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1. Introduction

As in the case of single cascade, the potential theory of tandem
cascade can be divided inte two main categories, one using the method of
singularities and the other using the method of conformal transformation.
Various workers?»!! have used the method of singularities, but these are
approxamate only. The method of conformal transformation offers the only
exact method. Spraglin 12 has stated rigorously the method of conformal
transformation applied to a tandem cascade. In thais method the two rows of
blades are transformed, through two intermediate stages (namely two rows to
two irregular shapes, then to two circles) to two concentric circles, with two
singularities within the anmulus formed between the circles. The method of
mirror images 1s then employed to solve the flow in the annulus, The main
difficulty arises when the two singular shapes are transformed into two circles,

The method employed here by the authors is not an exact method but
intermediate between the two mentioned above, On the assumptions that the main
blade carries the bulk of the loading and the second blade acts as a flow
def'lector, the emphasis is on the investigation of the loading on the first blade
and the effect on it of circulation of the second blade. Accordingly, the
tandem cascade 1s "separated" into two parts, the first row of blades 1s
transformed into a circle while the second is represented by a singularaty.

The whole transformation 1s based exclusively on Howell's method which 1s
explained in Section 2, Regarding the representation of the singularity,

two studies are included. The first study only takes account of the circulation
effect whach is represented by & vortex, The second study includes, the effect
of blade thickness which i1s represented by a doublet. A numerical example for
the first study is included in this report (Sections 4 and 5).

In applying the transformations by Howell's method, 1t has been the
authors! aim to achieve a completely automatic process by digital computer for
numerical solution from which the pressure distribution can be obtained when the
basic profile is fed in. The main difficulty in using Howell's method arises
1n the transformation from a near circle to an exa?t circle, which 1s carried out
by means of the KArmin-Theodorsen transformation’» In this report, the
numerical method to overcome such difficulties and the programming technique is
described in full detail,

The digital computer program is divided into two parts, wratten in
"Mercury Autocode"'. The farst part deals with the initial transformations and
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requires 3 minutes on Ferranti "Mercury" Computer (can also be run on "Atlas"

or English Electric "KDF 9"), The second part which deals with the final
transformation and pressure distribution requires approxamately 4LO seconds of
computing time, (The actuel time required in computing time plus time taken
for input blocks.) This part can only be accepted by Ferranti "Atlas" computers
in the form in which it has been programmed.

Sections 2 and 3 deal with the theory of transformation, Details of
programming technigues and numerical applications are described in Sections 4
and 5  Two numerical examples are given in Section 6,

2e The Conformal Trangformation

2.1 Potential flow

Y
‘ The problem of the tandem cascade is assumed to be of two-dimensional,
incompressible and inviscid flow. The flow in z-plane satisfies the following:

Cauchy-Riemann eguation:

o oy i
u = — = -—
ox oy
\ ees(2.1)
9¢ oy
V =2 == = =
oy ox N
Potential function: W = ¢ + iy eee(2,2)
Velocity function: w = u = iv. eee{2.3)

2,2 Qutline of the method

The conformal trensformation method employed here is based on the
Howell's method, assuming the chord of the second blade 1s not greater than a
quarter of the combined chord, l.e., Ca < 0°25C. The second blade 1s then
replaced by a singularity at the position of maxamum thickness on its camber
line, Its effect is represented by & vortex either with or without a doublet,
After the substitution, the tandem cascade is reduced to a single cascade with a
row of singularities and can be dealt with as an ordinary cascade (Figs. 1 and 2).

The firast transformation function used is Za1 = tanh z which,
having a period of =, transforms the cascade into an "S" shape (Fige 4).
This transformation introduces two singularities at 1 points in & plane
corresponding to the points at o in the z -plane. Two successive applications
of Joukowski's transformations turn the "S" shape into a near oval and then to a
near circle, In most cases, this near circle can readily be transformed into
a true circle by means of the Theodorsen transformation, The method of images
is used to solve the flow about the circle. The strength of the singularities
do not alter throughout the processes of transformation except for the doublet
which depends on the resultant coefficient of transformation,

2.3 The "tanh" transformation: &1 = :t.:anhzi

This trensformation which meps the first blade having a pitch = ainto
an "S" shaped figure is written as

4/



9224 -1
‘:’- = 000(204)
32& + 1
and 1ts transformation coefficient is
A% .
— 1 = g’.. .--(2.5)
' dzi

As pointed out in the last paragraph, the (%o ,0) points in the
21 -plane are mepped to the (*1,0) points in the % -plane. It can be showm
that singularities here of a definite type correspond to the uniform flow
conditions upstream and downstream of the cascade ms follows: at the (-1,0) point
in the & -plane, the potential function is represented by a source of =Ca
and a vortex (in enti-clockwise direction) of strength ~Ww . Similarly, at
the (1,0) point in the % -plane, the potential function is represented by a
source of strength =Ca and a2 vortex (in clockwise direction) of strength =Wuae
In addition, the cireulation =(Wu, = Wuya) remains unchanged around the
configuration. '

Regarding the representation of the second blade, its location must
be determined before the transformation, The vortex is of strength 7ky where
ks 1is an arbitrary value. The strength of the doublet is determined graphically

P )
and represented by V(a e R aq_em). The meanings of the symbols of this
expression can be found in Fig. 3.

For different relative positions of the second blade, different
positions for the singulerity must be predetermined,

2.4 The Joukowski transformation

ci

Ya = &Za +— ‘

Za
J(%T+ ca ees (2.6)

: “(3)

where o©p 1is defined as a quarter of the distance joining the centres of
curvature at leading and trailing edges, This will produce & near oval shape,
The third transformation is similexr to the above one,

RSN P

where Za is now the quarter distance between the centres of curvature of the
configuration by the major axis.

1+

Before performing these transformations, suitable axes of the
configuration have to be obtained (see Figs, 4 and 5).

The/
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»

The transformation coefficients are:=-

dZa -
= tto(zda)
dze 8 ~d
% a
and = . t.l(2'9)
dzoe 5 -3

2,5 The KArmin-Theodorsen transformation

The approximate ocircle is transformed to a true circle by means of
this well-known transformation of

24 An + iBn
10g-23‘- L ;‘n tt.(2l10)
where zq (neaxr circle) = aex+i¢ vee(2,11)
and % (exact circle) = aeq”ie ves (2.12)

The areas in both planes are assumed tc; be the same, From
equations (2.11) and (2,12)

n
AW ai-0) = ) (i)

1
Separating real and imaginsry parts

cog n® = igin nd
‘l’)n

(ae

A = A-V¥ = i‘ (a—:\F)n (Ahco:sneq-aninne) ves(2,13)
1

n n
and € ¥ -0 = z‘ (:&) (}3n cos ne-Ahsin M), eao (2014}
Prom (2,13) the following Po1ur1er series equations can be deduced:=
1 2%
v, = =) A 40 ves(2.15)
An 1 p2%
A= m = -;fo 7\0 cos 1o vee(2s16)
B! = _a_ 1f2ﬂ1 sin ndad. ves (2,17)
n (ae‘%)n xdo °

Suffix o denotes the values in the original 2z¢ plane. Aassuming
® 1s very near to ¢, ll!o Al'1 and, Bl'1 can easily be found., The disadventages

of/
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of this assumption will be discussed more fully in Section 5. It may be noted
that the Yo will be zero if the area of the neer and exact circles are equal,

For singularities ¥ can be found from

n ny enl[lo

e ¢
A=V = E (Aﬁﬂcosne*']a;x-e—m!}- sinne) ees (2,138)
1

by iterating V¥ until both sides of the equation become equal, Then the
angular difference can he obtained from

n Vo emlro
ﬁ—e = Z (B;l en GOBIIﬁ*A;lFF sinn@). t-o(201lla)

1

From equations (2.11) and (2.12) the expression for the velocity
coefficient can be developed. Rewriting the equations:

Z4 a_ek+i¢ sas (2-11)

L = ae? 19 e (2,12}
+ % Za 1 - (ds/a¢)

Hence —_— = .3 . veo(2:18)
dz 24 v1 + (an/ag)*

Assuming ¢ is small so that the squares and higher powers of de/d¢ and drn/d¢
can be neglected, Howell argues that

n
dZs
-(-1-; = 14 E\ [(1:1—1)1&1'1 cos 8 + (n—1)Br'l sin nGO]. eve(2.19)

1
3 Preasure Distribution

3.1 Velocity on circle

The velocity on the aerofoil points can easily be calculated on the
cirole using the method of images (Fig. 7)e Referring to Howell's paper, it can
be summarised as followsi

~1ot im, g
u = f£C_ + gWu + hfu + jk + £W a'e Mt - ye ”". —
1 » 1 21
do
B
v
or — = £ +gta + hta + J& + Lotas - ves(3e1)

C
a

where/



1 1 1 1 1
where £ = Im part of — + - -
x| 1 -me¥t 1 i - meP? 1
1——'—3181 1_—ejﬁ'
-1 1 1 T
g = Im part of — -
2r ‘l--m:_ej"s.1 1
i - 2B
L T -
1 [ 4 1 7
h = Impart of = -
2r 1-m,-.ej‘e’ 1
s 1 =— ¥
S nh -
1 [ 1 1
J = Impart of — | 1 + -
o 1w mets 1
1___3163
- m
B -
4 _817\ ai?t ax
£ = Im part of + « [ ™
oxe | (1 - me) 1 4 : az
a2 )] E
N 1]
¢ = modulus of (a’e_i“"' —adei“"‘).

It can be seen that there are three unknowns in equation (3,1) which
i1s solved in two steps. Firstly, by neglecting the effect of the second blade,
the outlet angle and velocity ags and Wyus: can be found by satiafying the
Joukowski hypothesis that the velocity at the first trailing edge is zero.

Rewriting equation (3.1) we have
f + gta. + htjj, = 0, ouo(scz)

Thus the coefficlient which introduced the doublet effect of the
second blade can be then calculated,

The second step is to assume an arbitrary «s for the corresponding
#3 3 this will lmpose a certain E:, the atrength of the vortex. Consequently,
the ratic of circulation can be evaluated in relation to the lift coefficient
of the first blade.

In the case where the thickness effect is neglected, the last term
in equation (3.1) becomes zero. Then k; ocan be caloulated by assuming «a.

1

3.2 Pressure distribution

The velocity on this profile is found from the relation

az,
dz

vprofile = vcircle X

where/




ax g dZa a7
where — = i Y —— * seess ¢ = ] 000(303)
de dz dza dms
. v vy C 1 Vr cos &2
Hence —_— o ——— = == . eve{3ek)
Vi Ga wr Ga r

Therefore, the pressure distribution around the aerofoil will be

P - D v
p = 1 Lo ( —— ) - ane (30 5)
PV Va -
3e3 Lift coefficient of the second blade .

The veloclty of the substantial singularity is calculated from an
expression similar to equation (3.1) with modified 3 end ¢ terms to exclude
the singularity effect generated by itasself. The modifled terms are

i 1
J' = Impart of - |1 =
2rr 1 .
_ejﬁa
o
1 o~
4' = Im part of x .

2nr 1 ?
mg ( 1 = eiﬁ")
mg
Therefore the complete velocity expression for this asingularity
point is
v

— =L+ gtﬂ- + hfﬁ + j'-ﬁi + &’0"3’1. 000(506)

c
a8

Hence the 1ift can be found from

In = pV K 000(3'7)
e Numerical Applications, Part 1 '

Various research workers have attempted to molve this series of
transformation by different techniques, Carter and Hughesz carried out their
investigations by hand caloulations, choosing 12 aerofoil points., Recently
Pollard and Wordsworth!O used the "Deuce" digital computer to compute the
transformations,. 1In the latter method, each transformation had to be computed.
separately,

The/
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The aim herein is to provide firstly a satisfactory way to handle the
transformations sutomatically, secondly a method which will give better
approximations, All refinements are described under separate headings. Due to
the limitation of the use of computer facilities, the complete Howell's method
is divided into two parts, Program I covers the initial transformations up to
the last of Joukowski transformation, Part II completes the final or Theodorsen
transformation and pressure dlstribution. The two programs were written
primarily for development and therefore some instructions in the present form are
redundant for production. These instructions are, however, very useful for
checking at intermediate stages should 1t be required. The input index "R"
governs such a process,

Le1 Progrem 1

4e1se1 Input data

Data required for the program are the number of aerofoil points, total
number of points for computation, stagger, relative position of the origin in
z4 plane (about 404 chord), chord length, pitch to chord ratio and finally x and
y co-ordinates of the aerofoil points.

The locations of the (%o, 0) points are not required but since we
know that after the first trensformetion they will fall on (1, 0) therefore
only the latter are fed in, In regard to the number and locations of
subatitutional singularities for each stagger, these must be decided graphically
and the co-ordinates should be included in the data,

be1.2 "tanh" transformetion (Chapter O of programme)

Before the'transformation, the aerofoil points are translated to the
new axes and rotated to the corresponding stagger. At the same time, all
co-ordinates are referred to the correct pliteh to chord ratic with a pitch =
The computation of transformation and velocity coefficients follows, taeking the
-form of:-

e2z'1-1
b = ———
92Z1+1
. d%y
and — 1 = 1 -2
\ dzs

The calculation of the points (1, 0) is excluded in order to avoid
overflowing the capacity of the computer,

Then the centre of curvature of the leading edge 1s calculated while
that for the trailing edge is of course the trailling edge itself, The
co~ordinates in the &-plane are transferred to the za-plane, The value of
ca 1is also calculated.

41.3/
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bele3 Joukowski transformation (Chapter 1)

This traneformation takes the form of

L = (%):J(%j _ cee(246)

E

and

%3
——— {o ...(2.8)
4 -cj

It 18 essential that the signs in equation (2,6) be taken correctly.
In order to obtain a contimious loop, the positive and negative slgns are used for
the suction and pressure surfaces respectively, The choice of sign for the
singularities follow the mign of yg3 of the point considered. The result of the
second transformation is a near oval shape,

The firat part of Chapter 2 of the progremme locates the major axls of
the ellipse by comparing the lines joining all’ the co~ordinates, The first step
is to find the points which give the longest distance between them.  The centre
of curvature are located by assuming e circular arc passing through two pojnts
adjacent to each of these two points, The line joining the centres of curvature
gives the xg=~axis in the zz-plane and the centre between them the origin, The
value cs 318 a guarter of the distance between these two centres,

About this origin, the near oval 1s translated and rotated. The

calculation 1s directed to jump back to Chapter 1 of the program to perform the‘
second Joukowskl's transformation, namely:-

a - (2)2f(2) v (2a7)

Idz;n | & |
—_ ——,
|8 - i

The cholce of sign presents no difficulty this time, The plus or
minug sign follows that of the y—co~ordinates of the point concermed.

I+

and .oo(2¢9)

The program ends at this stage, and it requirea three minutes on the
"Meroury" computer if the output is limited to the third transformation, Fig, 8
shows the block diagram of this program.

beted Resulis

The print-ocut of the results is given in the following form:-

Co-ordinateas after the firat transformation and its
coefficients

Value of ¢4

Co-ordinates/



-1 =
Co-ordinates after the second transformation and product
of coefficients
Velue of €3
_ Number of points around aerofoil
. Total number of points invelved

Co~ordinate after third transformetion and product of
coefficients,

It 1s designed so that the results (of the third transformation) may be
fed straight into Program 2. Results of any individual trensformation.may be
plotted, using the output tape, by the Friden, a suiteble automatic plotter.

5.  Numerdical Application, Part 2

5.1 . PI‘OEE 2

This program deals with the final transformation and pressure
distribution on the blade surface.

The importance of the pumerical application of the Theodorsen
transformation need not.be overemphasised, In fact, the Howell's method hinges
on the puccessful evaluations of this transformation and its coefficients.

The method uged in this report diff‘ers distinctly from thosg adapted by
Carter and Hug,hes , Pollard and Wordsworth?0 Thwaltes“'- and Naiman(» Fourier
coefficients are calculated, using input ae:mfo:n.l points, by ana.'l.ytical integration,
The usual assumption of ¢ = © is eliminated by a process of iteration.
Finally, the numerical differentiation is carried out by a specially developed
ocurve fitting programme for five points, two on each side of the point concermed.

be2, Theodorsen tranaformation

The equations for the Theodorsen transformation may be summarised as
féllows:-

zs (near circle) = aeh+i¢ eee(5el)
z‘ (tmﬂ C:er].e) = ﬂ.e‘y*‘ie o ees (5t 2)
i\ 1 n ( )
A = - = 5] B, in nf see(De3
¥ = 1 <-;.‘F ) (An cos n0 + 8 )
' n n
‘e B ¢ - = z ( ) (B cos nB ~ A, sin nd) ess (Sels)
ae
1
1 2%

v, = _f x g9 eee(545)

&/
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An 1 ;2%
A' = —r——— = —
N (aeqro)n - ’[O A, cos nb &0 see (Beb)
Bn 1 r2n
B! =z o m - )k ill 6 deo s L]
n (ae‘yo)n = jo o #HE (5.7)

Various attempts have been made by others to determine the Fouriler
coefficients in these equations, The main assumption made jis that ¢ can be
used for © in evaluating A} and B!. Carter and Hughes“ suggest
using three terms with eight values of A &t equal intervals of the argument.
Naiman7s8 introduces the use of harmonic analysis to solve equation (5.4).
i'lawaites14, making use of Watson's formulae!d uses a matrix method to solve the
equationss  All these methods state that absolute convergence of the Fourier
series can be obtained, But the drawbacks are firstly that difficulties arise
in copying with the irregularities in shape on the near circle. Secondly, equal
intervals of ¢ (instead of @) must be used, whilst the validity of the
apsumption ¢ =~ O 1s questionable, The convergence of the Fourier series
depends on whether the curve possesses any shape irregularity. In an ordinary
cascade, a "bump" at the leading-edge point has o predominant effect on the 10
convergence of the series. To by-pass this effect, Pollard and Wordsworth
leave this point out throughout the entire calculation of the series. The
questions lef't to be answered are: what happens if there is more than one
dominating irregularity and what effect has the "left-out™ calculation on the
other profile points. With an unusual profile which is most likely for a tandem
cascade such as the one used in this report, it is possible that errors may result,

To counter the above-mentioned difficulties, the following method is
used:=~

(a.) Calculation of the Fourier series coefficients by analytical
integration instead of summation,

(b) Use of the original aserofoil points throughout (this is to
avoid using an interpolation method).

(¢) Elimination of the assumption of ¢ = 8 by a process of
iteration.

5+2.1 Evaluation of Vg,

The sequence of input data is:=
The number of aerofoil points,
Total number of points including singularities.

Co-ordinates in the sequence of mmber, x-co-ordinate,
y=co-ordinates and product of transformetion coefficients.

With the help of the plot-out of the last Joukowski transformation,
a new origin nearest to the "centre" of the near circle may be easily selected.

-

Assuming that the areas of the near and true circles are equal, the
radius of the base circle can best be found by taking the average value of the
radii: thus

a/



8 = -;- E A | een(5e8)

The value of V¥, may be found from:-

P
L ’ (0(pet) - 8(p-3)]
W = — A4dD = — Z A P+z} — rz see 5.9
° 2R o ° 2r y ° ( )

where p = number of aerofoil points,

5e2.,2 Fourier coefficlents

The integrals in the equations for A;n and 131'1 represent the areaa
under the 7\0 cos nd and 7\0 sin n0 curveas respectively. It is possible to
write approximately,

1 2% 1
Alfl o -;j )‘o coemd P = -— Z )nk cos nﬁk aek sse(5410)
o x
ke
1 2K 1 P
BI']. = —f 10 Bin nﬁ dﬁ g - Z N( ain nek 661(' 000(5-11)
* o v

However, these expressions and hence the coefficients, become increasingly
unreliable as n increases beyond one eighth of the number, p, describing the
near circle,

The method described in thils report proceeds as follows, With a
sufficlent number of aerofoll points (48 proved to be satisfactory) desoribing
the near circle, it may be assumed that A 1s a linear function of © between
ad jacent points. Hence

1} 2%

A= - j (mO+c) cos nd A0 eee(5.12)
bd o .
1 2%

B' & - j (mB+c) sin nO a0 vee(5.13)

n x do

where m and ¢ are constants pertaining to a short straight line joining
adjacent points, Dividing the A - 0 diagram into small strips, it may be
shown that after carrying out the above integration mnalytically, the coefficlents
are given by:-

A;l/
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5

1 P
AI.I = ;; Z (mk - mk+1) oos n@k P (5.129-)
k =1 ‘
9 D
B;l = -n—l: Z (mk - mk+1) gin nﬁk 100(50138')‘
k=1

where my = slope between polnts k and k#iy if m 1is less than or
equal to unity, the series converges rapidly,

The value of © 1is first assumed to be equal t0 ¢ (near circle);
after caleulating A! and B!, ¢ may be evaluated from equation (5eh)e If
s denotes this first set of values then the new set of values of © will be

k3

L]

G’i = ¢ - ‘1‘.

The value of 9:1 is then used to recaloulate the Pourier coeffiolents
and hence es. With three iterations, and using 100 terms for each of the
coefficlents, a final set of values of &* 1s produced. Purther iteretion may
cause a change of 0*0002 degrees at some points (see examples 1 and 2),

Chapters O and 1 of Program IT contain the above caloulations,

5¢2s3 Coefficlents of the last transfoarmation

The second difficulty 1s the ocalculation of the velocity coefficients
of the finel transformation which, in exact form is:-

it |
g—i = . ::' . oo (501k)
)]

%
%

Howell demonstrates that if the second and higher powers of the
differentials of e and A with respect to ¢ may be neglected, the modulua

will be given byi-

ax

d=

T i [(n=1) A! cos @ = (n-1) B! sin ], ves (5615)

The reliability of this equation depends on itwo factors. The
governing one ls the rapldity of convergence of the Fourler coefficients,
Although equations (5.12a) and (5.13a) always converge, a rapid rate of
convergence is obtained only at the begimming of the series, Differentiation

of/
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of the series therefore is highly unreliable5 « Secondly, the large number of

Fourier coefficients used to accommodate irregularities becomé increasingly

unstable for numerical differentiation, perversely, over the smooth part of the
e-¢ and A¢ ocurve,

The best course appears 4o be to carry out the differentiation after
fitting a polynomial function to the set of values of & and M\, then values of
de/d$¢ and d\/d$ are obtained by ordinary differentietions, In the method
described, curve fitting is applied to groups of five points.

5:244 Five point curve fitting

The three ways that would be chosen to fit a ourve to five points are
by the use of fourth order, third order least square and second order least square
polynomials, Fig., 10 shows half of the fifty-four possible ways & curve may be
drawn through the five points, These exclude the cases with continuous gradients,
For any point that may be considered, two adjacent points on each side are used in
the procesa of curve fitting,.

From these sketches, it may be seen that none of the above methods can
be applied to all points, Therefore, tests must be carried out first to decide
which method has to be used for each individual point, Straight lines are drawn
between successive points and their gradients determined, The gradients are then
compared with each other to find out to which group the five points might belong
(esge, group 1, Fig, 10). For some groups (e.g., group 1) these points have to
be rotated and the same tests re-applied, - When the order of the curve has been
decided, the gradient may easily be found.

An exsmple of the A\~curve for example 1 (Section 6,1) is shown in
Fig., 11. The curves fitted to each particular point are shown in Figs., 124, B,
C, D, and E, Chapter 2 of the program deals with curve fitting and the derivatite
of the curve. Chapter 3 completes the calculation of the coefficients of the
Theodorsen transformation, With slight modification Chapter 2 may be used quite
eeparately for five point ourve fitting purposes,

5e2¢5 Bingularities

Chapter 4 of the program obtains the values of € and V¥  for each of
the singularity pointa. Rewriting equations (2,13a) and (2.14a)

n enlp'o en“l"o
A - w’ = E A;l E]-T cos n9 + Bl!l. ean gin © 000(5016)
L
k-1
n B en\p'o en‘lfo '
¢ -0 = X L BI"I Flr cos nd - AI;. enlb' gin nB --0(501?)
k = 1 ,

Thirty terms of AI'1 and ]31'1 are used, The process consists of a

double iteration, Commencing with the assumption ¢ = 6, equation (5.16) is
used to eveluate ¥ by successive approximation.. When the values of ¢ for
each singularity have converged, they are substituted into equation (5.17) to

obtain/



- 16 -

obtain O, whereupon V¥ is recalculated. The process is repeated until
$ - € 4is lesgs than 0-001,

For the transformation coefficients the original method has to be
employed since neither d\/d¢ nor d8/d¢ may be obtained by curve fitting in
this case. The relevant equation is:

% - |
;; = 1 + E’ [(n—-‘l) Al:l cog pb =~ (n—-‘l) BI'I sin ne]n 00-(5018)

1
53 Velocity and pressure distribution

The final chapter of the program calculates the pressure distribution
around the aerofoil using formulse listed in Section 3, In this program, seven
values of inlet angles (#1) are used, from 4O to 70'with 5 degrees interval, '
"These values can of course be changed, It 1s also necessary to submit a serles
of values of the outlet angle «a., This enables the computer to calculate the
values of the strength of the substitutional vortex and its proportional
circulation, '

543.1 Results
The results are printed out in block form, giving first the value of
® , o3, oy -~ ag and tan &1 - tan g, The dimensionless presaure around the

profile la then given and is followed by the ratio of circulation,

Should resulta of the curve fitting part be required correct use of
the governing values "B" and "M" in Chapter 2 would direct the print-out.

A Block disgram for this program is given in Fig. 7.
Time required on Atlas for this program is approximately two minutes,

the main proportion of which is consumed by storage. Only two seconds is 1
required to perform one pressure distribution, -

6« Results and Discussion

6.1 Example {1 = Tandem cascade )

The tandem blade arrangement consists basically of a NACA 23012 profile
with a particular slot arrangement which was found (Ref, 16, type 2-h) to be most
satisfactory as a high-lift device for an isolated aerofoil, The unslotted main
blade is designed with 20° camber and 12% thick, Full particulars of the first
blade is shown in Fig. 13 Pata of the 52 aerofoil points fed in the program
are listed in Fig. 14

To fi11 up the cut away portion, a 20C2/A7.8P30 blade is used (Fig. 15).

Thus "flap" positions, one without and the other with 10 and 20°
deflections, are used., 'The outlet angles are assumed to follow the camber Iline,
i.e., without deviation, The stagger used in this exasmple ia 40°,

Figs. 4, 5 and 6 show the results from first, second and final
transformation. ¥ig., 16 listed the first 30 terms of the 100 Fourier coefficlents

1
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alter the third iteration. It can be seen from Fig. 17 that there is little
difference in € Dbetween the results after the third and the fourth iteration.
It was therefore decided that three iterations should be used throughout,
In order to prove that the Fourier coefficients are sufficiently
accurate, they are used to recalculate the velue of V¥ (ae¥0 is the radius of
true circle) which should be constant for all aerofoil points. As shown in Fig, 18,
the errors involved are between — 0°1275% and + 0*1125%. In most cases, they
are within * 0°05% accurate. v

In Pig. 12, it has been shown that the curve fitting program manages
extremely well, A further check on 1ts results can be obtained from the curve
liz/az| overall in Pig, 19.

As explained in the previous section, only the circulation effect is
included in this report. Tig., 20 shows the pressure distribution curves for
three positions of the second blade: (a) without second blade effect,

(b) position equivalent to 10° deflection, and (c) position equivalent to 20°

' deflection. As can be seen, the areas under the curves increase considerably
with the effect of increasing circulation. This effect produced by the second
blade is as expected.

The curves, however, exhibit a somewhat unexpected undulation, Its
unsmoothness is more pronounced on the suction surface. Purther investigation
shows this feature is rxather 'naturel' thoughit may not be so pronounced in reality.

The variation of the velocity on the circle in the final transformation
is governed by a set of singwlarities, A typical wvelocity curve for a circle
with such effects 1s plotted in Fig., 21. Assuming the trailing edge is at
6 = 0° and the leading edge is at 190°, the velocity curve belongs to a
fourth order polynomial. In the seme graph, a typical d%/dz curve (of the
third order type) is also plotted. Since the product of these two curves is
the final velocity, this resultant must be of a seventh order polynomial curve.

' Another extreordinary feature of this resultant velocity curve is that
it is extremely sensitive to errors in the dz/dz curve. Figs. 22 and 23 show
the basic calculation by two different methods,. The former uses 100 terms of
Fourier series and exact d%/dz method as described in the previous section.
The latter employs only 10 terms of Fourier coefficients and a general five
point, fourth order curve fitting process for az/dz. These curves in both
figures look extremely close with only 1 to 2% difference at some points, yet
the VAs curves wave in opposite directions. The two V/Vi curves are shown
superimposed in Fig., 22,

6.2 Example 2

This example shows a comparison of the present method and the
experimental results from Carter and Hughes? of the profile 1102/33P40, Instead
of using 12 points as in that report, 46 points are employed. One hundred
terms of Fourier coefficients are used.

Fig., 24 shows the pressure distribution round the profile. The same
characteristic, i.e.,, very rugged curve, again exists,

Two/
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Iwo interesting resulits are observed from this calculation. For
100 terms of Fourier series, the first 30 terms converge very rapidly. Within
30 terms, the magnitude is reduced b0 about 100th of the largest terms The other
feature is that the assumption of ©4 = ¢¢ is found to be very fair (at least
for this profile)s The values between the first and the second iteration are
within 0*2° and the second and third within 0+03°,

The results obtained compare favourably on the suction surface but not
on the pressure surface, The difference between the deviation ia nearly 2°
between the theoretical and experimental values,

6.3 Conclusion

The method developed in this report would seem to be the best way to
perform the Howell method and the Theodorsen transformation satisfactorily,

especially with irregular profiles, The advantages are that it does not require
any form of interpolation and that it is fully automatic.

Ta Notation

An’ ]3n Fourier coefficients

A1'1’ BI'1 Fourier coefficients

a, 84 see Fig. 33 also in the expression aelo
o modulus of (sPe 2% - g, ¢2%%)

Cz,y Ca constants for Joukowski tmnsfoﬁnation
Ca. axial velocity

see equation (3.1)

g see equation (3.1I)
h see equation (3.1)
i =)
hi see equation (3.,1)
k see equation (3,1)

ki y ks strength of doublet

J Ka circulation of second blade
< see equation (3,1)
m ,l ms , I3 ratio of radius of 1o and singularity points
r radius of circle -
t:." tgs tay tangent of air angles (inlet, ocutlet, inlet of second blade)

u velocity in x-direction

v/
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v velocity in y—direction

v local velocity
Va velocity at inlet

w complex velocity in =z~plane

w complex potential function

W, Wug whirl velocity at inlet and outlet
x co~ordinate in z-plane
y co-ordinate in z-plane
oy, Gg air inlet and outlet angle
L2 TY air outlet angle of the first blade

Bz, Ba, PBa relative angle of singularity (see Fig. 7)

A A=
€ ¢ -0
A polar co—ordinate in =z« plane, also direction of

doublet (see Fig, 7)

¢ rolar co-ordinate in 2z, plane, alsc velocity
potential function

¥ polar co-ordinate in Zs«-plane, also stream function
5] polar co—ordinate in Z4-plane
4 stagger, also transfarmed plane
Suffices
o referring to points in =z¢ plane
1 first tranaformation
] second transformation
3 third transformation
4 fourth tranaformation
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FIG. 3 Substitutional singularity




FIG. 4. First transtormation,l = 40°




FIG. 5

2nd transformation, = 40°
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Data Change to Caleulate ¢ for
near — > polar | aerofoil points —
circle co-ordinates calculate ¥,
-
w=3
e
Wl Calfculate F.S. A, and B, c | w=4 Curve fitting
= aicutate -
6,= ¢ I de  dn H
8, = ¢-¢ €=¢-6 cal. a¢ * ap
93 = ¢—€g

Velocity
d{

coe ff. |__.|
dz

overall

]

€ # constant

—”'— New chapter

LH#ERH.
Singularities '

Ay = Ty e €m0 H
Equation 5.16)

Velocity and

FIG 9

pressure distribution|

Block diagram for program 2
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xJc |0 [001[002]0-04|0:07{010]0-15]0-20]0-25/0-30{0-40(0-50 {0-60|0-70{0-80[0-90}0-95 [1-00
Yle upper| 0 0-026/00340046/0058/0-065/0-0800 088/0-092{0-094/0-0940 092/0-081 |0-069]0:050}0-@9[0 036} © |
e tower | 0 [0-013(0-019]3-023(6-029/5-030(3-030/F 02v6{G0e 9{6-028]5-0236-01813-01 30-010{5-008l3-002]7001] 0
Cut away
i portion
0-4 0-5 0-6 ;\}\
' : 0-7 0-8 0-9 -0
Basic profile : 23012
Camber: parabolic arc 20°
L.E.angle : 13° 56
T.E.angle : 6° 4’
Max.thickness : 12%0 chord
C FIG.13

First blade

(basic)




Position]  x Y [Position]  x y IPositio]  x y

0 0828|0044 | 20 |0:150 (0080} 40 |[0-270 [F0029

0-790 |0-052 [ 21 |O-110 |0-070! 41 | 03000028

0-750 (0060 | 22 |0-070 {0-058] 42 |0-350~0-0@5

0-700 (0069 | 23 [0-050)|0-050] 43 | 04000022

0-660{0:073 | 24 |0-030|0-040| 44 |0450(-0-020

0-620{0-079 | 25 |0-010|0-026]| 45 [0:500[~00I8

0-550i0-088} 27 0 0 47 | 0-665{-0-01l

0-530/0-090| 28 |0-010 0013 | 48 |0-710|-0<001I

|
2
3
4
5
6 [0580[0-084| 26 [0:005]/0-018| 46 .| 0-600|-0014
7
8
9

0-500|0-092] 29 |0-0200-019| 49 |0-740| 0-022

10 10-480/0-094| 30 [0-040[0-023| .50 |0-770| 0-037

Il |0-450{0-095| 31 [0:0550-027| 5! |0-800| 0-044

12 |0420{0-096| 32 [0-070-0.029] 52

13 10400/0-097 | 33 |0-090[-0-030
14 |0-370/0-098 | 34 |0-110}-0-030
15 {0-330/0-097| 35 |0-13010-030
6 10-290/0-094| 36 [0-150/-0-030
17 10-250{0-092 ] 37 |0-180 {0-030
18 [0-220/0-090; 38 j0-210 ;-0-030
19 |0-180/0-083] 39 10.240 |-0 0295

50

FIG, 14 First blade data for computer program




X Yupper |Ylower
0 0-056 0
0-02 0-082 {-0-016
0-04 0:-100 |-0-022
0-08 0-122 [-0-032
0-14 0-144 [-0-036
0-20 | 0156 [-0-040
0-30 | 0160 |-0-040
0-40 0-156 [-0-036
0:-50 0-140 |-0-032
0-60 0-120 |-0-028
0-70 | 0-096 |-0-024
0-80 | 0-068 |-0-020
0-90 | 0-036 |1-0-008
}- 00 0 0

L )

Camber: 57-8°
L.E.angle: 50-2:
T.E.aongle: T-6

Max thickness: 30% chord

}

FIG.IS

20C2/57-8 P30

Second blade




n A B
1 0.,0057849704 0.0021 347040
2 0.0076996322 0.0254522575
3 -0.0251959583 0.0050308940
I -0,0375511861 0.,0124040633
5 -0,00681 47800 -0.0025866940
6 -0,0030278501 0.0060191149
7 -0,0043790720 -0,0049646400
8 -0,0070671758 0.0035498759
9 0.0002784733 -0.0028036057
10 -0.003438L745 -0.0006371556
11 -0.0006769249 ~0,0007448844
12 -0,0025005849 -0.0010656833
13 ~0,0002919087 ~0,0006284493
14 -0,0018351806 -0.0010906628
15 -0,0002823735 -0,0011130765
16 -0,.0009054839 -0.0010493745
17 -0.0003307853 -0,0004044983
18 -0.0005118550 -0 .0009'1 14503
19 -0,0008279345 ~0,0001 602631
20 -0,.0003782335 -0,0003957844
24 ~0.0008702815 -0,00068671 24
22 -0.0003036657 -0.0001 593109
23 -0,0004989425 -0,0006612783
24 -0.00101 86003 -0,0001 376830
25 -0.0000320395 -0,0005206492
26 -0,0007032967 -0,0004264968
27 -0,0001070366 -0.0000228664
28 -0.0006918023 -0,0003476893
29 -0.,0002231776 0.000061 3803
30 ~0,0005283679 ~0.0002304348
FIGURE 16 PIRST 30 TERMS OF FOURIER COEFFICIENTS

AFTER 3rd ITERATION

(From Program 6/7-1)




T —— e & et e
Position Itgtn Itl;rt:tn Position Itg-;gtn Itle"rt:tf Position i—zgratn nzé:itn
0 .0980 L0979 20 0203 0203 40 “-.0088 0088
1 0191 L0191 21 0313  ,0313 AL ~,0087 -,0086
2 0561 0559 | 22 «OL 5k #0454 42 -,0282 ~,0281
3 L0019 L0019 23 .0532  ,0532 43 -.0372 -,0370
4 - 0415 0416 | 24 .0585 .0585 4 -.0382 —,0380
5 -.0715 =~,0715 25 0519 0519 45 -,0331 ~-.0329
6 0750 -,0751 26 LOL25 L0425 46 -.0137 -,0133
7 ~.0612 ~,0613 27 L0l L0113 47 ~-.0014  ~,0007
8 -0271 -,0271 28 -0121 -0 48 0032 0042
| 9 L0032 L0032 29 - 0L9  ~,0149 49 OL31  LO0L45
10 » 014, «0143 30 ~0175 =,0175 50 039 «0360
11 JLO17% Noily N b33 -.0210 -,0210 51 0634 0632
12 L0169 L0169 32 -.0332 ~,0332
13 0139 20139 33 -.0520 ~,0420
ps »0060 0060 3 -.0356 —,0355
15 -.0032 -,0032 35 -.016 -,0146
16 - ~. 0046 36 O17 0117
17 -, 0001  ~,000% 37 LO346 L0347
18 0035 . 003 38 0359 0360
19 0125 0124 39 L0247 L0248 J
FIGURE 1 COMPARISON COF & RETWERN 3rd AND Lth ITERATION

{Besults from Program 6/7-4)



pr——

Position o % error Position of % error
0 1,0059 0425 26 1.0056 0125
1 1.,0063 0825 27 1.0066 1125
2 1,0060 .0525 28 1.0051 | -.0375
3 7 ,0060 .0525 29 1.0057 .0225
4 1,0057 ,0225 30 1.0052 | -.0275
5 1,0058 0325 31 1.0059 0425
6 1,0053 | -.0175 ¢ 32 1.0058 ,0325
7 1.0051 -.0375 | 33 1.0057 .0225
8 1,0052 | =-,0275 3% 1,005 | -.0075
9 1.0052 -.0275 35 1.0052 ~.0275

10 1.0057 0225 36 1.0051 | -.0375
11 1,0056 0175 37 1.0055 .0025
12 1,0055 ,0025 38 1.0057 0225
13 1.0057 0225 39 1,0056 .0125
U 1,0058 0325 | 40 1.0057 .0225
15 1,0057 .0225 A 1.0058 .0325
16 1,0055 .0025 42 1,0058 .0325
17 1,005, -, 0075 43 1.0057 .0225
18 1,0058 0325 W 1,0058 .0325
19 1,0051 | =.0375 45 1.0055 .0025
20 1.0057 1 .0225 L6 1.0052 - 0275
21 1.0052 | ~.0275 L7 1,0062 | 0.0725
22 1,0053 | -.0175 L8 1.0077 .1225
23 1,0051 -.0375 49 1,0069% .0925
2l 1,0050 | =.0375 50 10043 | -1175
25 | 1.0061 0625 51 1,002 | -.1275
" FIGURE PECINTAGE ER20R T _RADIT (BLADE I)

COIPARTD WITH RADIUS OF TRUE CIRCLE
{FROF PROGRAIL 6/10-4.1)

0*0 = 1,0054.75







1-6

*
| ]
1
i
\
=)
\
1
1.,.0‘ |
\ -
.‘\. Pressure side Suction side
1.2 o /
d( b\\ ‘/.-.\ . /
dz loverall o Q
i
-
4
i
\
\

A (4 \‘
* :, \.\
0-8 .
\\ s
A -
\
R \
! & N
0'4 L— \Q .’y \.\
"'.--.-." \.\
I o
~ —e— ..u-....‘.-.,
| { i [ |
0 0-2 0-4 0-6 0-8 1-0
X/¢

tor Exampie |

d
FIG.19 |_€
—ldz




Flap position

e No deflection
x 10° detlection
s 20% detlection

-0 X/

L

FIG.20 Pressure distribution

L =40° o<|=50°




o

Dimensionless velocity

|
-—

1
\
Suction side \

Pressure side

FIG.

16—
\

\ -2

\\ lﬂ

\ dz
\ al
\\ 0-8
\ //

\ /
AN _ 7 04—
[ | | I | 0
100° 200° 300°

Velocity

a
dz

. . d/
21 Typical velocity and |d_£|

curves in circle plane




14—

-2

V.

v

1-0p~

4-_

A \ / |9
' // \
._ ! 10
3 v - \ o6
N

ﬂ /‘ ’
Cq Vs i, / \

2 |— 0\ Cq , \ —0-4

...'{'\'.._.._-/ \
\
\
P — \ —0-2
\
\

0 l | 1 I 1 0
140 150 160 170 180 190 200

[32 refer to final plane ((4)

A}

FIG. 22 Typical velocity curve hear L.E.(Prog.6ll0-3)




| -4 }—
\'4
v A
v, vi
-2
10 | =10
.
4 - (] —0-8
,d—(l // \ ¢
dz \>/' \\ /
”
3 / \ . —0-6
7’ d{
\/ : / |dz
v 7N \
‘-"c:2 A \\ v // \ 0-4
"‘ \‘Co \ o
0. s” \
\
VL N\ oz
\
\
\
0 1 l | l l 0
140 150 160 170 180 190 200
ﬁz refer to final plonc((4)
FIG.23 Typical velocity curve near L.E.(Prog.6/3ll40)




i 8

Theoretical | 45 | 4:99
Expt(Ref 2)| 45 | 69
(
0
. Stagger 241
o! 46-9°
B a' |3'9°
xO ;
\ slc 0'94
x.x_xé\ Expt. ©o o
x,
i \o
x\
H,
0-2 0'4\0 0-6 08 10
‘U x
| [ e | | | e
-
’b"‘o
"\,‘?xo
“~
| o © O 0O © o O d‘-x-—x\x\
o ,‘—-?&-x-x—x-x-"-'"“‘"_"_""— Kf_x.“""“"'"""‘k
vl

FIG. 24 Pressure distribution
1 C2/33P40

D 91500/1/129528 Ki 9/67XL/CL



AR.C. G.P. No. 971
December, 1965
Yip, Y. M. md R&illy, J- Wt

POTENTIAL FLOW THECRY FOR TANDEM CASCADE BY HOWELL'S METHOD

The solution of a tendem cascade is obtained by
replacing the second blade by singularities (two in this
case), and carrying out an exact conformsl transformation
of the first blede by Howell's method., A digital
computer programme which deals with the mumerical work of
the final KArmAn-Theodorsen transfarmation in a new way is
described.

A.Roc. CQP. No. 971
December, 1965
Yip, Y. M., and Railly, J. W

POTENTIAL FLOW THECORY FOR TANDEM CASCADE BY HOWELL'S METHOD

The solution of a tandem cascade is cobtained by
replacing the second blade by singularities (two in this
case), and carrying out an exact conformal transformation
of the first blade by Howell's method. A digital
computer programme which deals with the numerical work of
the final KArmAn-Theodorsen transformation in a new way is
described.,

A.Rlc. CQP. NO. 971
December, 1965
Yip, Y. M, and Railly, J. W.

POTENTIAL FLOW THEQRY FOR TANDEM CASCADE BEY HOWELL'S METHOD

The solution of a tandem cascade 13 obtained by
replacing the second blade by singularities (two in this
case), and carrying out an exact conformal transformation
of the first tlade by Howell's method, A digital
computer programme which deals with the mumerical work of
the final KArmén-Theodorsen transformation in a new way 1is
described,

SEIVO LOVALsHY FIIVHIVIEA










o Ciown Copyright 1967

Published by
Her MAJESTY'S STATIONERY QFFICE

To be purchased from

4% High Holborn, London wc.l
423 Oxford Street, London w1
13a Castle Street, Edinburgh 2

109 St Mary Street, Cardiff
Brazennose Street, Manchester 2

50 Fairfax Street, Brstol 1

35 Smallbrook, Ringway, Birmingham 5

7-11 Linenhall Street, Belfast 2

or through any bookseller

C.P. No. 971

C.P. No. 971

$.0. CODE No. 23-9017-71



