relation 

v profile = Voircle x 5 
I I de 
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where . . . . . . . 
a.4 - 
am 

. . ..(3.3) 

v VC 1 v ccsc3 
Hence - = -A- = 4 

Vi cavir c r l 

. ..(3.1) 

a 

Therd’~m, the pressure distribution around the aerofoil will be 

P -PI v l 

-=I- -. 

&PV, ( > vi 
. ..(3.5) 

3.3 Lift coefficient of the seccna blade 

me velocity of the substantial singulari~ is calculateafmman 
expression similar to equation (3.1) with mcdiPiea j and 4 terms to exclude 
the singdarity effect generated by itself. The modified terns are 

I 
3’ P Impartcf- 

2%l- 

1 

[ 

I 
l- 

L ,% 

2 I 
-ix 8 

4’ z Impartof-x . 
s3.r 

llg l---e 
( 

' %= 

m, > 

Therefore the complete velocity expression for this singularity 
point is 

V 
- =- f+ gtd +hto + j'% +C'c&. 
C a' 

. ..(3.6) 

Hence the lift can be found fnm~ 

b = PV lb. . ..(3.7) 

4. Numerical Applications. Part 1 

Various resaamh workers have attempted to solve this series of 
transformation by ditferent techniques. Carter and Hughes2 carried cut their 
investigations by hand calculations, choosing 12 aerofcil points. Recently 
Pollard and Wor&worth10 ueea the Tw.ace" digital computer to compute the 
transformations., In the latter methcd, each transformation had to be computed. 
separately. 
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The aim herein is to provide firstly a satisfactory way to handle the 
transformations automatically, secondly a method which will give better 
approximations. All refinements EUX described tier separate headings. Due to 
the limitation of the use of computer facilities, the complete Howell's method 
is divided into two parts. Program I covers the initial transformations up to 
the last of Joukcwdi transformation. Part II completes the final or Theodorsen 
transformation and pressure distribution. The two programs were written 
primsrdy for development and therefore some instructions in the present form sre 
redundant for production. !l%ese instructions are, however, very useful for 
checking at intermediate stages should It be required. The input index *p 
governs such a process. 

4.1 Progrsm z 

Ll.1 Input data 

Data required for the program are the number of aemfoil points, total 
number of points for computation, stagger, re@tive position of the origin in 
zl plane (about 4~316 chord), ohord length, pitch to chord ratio and finally x and 
y colordinates of the aerofoil points. 

The locations of the (+m, 0) points are not required but since we 
luunv that after the first transformation they will fall on (fl, 0) therefore 
only the latter are fed in. In regard to the number and locations of 
substitutional singuls&ties for each stagger, these must be deeded graphically 
and the co-ordinates should be included in the data. 

4.2.2 mtanh" transfonnation(Chapter 0 of progranrme) 

Before the'trsnsformation, the aerofoil points are translated ta the 
new axes and rotated to the corresponding stagger. At the ssme time, all 
co-ordinates sre referred to the correct pitch to chord ratio with a pitch ?[. 
The computation of trsnsfozmation and velocity coeffioients follows, tak* the 

-form of:- 

e 2% - , 

CA = 
e2s + 1 

and 
a& 

I I 
- = Ii-l2l. 
aa 

The calculation of the points (*co, 0) is excluded in order to avoid 
overflowing the capacity of the computer. 

Then the centre of aurvature of the leading edge is calculated while 
that for the trailing edge is of course the trailing edge itself. The 
co-ordinates in the &-plane are transferred to the a-plane. The value of 
y Is also caloulated. 



and 
aa c:: 
- P 

I r;: :' 
l . . (2.8) 

am --c 

It Is essential that the s&ls in equation (2.6) be taken correotly. 
In order to obtain a continuous loop, the positive and negative signs are used for 
the suotion and pressure stiacea respectively. The choice of sign for the 
singularities follow the sign of y* of the point oonsidereb The result of the 
second t-formation is a near oval shape. 

- 10 - 

b1.3 Joukowaki trmsfonmtion (Chapter 1) 

This tmnsfonI!ation takes the form of 

ca = (t)&-jL . ..(2.6) 

Fhe first part of Chapter 2 of the programme looates the major axis of 
the ellipse by comparing the lines joining all'the co-ordinates. Thefirststep 
is to find the points which give the longest distance between them. The oentre 
of curvature are located by assuming a circular an: passing throu& two points 
adjacent to each of these twu points. The line joining the aentres of curvature 
gives the w-axis in the la-plane md the aentre between them the origin. The 
value cs is a qwrter of the distance between these two centres. 

About this origin, the nesr oval is translated and rotated. The 
calculation is directed to jump back to Chapter 1 of the program to perform the' 
second Joulwwski's trsnsfonnation, namely:- 

T;a a (~)~~#z . ..(2b7) 

and 
,a3 Iti1 

- 

--E---7 - ca 
. . . (2.9) 

aa 

The ahoice of sign presents no difficulty this time. The plus or 
minus sign follows that of the y-co-ordinates of the point aoncerneb 

The progrann ends at this stage, and it requires three minutes on the 
Qemury" oamputer if the output is limited to the third transformation. Fig. 8 
shows theblockdiagramof this program. 

4..1.4 Results 

The print-out of the results is given in the following form:- 

Co-ordinates after the first t-fozmation and its 
coeffialents 

Valqe of Cp 

Co-ordinates/ 
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Co-ordinates after the second transfomation and product 
of coefficients 

, Number of points around aerofoil 

I Total number of points involved 

co-ordinate after third transformation m-l.3 product of 
coefficients. 

It is designed so that the results (of the third trmsfommtion) may be 
fed straight into Pmgram 2. Results of any individual transformation.may be 
pl'otted, using the output tape, by the Friden, a suitable automatic plotter. 

, 5. Numerical Application. Part 2 

5.1. prom 2 

This program deals with the final transformation and pressure 
dkkribution on the blade surface. 

The importance of the numerical application of the Dmodorsen I 
transformation need not.be over=emphasised. In fact, the Howell's method hinges 
on the successful eval&tions of this transfonmtion and its coefficients. 

The method used in this report differs distinctly from thos adapted by 
Carter and Hughes2, Pollard and Wordmorthlo, Thwaitesl4 snd Naimn 78 9 , Fourier 
coefficients are calculated, using input aemfoil points, by analytical inteption. 
The usual assumption of $4 Z 0 is eliminated b$ a process of iteration. 
Finally, the numerical differentiation is carried out by a specially developed 
ourve fitting pmgramne for five points, two on each side of the pdnt concerned. 

5.2, Theodorsen transformation 

The equations for the Theodorsen transformation may be summarised as 
f6llows:- 

y (near circle) x aeX+i' 

& (true circle) P aeJh+ifJ 

. ..(5.i) 
, ~ 

. ..(5.2) 

A a h-9 =, (4, 00s n0 + Bn sin 18) 

"B H 4-O = f (~J(Bnoosne-l,sinne) 

I 

. . . (5;3) 

. . . (5.4) 

. . . (5.5) $,= 1 
i 

2x 

2% 0 
Aode 
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A' = *n 
1 2x 

n (eeJIo)n = ii 0 i 
ho 008 n0 d0 

B' = n ho sin n0 d0. 

. . . (5.6) 

. . . (5.7) 

Various attempts have been made by others to determine the Fourier 
coefficients in these equations. 
used for 0 in evaluating A.& 

The main assumption made $s that (4 can be 
and B& Certer end Hughes suggest 

using thhree terms with eight values of A at equal. intervals of the argument. 
Naim.5~171~ introduces the use of harmonic analysis to solve equation (5.4). 
Thwaites'4, making use of Watson's formulae'5 uses a matrix method to solve the 
equations. All these methods state that absolute convergence of the Fourier 
series can be obtained. But the drawbacks are firstly that difficulties arise 
in copying with the irregularities in shape on the near circle. SecondJ.y, equd. 
intervals cdY $ (instead of 6) must be used, whil+t the validity of the 
assumption $ 2 0 is questionable. The convergence of the Fourier series 
depends on whether the curve possesses any shape irregularity. Inanordinarg 
cascade, a "bump" at the leading-edge point has s predominant effect on thelO 
convergence of the series. To by-pass this effect, Pollard end Wordsworth 
leave this point out throughout the entire calculation of the series. The 
questions left to be answered are: what happens if there is more than one 
dominating irregularity and what effect has the "left-out" calculation on the 
other profile points. With an unusual profile whjch is most. likely for a tandem 
cascade such as the one used 3n this report, it is possible that errors may result. 

To counter the above-mentioned difficulties, the following method IS 
used: - 

(a) Calculation of the Fourier series coefficients by analytical 
integration instead of summation. 

(b) Use of the original aemfoil points throughout (this is to 
avoid using an interpolation method.). 

(c) Elimination of the assmtion of 9 zz 8 by a process of 
iteration. 

5.2.1 hraluation of llro 

The sequence of input data is:- 

The number of aerofoil points. ' 

Total number of points including singularities. 

Co-ordFnates in the sequence of number, x-co-ordinate, 
y-co-ordinates and product of transformation coeffz.oients. 

With the help of the plot-out of the last Joukowski trrinsformatlon, 
a new ongin nearest to the "centre" of the near circle may be easily selected, 

b 
Assuming that the areas of the near and true circles are equal, the 

radius of the base circle can best be found by taking the average value of the 
I-dii: thus 
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!l!he palue of q. may be found f'nmr- 

Jlo = 1 
I 

2x lP 

2% 0 
A0 de P - 

2% c 
A0 P(P+s) - @b-G-)1 

1 

. ..(5.8) 

. ..(5.9) 

where p = number of aemfoil points. 

5.2.2 Fourier coefficients 

The integrals in the equations for 4: and B:, repreoent the areaa 

under the ho OOR ~6 and ho sin x-8 c-s respeotively. It is possible to 
write approximately, 

1 p 
A0 CO8 l-6 a!3 a - 

c 
Xk 008 nek 6e, .:.(5.10) 

= knl 

I 
B' I - 

n I 
2?r I p 

A0 sin ne de P - 
c 3c sin nek Wk. . ..(5.11) 

?I 0 
= kzi 

However, these expressions ad. hence the coefficients, become inareadngly 
unreliable aa n increases beyond one eighth of the number, p, describing the 
near circle. 

The method described in this report proceed8 a8 follows. With a 
sufficient number of aerofoil points (48 proved to be satisfactory) desoribing 
the near circle, it may be assumed that h is a linear function of 0 between 
adjacent points. 

there m and 0 

Henoe 

(ns+c) Cl08 rf3 de . ..(5.12) 

(&+c) sin ne a0 . ..(5.13) 

are constants pertaining to a short straight line joining 
adjacent points. Dividing the A - 0 diagram Into mall strips, it may be 
shown that after carrying out the above integration analytically, the ooefficients 
are given by:- 
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I p 
A,: = - 

7cl? c 
(“k - t+,) 00s tik 

knl 

I p 
B; P - 

ml' c 
("k - %+,I sin nek 

. . . (5.1%) 

l . . (5.1%). 

knl 

where %+I P slope between points k and k+lJ if m is less than OY.- 
equal to unity, the series oonverges rapidly. 

The value of 8 is fFrst assumed to be equal to # (near oirole)~ 
after calculating A,: and B;, u may be evsluated from equation (5.4). Ip 

U? denotes this first set of values then the new set of values of 0 til be 

@I?", = 9 - 6:. 

Thg value of 0& is then used to recalculate the Fourier ooeffioients 
and hence ea. With three iterations, and using 100 terms for eaoh of the 
ooeffiolents, a final set of values of s* is produced. Further iteration may 
cause a ohange of 0.0002 degrees at some points (see examples 1 and 2). 

Chapters 0 and 1 of Program IT oontain the above calculations. 

5.2.3 Coeffioients of the last trsnsfcrmatiopl 

The seoond difficulty is the oaloulation of the velocity ooeffioients 
of the final t~BfOmatiO!i which, in exact form is:- 

.*. (5.14) 

Howell demonstrates that if the secpnd and higher powers of the 
differentials of e and 5 with respect to # may be neglected, the modulus 
will be given by:- 

az: - = I+ [(n-l) A; 00s n0 - (n-l) B; sin &I. l . . (5.15) 

BB4 I 

The reliabilitg of this equation depends on two factors. The 
governing one is the rapidity of convergence of the Fourier ooeffioients. 

\ Although equations (5.12a) and (5.lja) always oonverge, .3 rapid rate of 
oonvexgence is obtained only at the beginning of the series. Differsntiation 

of/ 
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of the series therefore is highly -liable'. Secondly, the large number of ' 
Fcurier coefficients used to accmodate irregularities become increasingly 
unstable for numerical differentiation, perversely, over the smooth part of the 
E-$ and A+ c-. 

The best oourse appears to be to oarrg out the differentiation after 
fitting a @.ynomisl function to the set of values of 6 and X. then values of 
de/&# -and @d$ are obtained by ordinary dtiferentiations. &I the method 
described, curve fitting is applied to groups of five points. 

5.2.4 Five point c- fittinq 

The three ways that would be chosen to fit a curve to 
by the use of fourth order, third order least square and second 

five points are 
order least squaz-6 

polynomials. Fig. 10 shower half of the fiftpfour possible ways a curve may be 
drawn through the five points. These exclude the oases with continuous gradients. 
For aw point that may be considered, two adJacent points on each side s.re used in 
the process of curve fitting. 

From these sketches, it may be seen that none of the above methods can 
be applied to all points. Therefore, tests must be carried out first to decide 
which method hasto be used for each lndivxlual point. Straight lines are drawn 
between successive points and their gradients determined. The gradients ere then 
compared with each other to find. out to which group the five points might belong 
(e.g., group 1, Fig. IO). For some grcups (e.g., group I) these points have to 
be rotated and the same tests re-applied. - When the order of the curve has been 
decided, the gradient may easily be found. 

An example of the A-curve for example 1 (Section 6.1) is shown in 
Fig. 11. The curves fitted to each particular point are shown in Figs. IZA, B,. 
C, D, and E. Chapter 2 of the program deals with curve fitting and the derivatiti 
of the curve. Chapter 3 completes the calculation of the ooefficients of the 
Thecdorsen transformation. With slight modification Chapter 2 may be used quite 
separately for five point curve fitting purposes. 

5.2.5 Singularities 

Chapter 4 of the program obtains the values of e and $ .for each of 
the singularity points. Rewriting equations (2.13a) and (2.14~~) 

n .nJl0 ,n*0 

x-9 = 

H 
A:, 7 

ccs x-10 + B' - sin 0 
e n ,nQ 

k-l 
1 

,@0 ,pt0 ga-0 E B;n~r COB n0 - AA= sin n8 
e e ,I 

. ..(5.16) 

. ..(5.17) 

ThFrtytenns of A' and B,: ars used. n The process consists of a 

double iteration. Commencing with the assumption # = 8, equation (5.16) is 
used to evaluate $ by successive approtiation.. When the valuea of 9 for 
each singularity have converged, they are substituted into equation (5.17) to 

obtain/ 



- 16 - 

obtain 0, whereupon Jc Is recalculated. The process is repeated until 
$ - 0 is less than O*OOi. 

For the transformation coefficients the original method has to be 
employed since neither ah/a$ nor dO/d# may be obtained by curve fitting $n 
this case. me relevant equation iar 

G 
n 

- P I+ [(n-l) AA cos nB - (n-l) BA sin nOI. . ..(5.18) 
-32.4 

5.3 Velocity and prsssure distribution 

!l!he final chapter of the program calculates the pssure distribution 
around the aerofoil using formulae listed in Section 3. In this program, seve? 
values of inlet angles (ai) are wed, from 40 to 7O'wit.h 5 degrees interval. 

‘These values can of course be changed, It is also necessary to submit a series 
of values of the outlet angle aa. This enables the computer to calculate the 
values of the strsngth of the substitutional vortex and its proportional 
circulation. 

5.3.1 Results 

The results are printed out in block form, giving first the valui3 of 
(k,a~,ai -a9 am3 tanai -tana~. The dimensionless pressure around the 
profile is then given and is followed by the ratio of circulation. 

Should results of the curve fitting part be required correct use of 
the governing values "B" and "M" in Chapter 2 wxld dFreot the print-out. 

A Block diagram for this program Is given in Fig. 7. 

Time required on Atlas for this pro- is approximately two minutes, 
the main proportion of which is consumed by storage. Only two seaonds is t 
required to perform one pressure distribution. 

6. Results and Discussion 

6.1 &smple I - Tandm cascade , 

The tandem blade arrangement consists basically of a NACA 23012 profile 
with a partiuulsr slot arrangement which was found (Ref. 16, type 2-h) to be most 
satisfactory as a high-lift. device for an isolated aerafoil. The unslotted main 
blade is designed with 20" csmber and 12s thick. Nlpsrticulars of the first 
blade is shown in Fig. 13. Data of the 52 aerofoil points fed in the progrem 
em listed in Fig. 14. 

To fill up the out away portion, a 2oC2/%&3O blade is used (Fig. 15). 

Thus "flap" positions, one without and the other with IO and 20' 
&efleotions, are used. The outlet angles are assumed to follow the camber line, 
Le., without deviation. The,stagger used in this exsmple is 4.0'. 

Figs. 4, 5 and 6 show the results from first, seaand and find 
transformation. Fig. 16 listed the first 30 terms of the 100 Fourier coefficients 

after/ 
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after the third iteration. It can be seen from Fig. 17 that there is little 
difference in B between the results after the third and the fourth iteration. 
It was therefore decided that three iterations should be ued throughout, 

In o,raer to prove that the Fourier coefficients s.?ie sufficiently 
accurate, they are used to recalculate the value of $ (aev" is the radius of 
true circle) which should be constant for all aemfoil points. As shown in Fig. 18, 
the errors involved are between - 0*1275$ and + i?ii25$. In most oases, they 
are within + O*O$ accurate. I.. 

In Fig. 12, it has been shown that the curve fitting program manages 
extremely well. A further check on its results can be obtained fmm the c- 
/3s/azI overall in Fig. 19. 

As explained in the previous section, only the circulation effect is 
included in this report. Fig. 20 shows the pressure distribution curves for 
three posItions of the second blade: (a) without second blade effect, 
(b) position equivalent to IO0 deflection, and (c) position equivalent to 20' 

' deflection. As can be seen, the areas under the curves increase considerably 
with the effect of increasing circulation. This effect pZd~Oed by the seCCd 
blade is as expected.. 

The curves, however, exhibit a somewhat unexpected undulation. Its 
unmoothness is more pronounced on the suction surface. Further investqation 
shows this feature is rather 'natural th@it may not be so pronounced in reality. 

The variation of the velocity on the circle in the final transformation 
is governed by a set of singularities. A typical velocity curve for a circle 
with such effects 1s plotted in Fig. 21. Assumingthetrailing edge is at 
6 = 0" and the leading edge is at IVO', the velocity c- belongs to a 
fourth order polynomial. In the same graph, a typical ar/az curve (of the 
third order type) is also plotted. Since the product of these two c-s is 
the final velocity, this resultant must be of a seventh order polynomial CHIVE 

'Another extraodinary feature of this resultant velocitg curve is that 
'it is extremely sensitive to errors in the u&z curve. Figs. 22 ad 23 shaw 
the basic calculation by two different methods. The former uses 100 tezms of 
Fourier series and exact &$/dz method as described in the previous section. 
The latter employs only 10 terms of Fourier coefficients and a general five 
point, fourth order ourve fitting process for ar;/az. These,c-es in both 
figures look extremely close with only 1 to 2s difference at some points, yet 
the V/p, curves wave in opposite directions. The tvm V/o; curves are shoh 
superimposed in Fig. 22. 

6.2 &ample 2 

This example shows a comparison of the present method and the 
experimental results from Carter and Hughes2 of the profile llC2/33P40. bstead 
of using 12 points as in that report, 46 pints are employed Onehundred 
terms of Fourier coefficients are used. 

Fig. 24 shows the pressure distribution round the profile. Tne mme 
characteristic, i.e., Very rugged c-e, again exists. 
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'Jh interesting results are observed from this calculation. For 
100 terns of Fourier series, the first 30 terms converge very rapidly. within 
30 terms, the magnitude is reduced to about 100th of the largest term. The other 
feature is that the assumption of Br z cp1 
for this profile). 

is found to be very fair (at least 
The values between the first and the second iteration sre 

within O*ZO and the second and third within Ob030. 

The results obtained compare favourably on $he suction surface but not 
on the pressure surface. The difference between the deviation is nearly 2O 
between the theoretical and experimental values. 

6.3 Conclusion 

The method developed in this report would seem to bk the best way to 
perform the Howell method m-d the Theodorsen transformation satisfactorily, 
especially with irregular profiles. The advantages are that it does not require 
any form of interpolation and that it is fully automatic. 

7. Notation 

An' Bn 

A;, B,: 

a, 84 

C 

-9 B 

'a 

f 

B 

h 

i 

j 

k 

k,& 

& 

c 
I 

-9 m, l@a 

r 

t 1) %I, %I, 

U 

Fourier coefficients 

Fourier coefficients 

see Fig. 3~ also in the expression $0 ae 

modulus of P -531 (a e - aie ial 
1 

constants for Joukcmski t-formation 

axial velocity 

*ee equation (3.1) 

see equation (3.i) 

see equation (3.1) 

ci 

see equation (3.1) 

see equation (3.1) 

strength of doublet 

circulation of second blade 

see equation (3.1) 

ratio of radius of %ZO and singularity points 

radius of cLrde 

tangent of air angles (inlet, outlet, inlet of secmd blade) 

velocity in x-direction 

V/ 
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YelooilQf in y-direction 

looalvelooity 

velocitg at iniet 

complex velocity in z-plane 

oanplex potential function 

whirl velocity at inlet and outlet 

cwordinate in z-plane 

co-ordinate in z-plane 

air inlet and outlet angle 

air outlet angle of the f&d, blade 

relative angle of singulari~ (see Fig. 7) 

A-@ 
t+-e 
polar co-ordinate in Y plane, also direction of 
doublet (see Fig. 7) 

polar co-ordinate in y plane, also velocity 
potential function 

polar co-ordinate in &-plane, also stream function 

polar co-ordinate in &-plane 

stagger, also transformed plane 

referringtopoints in 21 plane 

fFrst transformation 

second transformation 

thkd transformation 

fourthtranafonaation 
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FIG. 3 Substitutional singularity 
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FIG. 5 2nd transformation, 8 = 40’ 
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FIG. 7 Flow in circle c4 plane 
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output: 

Co-ordinates of near circle 

FIG. 8 Block diagram for program I 



Data Data 

near - near - 

circle circle 

Change to Change to Calculate # for Calculate # for 

polar polar aerofoil points aerof oil points 

co-ordinates co-ordinates calculate Jr, calculate Jr, 

I I - I 

Calculate F.S. An and 8, 

02 = 4-EI 

93 = +-c2 

f 

d Calculate 

E-4-6 

Curve fitting 

dc dh 
cal. d4 c d+ 

C f Constant 

I I L.H.# R.H.- 

-it- New chapter . 
FIG 9 Block diagram for program 2 
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FIG. 12A Examples of curve fitting program 
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Basic profile : 23012 

Camber: paraboltc arc 20’ 

L.E.angle : 13’ 56’ 

T.E.angle : 6’ 4’ 

Max.thickness : I2”/0 chord 

FIG. I3 First blade (basic) 
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FIG. 14 First blade data for computer program 



1 O-14 1 0.1'44 l-0.036 t 
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0.70 0.096 -0.024 
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Camber: 57*0O _ 

L.E.angle: 50.21 

T.E.angle: 7.6 

Max thickness: 300/o chord 

' 2OC2/57.8 P30 

FIG.15 Second blade 



n A' II B' n 

1 0.~57849704 0.0021347040 

2 o .ooi'6gg6322 0.0254522575 

3 -0.0251959583 0.0050308940 

4 -0.0375511861 0.012w~633 

5 -0.006814785J . -o.o025866gbo 

6 -0.0030278501 0.00601% I 49 

7 -0.0043790720 -0.0049646100 

8 -0.0070671758 0.0035498759 

9 0.0002784733 -0.0028036057 

10 -0.0034384745 -0.0006371556 

11 -o.o00676w+g -0.OCQ744884i 

12 -0.0025005849 -0.0010656833 

13 -0.0002919087 -0.0006284193 

14 -0.0018351806 -0 .OOI 0906628 

15 -0.0002823735 -0.0011130765 

16 ~.000905&339 -0 .0010493745 

17 -0.0003307853 -0.0004044983 

18 -0.0005118550 -0.0009;14503 

19 -0.0008279345 -0.0001602631 

20 -0.0003782335 -O.O0039578w+ 

21 -0.0008702815 -0.0006867121 

22 -0.0003036657 -0.0001593109 

23 -0.0004989425 -0.0006612783 

24 -0.0010186003 -0.0001376830 

25 -0.0000320395 -0.0005206492 

26 -o.ooom?W -0.0004z64968 

27 -0.0001070366 -0.0000228661 

28 -0.0006918023 -0.0003476893 

29 -0.0002231776 0.0000613803 

30 -0.00052836iy~ -0.0002304318 

FIGURE 16 FIRST 30 TERMS OF FOURlXFt COEFFIClEN!l3 

UTER 3rd ITEBATION 

~From Pro~rm 6/7-4) 
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Position 3 
I- 

0 1m59 .w5 26 1.0056 
1 1.0063 A'825 27 1.0066 
2 l.GO60 ,o525 28 l.oo51 
3 ? .0060 .0525 29 1.0057 
4 1.0057 .o225 30 1.~52 
5 1.0058 a0325 31 Loo59 
6 1.0053 -.o175 32 La058 
7 1.0051 -.o375 33 1.0057 
8 1.0052 -.0275 34 1.0054 
9 1.0052 -.0275 35 LO052 

10 1.0057 .0225 36 1.0051 
ll 1.~056 .o175 37 1.0055 
12 1.0055 .oO25 38 1.0057 
13 1.0057 A225 39 1.0056 

UC l&O58 .0325 bo 1.0057 
15 1.0057 a25 w 1.0058 
16 1.0055 SQ25 42 l&C58 

17 1.00% -.oo75 43 I.0057 
18 LOO58 A325 44 1.0058 
19 1.0051 -.0375 45 1.0055 
20 1.0057 .o225 46 1.0052 
21 1.0052 -.0275 47 1.0062 
22 1.~53 -.a75 4.8 1.0077 

23 1.~51 -.o375 49 ~0069 

ut l.W51 -.o375 50 1.0043 
25 1.0061 a625 51 1.0042 

FIWFE 18 ~LNTAGE EUAOR IN RADII (BLkDL 11 
COIIPARXJ 'ifTlX IUDNS OF TRUE CIRCLE 
QV.OK PR~GRAI~ 6/m-4.1) 

30 = l.ocJ5G7~ 

.0125 

.1125 
-a375 

.0225 
-.0275 

.W5 

.o325 

.0225 
-a075 
-.0275 
-.o375 

.0025 

.0225 

.0125 

.o225 

.o325 

.o325 
A225 
A325 
.0025 

-.0275 
0.0725 

A225 
.oY25 

-.1175 
-A.275 
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FIG.21 Typical velocity and 
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curves in circle plane 
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FIG. 22 Typical velocity curve hear L.E.(Prog.6/10-3) 
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FIG. 23 Typical velocity curve near L.E.(Pro9.6/31/40) 
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The solution of a tandem cascade is obtained by The solution of a tandem cascaiie is obtzuned by 
replacing the secondblade by singularities (two in this replacing the second bLade by singda~ties (two in this 
case), and carrying out an exact confomal transfmration case), and carrying out an exact conformal transfonnatlon 
of the first bide by Howell's method. A digital of the first blade by Howell's method. Adigltal 
computer programme which deals with the numerical work of computer progranrme whxh deals with the numerical work of 
the final l&n&-Theodorsent-formation in a newway is the final K&m&-Theodorsen transformation in a newway is 
described. described, 

A.R.C. cs. NO. 971 December, 1965 
YIP, Y. k?. and Failly, J. W. 

I POTENTlALFLOWTENRYFCE2TANDEMCASCADEBYHOVXLL'SMETK 

The solution of a tandem cascade 1s obtained by 
replacug the second blade by singularities (two in this 
case), and carrying out an exact confozmal transformation 
of the first bLa5e b;r %~~11's method. A digital 
computer pmgramme which deals mth the numerical work of 
the final K&f&n-Theodorsen transformation in a new way 1s 
described. 
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