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SUMMARY

Sheets having three directions of fibre reinforcement are considered on
the basis of netting analysis, Load envelcpes of shear combined with both
uniaxial and biaxzal tension are assumed and optimum fibre arrangements are
determined on the assumption that limits exist on the compressive and tensile
forces which may be developed in a fibre, Such optumm fibre arrangements
are compared with the best-arranged i1sotropic reinforced sheets and with
hypothetical s0l1id sheets having the same properties as the fibres, The
total allowable load envelopes of the optimum arrangements are derived and
are related to the prescribed load envelopes, The elastic constants of the

optimum systems are also derived,

* Replacos R.A.E. Technical Report 66361 - A R.C. 29320
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1 INTRODUCTION

Numerous materials exist having high tensile strengths and high elastic
moduli which, in the large, are imperfection~sensitive, Such materials may,
however, be produced in imperfection-free form as fibres which allow high
tensile strength and stiffness to be achieved, albeit in a limited form.
Partiocularly when combined -with low density this provides a considerable
attragtion and has led to the production of composite materials in which
fibres are used to reinforce a matrix material. The form in which the rein-
forcement 1s incorporated in the matrix may vary; fibres may be orientated
either randomly or in a regular manner, and et different volume fractions,
depending on the properties which are required in the composite. Peper, for
example, is basically a sheet of fibres randomly orientated in a plane and
packed at high volume fraction; the elastic behaviour of such materials has
been studied for some time (see, for example, Cox1). Glass-fibre filaments
are also used in the construction of pressure vessels and studies have been
made to determine optimum pr0pertie32’3 in such cases., Glass-fibre i1s also
used-in the construction of directionally reinforced laminated and sandwich
materials. A1l these applications generally aim at achicving high fibre
volume-fractions to reproduce as far as possible the desirable properties of

the fibre in material form,

The properties of composite materials depend in general on the material
properties of both the fibres and the matrix and analysis which takes this
into account is essential when considering, for example, the propertiés of
unidirectionally reinforced compositesh in directions inclined to the fibres.
However, in a large class of problems1’2’3 a consistent physical model is
possible in which the applied load system can be entirely carried as axial
load in the fibres without any assistance from the matrix insofar as load-
carrying capacity is concerned. analysis based on this assumption is usually
referred to as "netting' analysis since the mochanism for carrying load is
that of g fibre-network. |Now a sheet with unidirecitional reinforecement can
be regarded as carrying loads having that direction entirely in the fibres,
its resistance to loads in other directions deponding to a considerable degree
on the properties of the metrix. 4 cross-ply sheet reinforced in two
orthogonal fibre-directions will carry in the fibres loads which are applied
in these direotions; rosistance to shear, however, will again depend to a
large degree on the shear properties of the matrix. The simplest
dircetionally reinforced shoct able to carry general applied loading systems



as forces in the fibres is thus onc which is reinforced in threo different
directions and it is composites of this type which are considercd on the
basis of netiing analysla in this Report. The meterial propertics of a
relnforced sheet conta*nlng continuous fibres ealigned in thrae directions
will depond to a conslderdb_o degreo on the angles of alignment and the
numbers of fibres in any dircetion, For cxample, an arrangomont hav¢ng )
oqual numbera of fibros tho anglos between whose dircetions are 60° and 120°3
is one possible drrangement and behaves elastically as an isotropic sheet
having a Polsson's retio of 1/3. This Paper considers sheets having
fibres allgned in three directions where the quantities end direotions of
the fibres are optlmlsed with regard to. some assigned loed envelope. A
three-directional network is statically determinate and no appeal to the

elastic properties of the fibres is necessary.

.General expressiens are derived in Section 2 for the.load carried in
any fibre dirvection when a load system is applicd. The optimum fibre
quantities and directions can then be found znd this is done in Sections 3-5
for sheets which are subjgected t¢ uniform vniaxial and bilaxial tensions
together with a shear, Uniaxial tension combined with shear is fypical,
for example, of a wing or fuselage under-panel which derives tonsion from
bending and shear from tor51on. Biaxial- tension combined with shear is
typicel of a pressure cabin panel, the biaxial tensions ar151ng from
pressﬁ}isatlen and the shear from fuselage torsion. Since isotroplc sheet
is a Etanéard form in which reinforced materials are made-up, a comparison
is made between the densities of optirum sheet snd the optimus isotropic
reinforced sheet required to carry the same load system., . A sheet subjected
to uniaxial tension aligned in any arbitrary direction is also considered
in Section 6, The use of netting analysis is particularly welcome eince
the optimisations carried out here would be difficult under a theory which
apcounted aleo for the propertics of the matrix. Further, since metrix—
fibre combinations differ in their properties it is relevant to perform an
ane%xeie'in which_onxy the fibre propertiss are considered. ‘In practical
cases i% is important to know the total load envelopes which can be carried
hj-the systems, and these-are considered in Section 7 for the systems of
reinforcement which arise, ' .Jlihough the optimisations car rieé out make no
use of fibre elastzclty, the olastic constants of optlmum systems are clearly

of interest and thesb ars - dernveﬁ in Appendix fi.

-



There is a similarity between the optimisation of a statically deter-
minate fibre net with respect to a givon load cnvelope and the optimisation of
a plane framework with respect to a finite number of distinct loading
conditions, The theory of Michell structures, which deals with the problem
of determining the minimumeweight framework able to carry a single load system
applied at specified points in space, has been summarised by Cox5. Extensions
of this theory to allow consideration of a number of loading conditions have
been indicated by Schmidté. However in the field of Michell structures,
frames consisting of numbers of mcmbers are derived to accommodate loads
applied at distinct points in space whersas the present Paper is concerned
with the optimisation of three fibre directions for a continuous envelope of

load,

Now fibre reinforcement must appear inefficient if considered solely as
a mode of construction for a material available in other forms., A solid
sheet of any conventional material is capable of carrying a combined load-
system of tension and shear which is determined by a yreld criterion such as
the Mises-Hencky (sce, for cxample, HillT). The same material prepared in
a fibre form and made-up into a unidirectional compesite would be able to
carry the same unidirectional tonsile load as the solid material, but its
capacity to carry other loads would be severely impaired. In addition, the
composite would be heavier since a matrix material would have boen added,
The argument in favour of composite materials is that, although they must
scem inefficicent if their form of construction alone is considered, the fibres
arc not availsble in other forma and their properties aro sc attractive that
this inefficiency can be more than offset., Thus, to make a valid assessment
of the efficiency of composites on the basis of comparing like with like,
comparisons are also made in this Report between the densities of reinforced
and 'solid' shecets optimised to carry the same load system; in view of the
above remarks the existence of such solid sheet is hypothetical but the
comparison is necessary to cnable the further comparison between reinforoced

and conventional materials {to be made meaningfully.

2 GENERAL EQUATIONS

Consider a rectangular shecet having sides parallel to the co-ordinate
axces O(x,y) in which continuous fibres are arranged in parallel systems

having three directions a, § and ¥, defincd so that

180° 2 y>pB>a>0



(see Fig.1). Although individual fibres may vary in cross-secotional area,
strength etec., an assemblage of average fibres with average properties will
be assumed; the disposition of these fibres in the plane of the panel is
such that they are arranged at densities of p, ¢ and r fibres per unit
distance, while the corresponding tensile forces in saingle fibros are P, @

and R.  The sheet is subjected to an applied load-system,
It = 1
(Nx: ﬂy: ny) (T1: Tzs S) ( )

as shown in Fig.1; Nx ete, and T, etec, have the dimenaions of force per unit

4
lengths [Egquations for P, @, R are derived by considering equilibrium of

the sheet. Equilibrium at the sides x = constant gives

pPoosza,-: choazp-i-choszy = 'l‘1,

PpPsinagcosa+g@sinP cosP +rRsinycosy = 8,
while equilibrium at the sides y = constant gives

PPsinacosa +¢gQsinPB cosB +r Rsiny cosy = 8§,

T,

pPsinzaat-qf}sinapa-rRsinzqf o

Since the cquation related to couilibrium of shear is {he same in cach case,

these eguations reduce to

+ T -

pP+qgqQ+1rR = T 0* ]

.1

n
=]
|
=3

pPcos 2a +qQcos 2B + r R cos 2y

PP sin2q + gQ sin 28 + r R sin 2v

]

[xe]

[ 72
L}

which determineP, @ and R completely. The solution of equation (2) is



It

p P sin(f-a) sin(y-a) T, sin f sin y+T, cas § cos y-§ sin(B+y),

]

q Q@ sin{a-B) sin(y-p) T, sin y sina + T, cos y cos a5 sin(y+a), f (3)

1]

r R sin(B-y) sin{a~y) T, sina sin B + T, cos a cos B-S sina+B). |

2

Equation (3) is general, If systems of reinforcement symmstric with

respect to Ox are considered, then either

B = 180° - g, ¥ = 180°, p=q, (&)

which will be referred to in what follows as longitudinally symmetric

{abbreviated to l.s.) systems, or
B = 90Q, Y = 180°- g, b = T, (5)

which will be referred to as transversely symmetric (t.s.) systems.
The l.s. system of equation (4} then gives for the forces in the fibres

pP = % T, cosec® a + S coses 2a, b
1 2 (6
P = 7 T2 cosec a - 3 cosec 2a, )
2 J
rR = T,t - T2 cot a,

from equation (3), while the t,s. system of equation (5) gives rise to fibre

forces
4 2
pP = gT,l se¢ a + S cosec 2a,
2
qQ = -1, tan" a + T, (7)
2
1 2
PR = 5 T, sec ¢ ~ S cosec 2a .

1 -

Now, sheet having three fibre-directions is elasticelly isotropic when
the differences in angle between the fibre directions are *60°, while the
numbers of fibres aligned in these three directions are the same (see
equation (81), Appendix A}, Thus



B = a+60°, ¥y = a+120° p.= q = r; (8)
suppose the angles defined so that 0 < a ¢ 60°, Suc;h sheet 1s not isotropic
in all respects since its strength, for example, varies according to direction;
it is however, usually referred to as 'isotropic', and this will be followed
in the present Paper. The fibre forces P, @ and R are then given by

3pP = (T,} + TZ) + 2(T1 - TQ) cos 2a + 48 sin 2a, ) 1
3pQ = (T, + T2) + 2(T1 - T2) cos{2q + 120°) + 48 sin(2a + 120°), > (9).
3R = (T'l * T2) + 2('1‘1 - Tz) cos(2a + 240°) + 48 sin(2a + 24,0°),

from egquation (3). Vhen isotropic sheet is aligned in an l.s, mannser, _that
is when

a = 60° e = 120° ¥ = 180°% .. p = g = 1, ‘(110)

the fibre forces are given by’

3pP=2T2+2'BS, i -
5pQ = 21, ~2V3s, < (14)
3pR = 3'1’1 - ’.I.‘2

fx‘-om equation (6}, The tes. isotropic system, def‘in;:d by

@ = 30° B = 90° vy = 150°, p = q = T, (12)

gives rise to fibre forces
3pP=2‘1‘1+2JBS, )
3Q = - T, + 30, % (13)
3p R = 2’1‘1-2{3 S.




The applied load is carried in the fibres as either tension or
compressions The tensile force in any fibre will clearly be less than the
ultimate strength U of an average fibre and the compressive force will be

greater than some other value. The restriction

-~ u U < tension in an average fibre < U (14)

(p < 1) is therefore introduced. The ability of fibres to take compression
is cvomplicated and differs according to fibre material, matrix and form of
construction; an individual fibre may develop & high strength in tension but,
having a low bending stiffness due to its innate thinness, will not be able to
demonstrate any asppreciable strength in compression on account of instability.
When set in a matrix, however, fibre behaviour in compression will be

similar to that of a beam on an elastic foundation and individuasl fibre-
stability will be improved. An sssemblage of fibres laminated in a matrix
material will exhibit other tendencies; a fibre in compression which has
laminaee of fibres in tension adjacent to it may be expected to derive some
stabilising influence from these. It is thus clear that, if an optimisation
is to be carried out, some overall simplification must be made and it is
assumed that p, defined above, is a constant. There is thus some lower
limit, derived from unspecificd strength or stability considerations, on the

compreasion which can be developed in any single fibre.

Tho mass of fibre per unit arca of sheet is

(p+qg+r) Ao,

where A is the cross-sectional area of an average fibre and o is the density
of the fibre material. Thus, in what follows a non-dimensional ‘density' of

fibre per unit area of sheet,
U
p = g(p+a+r), (15)

will be used, T being a typical applied force, Other dimensional constants
of the sheet follow; in fact

ZALL ) (a)
v (16)

i
e (v)

Mass of fibre per unit ares of sheet

i

Ultimate strength of fibre material

n
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It is relevant to consider also the strength properties of sheet fabricated
from solid material ha;ﬁng the same proéertieé as the fibres in order to meke
like-with-like comparisons between the properties of reinforced and sheet
meteriels. Yield in a s0lid sheet of thickness h which-is governed by the
Mises~Hencky yield criter’lon7 is given by

2

2 2 2 2 -2
-N N + N + 3N = h U A
N¥ Xy ¥ g xy

(ef. equation (16b))s The thinmest sheet able to carry the load system of
equation {1) thus has density given by o

T e

1 (.2 2 2 L
P = EJT1-T1‘T2+T2+BS ) 17

from equation (16&) -

) : Stiffhess of reinforced sheet is not sPeclflcally used in the asnalysis
of this Report; for completeness, however, the elastic constanta of the
fibre-syatems sbove are-derived in Appendix A. .

3 OPTIMUM ARRANGEMEWTS TOR UNIAXIAL TENSIDN AND SYMMETRIC SHEAR VARIATION |

- Expressions having been ecstablished for the load carried in any fibre-
direction théﬂoPtipuqrarrangement of fibre needed to carry given uniform load
systems may be considered., The applied load-system first considered is .

0<T,<T - ) ;

T, =9 - (18)

-AT <8< T

(cfe equation (1)); ithis corresponds to a rectangular load-envelope in the
(N&, ny) plans, symmetric with respect to the N -axis, The optimisation
carried out is that of minimising the density p subject to the constraint that,
for. all the applied load fields of equation (18), the restriction of equation
_(1%{-on fib?g,forces is observed at all points on the load envelopes

Since_the applied load system of equation (18) is symmetric with respect
to the 0x and Oy axes, attention is restricted to symmetric fibre "arrangements,



1

3.1 General optimum arrangement

If the l.5, system of Soction 2 is considered, then

PP = -pQ = S cosec 2a,

(19)

I‘RzT,

from equations (4), (6) and (18). The (P, Q) and R-fibre systems thus carry
shear and tension independently and may be independontly optimised,

Since tho R~-fibres are always in tension, it is easily scen that
T
min (r) = 7

corresponding to T1 = T and R = U, One of the P and Q fibre-systems will
be in compression, and for any given g it follows that
. AT
min (p) = L Coseo 2a
corresponding to 8 = AT and @ = - pU(or S =~ AT and P = = puU). The lowest

fibre-densi%y for a given value of o is thus
nin (p) = -% pin (p+ 1) = 1+ %% cosee 2a.

The minimum density for all values of g occurs when g = 45°; the fibre

orientation and distribution are then given by

oy ) 7 A
PO = 1 +"p—, a6 = 11-50; (Po: qo’ ro) = "@" ;’1> * (20)

]

This best arrangement is determined by limiting tension in the R-fibres at the
rmaximum value of N¥ and liuiting compression in the (P, Q) fibdres at the

maximum shear N .
xy

In the t.s. system of Scetion 2 the fibre forces are

PP = % T1 sec? a + S cosec 2a,
9Q = -1, ter’ a, - (21)
PR = &7 s20% g - § cosec 2a,

4 i
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from equations (5), (7) and (18). The Q-fibres are always in compression,
and it-follows that o

minlq) = f‘u tan” q, © (22)

corresponding to '1‘,1 =TandQ =~pl. IfS: 0, the minimum value of p
will be detormined either by having enough fibres to resist the meximum
tensile P _(when T,=T,8-= AT) or the maximum compressive R (when 2,

=AT), It follows that -

il

“min (p) = %mmc i% se0? a + h-cosec 2a, ﬁ- cosec 2al ,

whenoe f (a.) when 0 <a<d¢,, : -
) p = g 7 Bin (2p + q) - 1° (23)
f (cx.) vhen ¢, < a < 90°, -
where J’ ) o o - b .
. . pf1(a.) = 2\ coses 2a ‘;a tan [« Y A -(21'..)
pfz(c.) = n sec” a + 2Mr cosec 2q + tan® o L
and 7‘. - i - T
tan ¢, =- ; (1 - u)e - (25)

If the.restriction that S 3 O is re;goved; squation (23) still l;é_léa since,t!gf;_g‘ '
roles of the P and R~fibres in resisting tension and compression are revez;;e;f.‘
Each of the functions f (q,) end £ (a,) has a single minimum for 0 < a < 90°

these are

and a respec“ively, deﬁned by ©

= 2
0 .. .
tan o, tan 2::._l = A ) )
and o o k - : (26)
. tan g, tan 2_0,12 = *-M—-,I Pam . -

Since u < 1, 8, < a, < L5°%,

3 The minimum value of the den31ty p (a,) s defined by equation (23), dependa
on the relative magnitudes of the angles Syr Gy
this minimum is achleved at the medlan of these angles; if the median is-
either @, or a,
vanishing first derdvative) vhereas if it is at ¢, the minimum lies at the
intersection of the two functions f‘ (o) and f (a.) The minimum density for

all t.s. systems depends on the shear-ra‘tlo Ay and is given by

y &, -and 951, it oan be shown that

the minimum is a conventional one (1.4 cof'responda to a
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(£,a)s o = a : i£0<h<ch, Y.(a)
' ).2‘1 1 .
P =-‘§ . i epr ¢ %y lf?““l-(}‘(hz.’}(,b? (27)
; \fZ(“’Z) , O = gy, ) it x>, (e}

with, -in ell cases,

2 .
. Ltan o = Zp .
= S, e o= oGP (274)
and -
+ 2 b
A = K. A . (28)

- , - u Yu
4= ——— 2
2
(1-wJ2-p (1-@y2-p -

For small variations of the shear, the orientation in this srrangement is the

-

seme whatever the value of yu {cf. equations {26) and (27a)).

NowA the line

P, = 1+% ' © -t (20) bis
touches the curve
2
: o = 2 “3' W, - j (27b) bis
" p
st the point where
2
1 1
Py =“ -1--*_-::, A= .:IH:—;J.-’ tan a = p. (29}
Sinece
2
i —rt
x1 < - < Rg

the l.s. end tes. systems vhich correspond to equations (20) and (27b) will
have the same density for the one pariicular shoar A of cquation (29), If
p = 1 the above argumont breaxs down; this equality of density between the
l.8. and t.s. arrangements only holds when p < 1 and is thus a conscquence of

the inefficiency of the fibres in resisting corﬁpression. .
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The l.s. and t.s, systems are the two contenders for the title of
optimum arrangement. It may bc shown by computation that the l.ss gystem
of equation (20) has, in all cases, a lower density than the t.s. system of
equation (27) and is thercfore the true optimum. Figs.2-4 have been prepared
to show the variation of optimum fibre density p_ with shear/tension ratio A
ard to compare these optima with the best fibre densities arising from the
t.s. fibre-arrangement, The fibre oricntations in the t.s. system are
indicated. 1In Fig.2, corrcsponding to thoe case when fibres are allowed to
develop the same tensile and compressive load (u = 1), it is scen that the
l.s. arrangement has a considecrable advantage for all positive values of A
over the t.s. systems It is, of course, unlikely that the allowable
compressive and tensile fibre loads will be the same, and Figa.3 and 4
correspond to values of p = 0+75 and p = 05 respectively. The le.3, arrango-
ment is generally superior to the t.s. arrangement although, for p = 0+75 and
moderate values of the shoar, the superiority is only marginale. Moreover,
for the one particular value of A already referred to (cf. equation (29))
the two alternative arrengements lead to the same fibre-density; for clarity
the part of the curve corresponding to the t.s. system is omitted in this

region in Figs.3 and 4.,

The fraction of fibre in the optimum l.se system of equation (20) which
is aligned in the *45° directions is shown in Fig.5 to illustrate the
variation of the fraction of fibrc needed to resist shear; tho inclusion of
g = 025 shows the effect of using fibres which can only develop very low
compression, considerably morc fibre beoing neoded to withstand the compressive

component of any applicd shear.

The elastic constants of the 1.s. and t.s. systoms of equation (20) and
(29) are given in equations (78) and (80) of Appondix A.

J3e2 Optimum isotropic arrangement

Elastically isotropic shect subjected to the load distribution of
equation (18) and aligned as a l.s, system will have fibre forces given by

PP = -pQ = 2+v38/3
(30s)

PR = T‘I,

from equation (11). Isotropic sheet aligned in a t.s. menner and subjeeted

to the load system of equation (18) will have fibre forces given by
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IpP = 2T1+21f38,
3pQ = - T, (30b)
3pR = 2T1-2\/35,

from equation (13). Optimisation of symmetric isotropic fibre arrangements
thus depends on choosing the better of the l.s. and t.s. arrangements and
minimising the fibre density. 1In cither of those two arrangoments the density
will be determined by the necd to provide sufficient fibre to rosist limiting

tensile and compressive forces,. Thus for le.s. arrangements

nin (p) = max [3, 23 Z‘J ’
M)

which is dotermined by limiting tensile R or compressive (P, Q) in equation

(30a), whilo for t.se arrangcments
min (p) = maxi{d, 2+2v3n, 2v3i],
b u

which corresponds to limiting tensile P or compressive (Q, R) 1n equation {30b).
The optimun isotropic arrangcment will thus have density

. g A0 1 A
Po = mn[max't): 2{3;.’): max{;, 24 2V3 N, 2{3;}}-"(31)

-

For comparison with the genoral optimum, this isotropic-optimum density is
also shown in Figs.2-4 alongside the density of goneral optimum sheet.

It is of interest that for no appliod shear (A = 0) equation (31) gives

r2ifp>-%,

‘1
p0=)\:"-if‘}/3<p<%,

]_33‘-1:.,.1(1/3’.

Hence, unless the fibres are poor in compression (u < 1/3), it is better to
use the t.s. orientation of isotropic sheet to carry unlaxial tension. Thus
it is better to have two Fibre systems alizned at +30° working a little
inefficiently by carrying an increased component of the tensile load than it
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is to have only one fibtre system at 180° which carries the full tensile load
efficien%ly with the other two fibre systems not contributing at all, The
restrictaon on p arises since with fibres aligned at +30° the role of the

transverse fibres is to resist compression.

A further parameter relevant to the possible use of reinforced
composites is the ratio of the density of optimum to isotropic sheet for any
particular load envelope; this ratio gives an indication of the efficiency
of isotropic sheet. Fig.6 shows this variation for sheets in which u = 1-0,
0+75 and 0+5. Now, when A = 3 p V3,

Optimum p IS 0+ 91
Optimum isotropic p 3 ’

from equations (20) and (31); this'is independent of y. It is seen in

Fige6 that the density ratio varies between 0+5 and the above value of 0+91

for all sheets for which p > 4. For sheeis in which y < 7 the ratio falls
below O+5 but these are not specifically considered. It is of interest that
when N\ = % g ¥3 the opilmum density is only 0-91 of the best isotropic density.
In fact, for this particular value of A, )

[s] “

(b s %) = 2 (0-868, 0-866; 1)

in the éptimum arrangement aligned at (245°, 180°), while

(4, 1, 1)

<3

(PO: qo: ro) =

is the isotropic arrangement alizned at (:60°, 180°)., Thus the only ~
inefficiency in the isotropic arrangement is that of aligning fibres at *60°
rather than at *45% in eddition to those aligned at 180°, and this is slight.

3+3 Density of solid sheet

The optimum errsngement may alsc be compared with shest fabriosted from

splid haterial; the minimum density of such sheet is

e Jrasl, (32)

from equations (17} and (18), This density is also shown in Figs.2-4 to

froilitate compariaou with the fibro-reiutoroed sheets al: cady considered,
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The abllity possessed by sclid material to withstand complex loading without
the same increase in density as fibre-reinforced material is illustrated; it
should be borne in mind that p is a property of the fibre-matrix composite

rather than a constant of the material.

Fige7 shows the ratio of the density of so0lid to optimum sheet for
various values of u; this ratio gives the efficiency of optimum sheet when
regarded as a method of construction. The value p = 0+25 has been included
to show the effect of restriction of the compressive load allowed in the fibres,
As might be expected, in all cases the density ratioc has an upper limit of
unity corresponding to simple tension, Even if the compressive fibre load is
unrestricted (i.e. p = 1) the efficiency can fall to 065; further restrictions
on compressive load imply, in general, lowor efficiencies and the lowest
value illustrated is one of C+21 when p = 0+25, These figures, of course,
must be interpreted with care if used in assessing a practical application;
so far as the composite 1s concerned they relate solely to the weight of fibre
and this is assumed to be working wath full efficiency. Actual composite
efficiencies will bo much less than theose quoted above; a 'loading' factor
in the region of 0+59 (for low density fibres) to 0:66 {for higher density
fibres) is probably reasonable if accounting roughly for the presence of a
resinous matrix material at a volume fraction of 0:5, while a further
'loading' will exist to account for the loss in fibre efficiency; Porters,
for example, quotes a fibre efficiency of 0+68 for oross-plied continuous-

Tibre composites.

L OPTIMUM ARRANCEMENTS FOR BIAXTAL TENSION AND SYMMETRIC SHEAR VARTATION

The example of Section 3 having been concerned with combined uniexial
tension and shear, & problem in which biaxial tension exists is next considered.

The optimisation is carried out for the applied load-envelops

0« T1 < T,

0< T, < =T, (33)

2
-2 <SS < AT

The load-envelope is a rectangular solid in the (Nx, ﬁy, ny) load-space.,
Since the loading is symmetric, attention is again restricted to the l.s.

and t.s. fibre-arrangements of Secticn 2.
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Let General optimum arrangements

The fidbre forces in the l.s. system-are given by equation (6), from which

it follows that the minimum densities p and r for any particular orientation a

are glven by

T
P. = .ﬁ max L
and B . .
-7 1 2
r = 0 max {1, E cot a_}—,, -

. -~
{-1 c0sec’ @ + A cos6C 2a, ﬁ- cosec Zu]

J

” gsu)

-

the terms on the right correspéi&ding to limiting tensile P, compressive Q and

limiting tensile and compressive R respectively (when S > 0).

The form

taken by the density thus depends on the larger of the expressions on the

right of equation (34); it follows that -

O

"g_}(a,)k &whe:rgiﬁﬂ) <aq < G,Ej
p = -2+g(a,) ‘when ':6 <a<b Lif-l<7t (35:;)
T2 2 ) 1 2 .3
1+ coseo 22 when 6, < a
L - - 2 -
and X . ) ,n.é
.- '.81(:3,) " when O <a.<6;
p = <7 Bya) dhen 8y < o < 8, = 3£ A> Ay, (350)
i+ 2 cosec 2o when -e <u
. e N J ) .
where
2u g,i(o.) = u cose02 a + 4h i cosec 2a + cot2 .y
Sk T~ 2 T (363)
:_2g2(a) = cot” a + 4\ cosec 2u,
and
. 24 - V]
cot &, = VDOu ,- cot 8,. = A m e VM {36b)
1 Hs 2 T T T
The functions g1(q.) and gz(a.) each have single minime for 0 < q < 90°; they

are u.; end c,é, where
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cot2 al + 2hu o 2at = O
1 t+np 1
and ‘ (37)
cot? u,é + 2 cot 2 a,é = 0, /

whence it follows that

90° > cr,:J > c.;._, > L5°,

Since 1 + -% cosec 2o has a minimum when o = 45°, it can be shown that the
minimum of the density function, as defined by equation (35), depends on the

relative magnitudes of the angles als G’é’ 45°, 0, and 6_, the minimum being

1 2!

achieved at the median of these angless If the median is a}, a} or 45° then

the minimum is conventional (i.e. corresponds to s vanishing derivative)

vhereas if it is 61 or 62 it lies at the intersection of two functicns.

The minimum density is then, in general, given by

1 4+ % if o, = 45° is the median,
Py = (382)
. . ot g .
LE1(G..]) if a, = o, 13 the median,
r--2 + g (q,') ifa = q! 1is the median A
2 T Sp\p o %2
_ )\!14-_2_”! 3 < n . . .
Po_-< T + P+2 if a, = 91 is the median &_ and 7\<7x5, (.381:)
2 7\2 1 1 if th a
= iff @ = 6., is the median
i.'l g, (a! ifa =a}) is the zneul‘i.anT
p o2tz 0 2
= J1 o M if q = is the medi
P Vo if ay = 61 is the median > and A> ?~.3- (38¢c)
2
1 A1 -u) . . .
+ if = t
ﬂ‘l "P) Pj c.o 02 is the nnad.:LanlZJ
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Equations {3Bs,b,c) enable the minimum density to be found in any
perticular case. A simplification ensues if attention is restricted to sheets

-

for which u > ¥, since then 61 < 45°~and

] 1 ¢
u.1>a.2>1+5 >61

(cf. equation (37) and the femarks following). Depending on the magnitude of
6, only a.'2, 45° or 6, cen then be ‘the median, and the following expressions

for the miniium density are derived;

-

rQ.,‘g(c,,l) ’ « =a! when O < <A (a)
2 B2Mte? o 2 L :
) )
= )2 (4~ 1 . T L g~ S -\ 1
por i) s, oy e oD O 09
\1 + %} ’ & _: 45° when A > hgp (o)

wherse

2 = ple . ol crm I (20)
R NN EaT 5 Al i

Tt is noteworthy that, for small velues of the shear-ratio A, the orientation
and density in this l.s. arrangement are independent of p (cf. equations (37)
and (39a)). o ‘ i ' )

In a t.s. system, the fibre foroes are given by equation (7); it
follows that the minimum dengities p and q for any pariicular orientation o

are given by -

- - - r

- T , .- D)
: p = [ max |2 58c g #-A cosec Zuy, T CO3@0 ZQ.J -
and . - > (41)
T v 1, 2
q = U max L'z‘: - tan o |} ,
|Ll -
- -

the terms on the right corresponding, when § > 0, to limiting tensile P,
compressive R and tensile and compressive Q réspectively. It follows that
the lowest density is o



-
!%+%cosec2a when0<ct.<¢11
i
_Jé+ £, (a) h N AP A < (42a)
p= 7t tta when ¢>1<a<¢2 7 (3 a
;f2(a) vhen ¢, < a L
and u )
'_T’Q_-q.%coseo 2a when 0 <a < ¢, ]
P =< f1(a.) when ¢, < a < ¢, if A >?\3, (42v)
fz(o,) when ¢, <

where ¢,, T, (o) and £, (a) are defined by equations {24) and (25) and

= le.
tanqb2 = 5

The minimum density corresponding to equation (42)

(43)

is achieved at the median

of the angles a,, a,, 45°, ¢, end ¢,; it has elready been remarked that

0 < ay < @y < 45°. It follows that

-
I

T+ 2 if 45° is the mediaa,|
p= H > (44a)
L fz(d-?_) if a, is the median,Jl
- M
( —g- + U f1(cu1) ir a, is the median

2
p= <7\‘(1-“’)+ 1 +-%- if¢1isthe

A2 ¢ ,L%}H% if ¢, is the

medign “and ?»<?\5, (44b)

median )
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r—f..l(ﬂ-q) if a, is the nedian)

2
P =< Ao(1-p) 4 s~ if ¢, is the median>and xn (Le)
o o _ .-

M2+u), g if @_ is the median
— - 2 _/
S eV

The two contenders for the title of optimum system are thus the l.s.
end-tes. systems whose densitiea are glven by equations (38) and (hh)
respectively. Computatlon shows that, “of these two sy stems, the-l.s, one
leads in general to a lower densaty and is therefore the true optimum,
Flgures 8-10 show the varlatlon of optimum fibre density p for fibre systems
in which y = 1+0, 0 ?5 and O+5 respectively; the comperlson of the optlmum
density with the hlgher density erising from the t. Se arrangement is also— -

made An these flgures.

When p < 1, as in Sectlon 3. 1, at one particular value of the shear=
ratlo the l.s. and t.s. sy stems glve rise to the same density. Thls is-

egain a consequence cf “the compressive inefficiency of the fibres; when

p > 05, this equallty occurs” when - .

The optimuﬁrl.sﬂldeésiﬁy near this value of A is

2\

p, = 1+ m __Q‘sc) bis
and the density of_the t.s, system is
1 A " 158Y b
P rmeeni i SRS DEENE (4he) bis

referring to equatlon (29) and the_preceding remarks, the local behaviour here
is seen to be exactly the same as that for uniaxial tenszon in Section el
The density end orientation here are thus also given by equation §2°) In
Figss9 and 10 the part of the tes. density curve in this region is pmitted;
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While the density of the l.s. arrangerent is, in general, lower than
that of the t.s, arrangement, for y = 0:75 (Fig.9) and moderate shear the
superiority is only marginals For small shears it can be seen that the
optimum fibre arrangement is independent of p; it is the ability of the
fibres to carry tonsile load which determines the arrangement and only for
larger variations of the shear do compressive fibre forces have an influence,
The optimum system is again found to be the arrangement having one fibre-
direction aligned parallel to the applied tension whach is allowed the larger
variation; this was also the case for the fibre-arrangement corrcsponding

to uniaxial tension in Section 3.1.

When A = O, the optimum angle of fibre orientation is 90° and corresponds
to two, rather than three, fibre dircections aligned in the direction of the
two applied tensions., TFor gy ='1 the variation of a is indicated in Fig.8.
When 05 < p < 1, the variation with A initially follows that of Fig.B until
A =2, ; for larger shears the orientation reaches the constant value of 45°
at the point indicated in Figs.9 and 10, the optimum density then varying
linearly while the optimum distribution is the same as that for uniaxial

tension in Section 3.1 {sco cquations {20) and (39c)).
The optimum fibre densities p and r_ also follow from equation ( 34);

when p > 045

r = =, 2p =~§po-ro, (45)

p, being given by equation (39).

The elastic constants of the gbove fibre-systems are given in

Appendix A,

42 Optimum isotropic arrangements

The fibre forces in l.s. or t.s. sheet will be given by equations (11)
and (13) respectively. Vhen subjected to the symmetrically varying load
distribution of equation (33) the optimum density is given by the requirement
that Just sufficient fibre must be provided for no fibre to carry greater than

limiting load, In the l.s. arrangement this gives a minimum density of

ma.x['1+2h\f3, 2431, 3, —L]
u !
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while in the t.se arrangement the minimum density is
34 A
wma.x[:aa,z;nfs,_.z, - 2vsh .
The optimum is’the minimum of these and B .
' ' A 1 - . A
Py, = min m_ax[1+2'.\-{5, 2»/'3';, 3,“-2'“-}, x:xe.x [2+2\f37\,;, 2v3 “]_—J

T : sece (46)

For camparison with the density of the genmeral optimum configuration this

isotropic optimum density is alsoc shown in Figs.9-10, .,

For zero applied sheer () = 0), equation (46) gives

Pq _»= 2 if u > 05,
oorréépondigg t0 the tese aligment, Thus, for sheets having ;uffioigﬁtly
good compressive properties (u > 0:5) the better aligrment of isotropic sheet
to carry the baaxial tension of cguation {33) wbén N = O is the t.ss arrange=
ment in which fibres are aligned at *30° .to the direction of thevlarger‘tansion;
“this-is enalogous.to the behaviour of isotropic sheet underzuniagial ténsion
"in Ssction 3.2. - L —

Figett has“been prepared to show the ratio of the optimum density to )

_ the optimum isotropic density for shcets-in vhich p = 10, 075 and 0-5.
Since for small values of A the optimum isotropic density is indcpendent of
B, the variation_for g =075and p =05 1is shown only when it doviates from
the curve for p = 1. For biaxeal tension alone (i.es when A = 0) the o
density ratio is-0-75;_while

2
. 1+==
Optimum g A % .
Optimum isotropic p ~ oz + 038 aa‘h > %
- M

il

In view Bf'the way in which the load envelope has been spocified, N = oo merely
correspondé ﬁo no biaxiél tonsion rather than to an infinite shear. . The
maximum velue of the donsity ratioc dopends on p; thus, vhenpy = 1 and 0075
the optimum donsity varies between 0-58 and 0-99 of the density of the best
isotropic shcet, However, isotropic sheet in which p = O+5 does not achieve

the same efficiency.
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The maximm value 0:99 of the density-ratio cecurs shen d = 0°53; 2t

this particular A

(0-99, 099, 1)

il

(PO: qo; ro) =
in the optimum arrangement which is aligned at (%56°, 180°), while
(v r) = =(1, 1, 1)

0! qo’ o U » Ty

in the isotropic arrangement which is aligned at (#60°, 180°)., Tho only
inefficiency in the isotropic arrengement ariscs from aligning fibres at 260°
rather than i56°; the resulting differcnce in density ia only slight.

Le3 Denslty of " sol gd sheet

\»—— P -
The optimum arrangemant of Sectlcn Le] moy alsoc be compared wiilh the

density of solid sheet; ﬁhe m1n1mum density of such sheet is

\/34-12 X ; ) (u7)

from equations (17) and (33) To enheble comparison to be made with the
reinforoed sheets already conszderad thias density 1s also shown in Figs,B8-10,

The direct comparmson between optlmum reinforced sheet and solid sheet
is made in Fig.12, where the efliciency of optimum sheet is shown as a
density-ratzo. The value y = 0+25 has been included to illustrate £he
effect of fall-off in compressive fibre-performance, the optimum fibre donsity
being determined from equatiocn (38). — In 211 cases, the efficiency which
corresponds to biaxial tension elone (i.ce A = 0) is 0+58 since matorial has
to be provided in reinforced sheet to withstand oach component of the tension
separately, whereas in solid sheet this is not sc. For very large shear~
ratios ( A -+ o) the efficicncy is the same as for uniaxial tension in
Section 3.3; a minimum efficiency again exists, and varies dbeiween O-43
(when pu = 1) end 0-20 (when u = 0425}, As was emphasised before in
Section 3.3 thuse efficiencies should bo lnterpreted with carc.

5 OPTIMUM ARRANGEMENTS FOR UNTAXTAL TENSION AND ASYMETRIC SHEAR
VARTATION .

" The optimisation for uniaxial tension combined with shear varying

between equal positive and negative limits was considercd in Scction 3.
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In the wing skin of an aircraft the shear, deriving from wing torsion, is
likely to be greater when arising from nosc-up twisting than when derived
from nose-down twisting, and in this case there would be larger limits on
positive shear than on ncgative shear. Acéordingly the optimisagtion is here

carried out for the applicd load system

0<T, <T ]

T, = 0, r (48)
0<S<AT, |

which is asymmetric in character and may be expected to give risc to asgmmetrio
systems of reinforcement, The load-envelope in the (Nx, ny)lpiine'is in

this case rectangular and has no symmetry about cither axiE://’Ihc applied lcad
of equation (48) is chosen to illustrate the principles {Evolvcd, the lower
bound of zero on the shear being taken to simplify the analysise

5,1 General optimum arrangoment d

The fibre-forces are given by

T, sin y sin 8 - S sin(y + B),

p P sin(B - o) sin(y - a) )

q @ sin(y - B} sin( - a)

S sin(a +¥y) - T, sina siny, (49)

r R sin(y - a) sin(y - B) T) sin B sin o - 8 sin(a + B),
from equations (3) and (48). Depending on a number of incgqualities between

a, f and y, the three fibre densities p, q and r can be minimiscd separately

to be just sufficient %o carry the applicd load of equation (48). These
expressions are given in eguations (83)-(85) of Appendix B and lcad to a

general definition of the density p(e, B, ¥)e Tho optimum fibre density follows
if the values of (a, B, y) which make p an sbsolute minimum are then found.

In view of the numerous inegualities involved (cf, equations (83)-(85)) it is
clear that the problem of minimising p(a, B, ¥} will be difficult analytically
and resort to computational minimisation techniques will be nceded at an

early stage. However, the provious analysis provides a useful guide; in

each of Sections 3.1 and 4,1 where the shear was allowed to vary betweon

cqual positive and negative limits, two alternative fibre arrangoments contended



for the title of optimum., Each arrangement corresponded io é.gggg; minimum
of the density, considered as a function of fibre orientation, and the
absolute minimum was decided by computation. A s%milar aituation will
probably exist in the present case and local winima of p(e, 5, v) will exist,
the absolute minimum being decided computationally.

Possible local minima of p are thus sought; since the optimum
solutions were found in Sections 3,1 and 4e1 with v = 180°, the possibility
of at least a local minimum for y = 180° is considered. If this is assumed
then the fibre densities are -

U, _ Asinfp - '

7P sin @ sin{p - a) ? ALY

v, A sina ' ’

T ® L sinp sin(p - @) ° }- (v) (50)
s - max§*1 A sin(3 + o) (c)

T ' wasing sin g ’J

from equations (83)-(85) and it has been assumed that sin{y + B) < 0,

sin(y + a) < 0 ard sin(a + ) > O« In equation (50) the densities p and g
are determined entirely by the resolved ténsiie and coﬁbressive OOmﬁonéntQ
respectively of the shear while the value of r is determinsd either by direct
tension tfhe first term in the ocurly brackets of equation (5Cc)) or a
compressive force arising from the resolved component of the shear (the
second term). Now whatever the shear-ratio A, R-fibres will have to be
provided to resist direct itension; 1t is clearly efficient to use these
fibres to the full in compression slso, i.e, to take

A sinfa + B)
p sinag sin 8 = 1 . (51)

if that is possible. Now, so far as the N-fibres are concerned, for very
low sheers (A << 1} tension will be paramount and uase of the fibres to the
limit to carry shear in this way is unlikely to be officient; it may be,
desirable, however, for shears above some valuc e Then,

cot o + oot B =‘i’ if 7\>i, . o (52)
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from equation (51). The fibre-density is then given by

A sin 8 sin g
= sin(f - a) [sin ot p sin B} + 1 (53)

from equations (50) amd (52); the minimisation of this density is an
unconstrained one if A < K and subject to the constraint of eguation (52) if
A > Ne

Vhen this minimisation is carried ocut it is found that

TS/ TS
1=
and that p has a minimum when
v = 180°% B, = 90° +a, (54a)
with
po="\%+", tan o =V, (p, a» T.) =%.\—}‘§,77‘;,1> ifx<%_4%, (543)

The density has been minimised with respoct to o and § while holding
y = constant = 180°. It is shown in Appendix B that cquations (54a,b,c)
also represent a minimum of the density when 4 is allowed to vary and these

equations thus represent a true local minimums

The analysis so far has been confined to the investigation of a local
mintmum at vy = 180°, Equations (83)-(85) of Appendix B provide a general
definition of the density and this has been used in conjunction with a
digital computer programme which uses Piggott's mechanisation9 of Powcll's
conjugate direction methoﬂ10 of function minimisation to find optimum values
of fibre density. liechanised search procodures for finding minama ecmploy
varioua techniques of officicnt search on gencral surfaces in hyperspace;

the Powell method is perticularly powerful in that it has quadreslic convergence
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near a minimum, In any procedwre only loced minima are found and different
local minima can be recovered if aifferent startirg points aro choson. It
was found that, in general, for any chosen valucs Sf (A» p) the fibre-density
p(a, P, ¥) hes threc local minima. Two of those local minima correspond to
- asymmetric volues of (a,-8, y) which consistontly give values of the density
greater than the third local minimum which is found to occur when ¢ = 180°,
The local minimm at y = 180° is recovered repeatedly, thus cﬂnflrming-the
above analysis, The arrangement %ypifiéd by eguation {54a,b,c) i3 therefore
the absolute minimum and the true optimum,

It is of interest thet when u = 1 the optimum solution of equation (54b)
is the same as that of equation (20) for symmetric variation of shear. The
fact that asymmetric systems of reinforcement have been derived is thus a
direct consequence of the assumed inefficiency of fibres in compression.
Since one set of f;Eres’resists compras8ion cnly and two sets rasist tension
only the inefficiency caﬁ~b§ offset by re-orientation, but this possibility

was not open for the symmetric shear variation of Section 3,

It is notable that for small shears, when the compressive E-component
of shear is small, the geometry of the optimum fibre distribution

(ef. equation (54b)) remains constant with

- = tan—1 TR By = 9c° 4 Qe
For larger shears, when thc R-fibres are usod efficiently in beth tension
and compression, the orthogonality of the (ao, ﬁo) directions is retained,
while the orlentation o increases from the value a, = tan'1 Yu to o, = 45°
when A = o (cf, equation (540))}., For values of u close to unity (i.e, for
fibres which have good compressive propertics) this implies very little

variation of the oriontation. Tor example,

t]

41° < o < LB° if 4 075
and ° for O <\ <o,
35° < a < 45° if p 05 i

-’

The fibre-density r, is always determined by the need to resis* tension,
For small shears, the densitics p, and g, are ogual {equation (54b)) but, for
large shears this is no longor so {equation {(5hec)); the ratioc of the

densities of these two shear-carrying fibre systems is
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P ( 1 ﬁl(u—{‘l‘l—',

- T

9, 2 . B Y
uocot o if A > T -p

This ratio remains initially constant for small shcars, becoming close to u
when \ becomes large and a  approaches 45°, The density of the optimum fibre
arrangement is shown in Pigs.13-15 for sheets in which g = 1+0, 0-75 and 0-5;
the orientation a, is indicated whenpu = 075 and O+5.

The elastic constants of the asymmetric arrangement of equation (54.)

are given in equation (82) of Appendix A.

5.2 Optimum isotropic arrangements

Isotropic sheet aligned in a general manncr and subjccled to the.load

—_

distribution of equation (48) wall have fabre forces gaven by s

-

o

3p P T1{1 + 2 cos 2a] + 45 sin 2a, 1

]

3pQ
Ip R T1{1 + 2 cos(2q + 240°)} + LS sin{2a + 240°),

|

T1{1 + 2 cos{2aq + 120°)} + 18 sin(2a + 120°), (55)

from cquation (9). Now in cquation {55, thc expressions

14+ 2 cos 2¢., sin 2q and 1 + 2 cos(Z2a + 2,07)

are positive for O < o < 60°; 1{he expressions
1+ 2 cos(2a+ 120°) and sin(2q + 240°)
are negative for 0 < a < 60°, vhile

. o
sin(2a + 120°) { 20 i 0 <a< 307,

<0 if 30° < a < 60°,

Sufficient fibre must be provided for none of the (F, 0, R) fibres to develop
limiting load in either tcnsion or compression; i1t follows that,for any

orientation a,
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p = max{1+2 cos 2a +4\ sin 2a, 142 cos(2a +240°), - ‘%— sin(2g +240°), fj(q,)}
where seee (563)
a9
‘ ‘y;ax {“ 1-2 °°ﬁ(29 £ 120%) )5 sin(2e + 120°)} if 0 <as 30°,]
f}(a) = 4
,--&{1 + 2 cos(2a + 120°) + L\ sin(2a + 120°)} if 30° < o < 60°.
eees (56D)

The particular functional form of the density depends on the implied
inequalities of equation (56). Encouraged by the results of Section 5.1 it
"may be supposed that efficient arrangements result from choosing the
orientation a to ensure equality botwecen suitable pairs of the funoctions in
equation (56), since this mecans that fibres arc used to the full in both
tension and compression at different points on the load-envelopo, The
optimum arrangement will then bo found to correspond to such a point of inter-
section. It is most profitable to restrict further attention to sheets for
which g > 0-5; equation (56) provides a suitable definition of the density
if u < 0.5, It can then be shown that for small values of the shear

(< Ag> say) the optimum occurs when g is given by

[

1+ 20c03(20 + 200°) = 14 2c08 20+ M sin 2a, if X < g, (57a)

vhile for hagh values of the shear

1+ 2 cos 2 + L) sin 2 = -.-:;11 + 2 c05(2 + 120°) + IA sin(2a + 120°)]
If A > Age (57v)
It follows that, in general,
P, = 1+ D+ V3 » 20, = tan—1 (73*%"*—> if A< 16’
J3- V3 m?
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El

31 =) + Jk& (1-u+g)+9(1-u)2

p
° 2(1 - p + p )
2=t AV, 1 1 +u ,
o = 90° = % ten + % sin : === If A<
° * 27\(2“"'1) - V3 2".[(1 +I;A2)(1-p.+p,23 6’

by

seee (58b)

the inverse tangent being between 0° and 180°, The constant lé is the poéitive
root of )

LAY =16 V3(14p) A° + 2(2-p) 22- 6 V3(1= ) vi9(1-a) = o, (59)

being derived by equating the two values of Po in eguations (582,b).

Figs413-15 show, for p = 10, 0°75 and C+5, the varlatlon of the
optimum isctropic den31ty to allow comparison with the general optimum’
density of Section 5.1; it may be seen in equation (58a) that this density
is independent of p for amall shear-ratios A Fzg.,6 has been propared to
i1lustrate the ratio of the general optﬁmum dcn51ty to thé optinmum isotropic
density. When p = 1 the optlmum dcnalﬁy ‘varies bétwoen 0-5 and 0-9%- of the
density of the best-orientated isotropic shect, vhile for g = 075 and 0+5
isotropic sheet is less efflclent. When p = 1 and X = JB both the optimum
and isotropic arrangements are the same as in Ssotions 3.1 and 3.2; the
maximum density ratio, 0+91, is thus the éame giving an efficient isotropioc
arrangement for the reasons discussed in Section 3,2, 1In the present case'
the orientation of isotropic sheet can be varied acgbrding to the amount of
shear to be carried; thas is illustrated in Fig.17. ‘Vaen p = 1 the )
orientetion a  takes values between 30° and 60° while for 05 < g < 1, a, is
more restricted in its variation, This arises since the ocompression taken
in those fibres which are aligned at (a + 60°) must be kept within the
allowable 1limits; the restriction is thus greator for fibres whlch have a
restrlcteﬁ compressive performance. This only holds for large shears, and
for small shears it mey be ssen that the orientation is independent of p
(cf. equation (58a). )

5¢3 Density of solid sheet

The camparison between the density of optimum reinforced sheet and solid

sheet may again be made; the minimum density of solid shecet is again

p o= 1432 - (32) bis
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{from equations (17) and (48)), this density is the same as that of Section 3.3
since s0lid sheet deorives no particular benefit from the asymmetry of the

shear, Pigs.13-15 show the density of solid sheet alongside the densities

of optimum and isotropic shects for which y = 10, 0+75 and 0+5.

Fig.18 shows the density ratio of s0lid to optimum shect; the patiern
is broadly similar to that discussed for symmetric shsar variation in
Scection 3,3 and 1llustrated in Fig.7. In the present caso, however, the
efficiency varies betwoen unity and 0:65 (when y = 1) or O+3k (when p = 0°25);
when u < 1 the reinforced sheots derive a benefit from the asymmetry of the
shear by using asymmetric reinforcemcent and these efficiencies arc slightly

better than those derived in Scetion 3.3.

6 OPTIMUM ABRRANGEMEITT FOR ARBITRARILY DIRECTED UNIAXTAL TENSION

The optimum arrangemcat of fibre-reinforcement nceded to carry a
uniaxial tension which may vary arbitrarily in dircction i1s next considered,
since this typifies thc capability which is usually assumed without question
in solid sheet, VWhen arbitrarmly dirccted apnplied tension is rosolved along
fixed axes both shear and direct components of load must cxist; 2 minimum of
three directions is thus necessary if this load is always to be carried by
the fibres., Since the load envelope has no preferred direction, the optimum
three-fibre arrangement will be symmetric in distribution and oricntation; it
will therefore be isotropic. In the context of the present Ppgper, it is
more convenicnt to fix the direction of the applied tonsiaon and vary the

orientation of the isobtropie fibre-dastribution. The fibre-loads are thus

given by
3P = T, {1+ 2c0s 2},
’pQ = T, f1 + 2 cos(2a + 120°)] , (60)
3p R = T, {1 + 2 cos(2a + 200°)1 ,

from equation (9}, the applied load being governed by

0 < T1 < T,

T2 = S = O-

(61)

LN
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The minimum density follows from ensuring that none of the (F,q,R)-~fibres
exceeds limiting load for any ol{0 < o < 60°), From the extremal values of
the functions on the right of equation (60) and the remarids which follow
equation (55) it is found that

1
(3 it p>3 .,
PO = ) o . (62)
_;; if p< 3 .

Now the general optimum fibre-density for uniaxial tension applied in a

predetermined direction is

PO =1, (63)

from equation {(20); thus, carrying uniaxlai teﬁsioﬁ in éﬁy &ircEtlon'requifes
three times the fibre needed to carry Qhe same unidirectional tension,’
Equation (63) also represents the minimun density of solid shect needed for
arbitrarily directed uniaxial tension. For this spplied load, opiimum
reinforced sheet is thus one third as efficient as the corrvesponding golid
sheet; the cautionary,fomarks of Section 3.3, on @aking such a diréé§
comparison?lapply here also. 7

The above comparison also holds for sheots having more than thrcé fibfé
directionsi, From Cox‘s\analysis1 for shects reinforced in a numbor of
differen% éirectiﬁﬁs it may be shown that the optimum deﬁsity cf any shect
equally reinforced at equisngular intervals and subjpctcé to erbitrerily
directed uniaxial tension is also given by equatxon (62) the resuifvis thus
also true for the random fibre mat, Whlch may be regazaeu as the limltlng )

case of such flbr —arrangements,

7 ° LOAD ENVELOPES 0F OPTTMUM SYSTEHS

While an& structure may be optimiscd with reéard to applied loads
within a apecified envelope, in practice it may occasionally slso be sub jected
to loads which lie outside this envelope. The ébility to resist such
uncxpected loads could well be a fautor in considering the practicability of an
optimum system; in particular, if other ncar~optimum systoms cxlstcd, the
ability t& carry- particular types of load outside the design envelopo could
well be a cruciai point of compariscn. Tor oxample, in the fibrc-systems{Bf

Sections 3 and 5 tho specificd applied load involves only longitudinal tensien
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combined with shear. The ebility of the optimum systems to resist transverse
load is dlearly of interest =s, also, is the ability of the systems to re51st
occasional excesses of the dosign loads boyond their specifiod values. The
total load-cnvelopes of. the optimum arrangements of Scctions 3-5 are therefore
considered, These fibre-arrangements are of interest i:n‘this respect. They
include two examples, one symmetric and one asymmetric, optimised with respecﬁ
to two applied loads only in which the variation of the third load apwears
via the optimum solution, while ‘the other example is of & systfam optimised

with respect to all three applied lcads.

In Seotions.3.to 5 attent:.on was focused on the 1.3, and ’c.s. reinforcen-
ment systems. The fibre forces in the 1,s, system are given by equatlon (6)
and, since the fibre-forces (P,Q,R) are all restricted by the ineguality (‘Ih.),
the foIL'Low:.ng hold: -

-ppU<s T, coseo n +S coseo 2, < pU,

~ f~ -

,—ppU<%T‘2 cosepz_q.-s coseo 2a < p U, [ (64)

-l_irU<T1—TZeot2a.<rU. _J

- - -

These defined the bounding oenvelope in three-dimensional load-space
(T1, T, S); this region is.the interior of a hexahcdral prism whose faces
are the planes

- ‘1 - 2 - -~
- 3, T, c0sec o + 5 cosec 20 = p U,
1 2 : :
z T5 60800 o + S cosec 2o = -ppU,
1 2 | (a)
7-T, ©0800 g = 8 coses Zu = »p U,
=T cose0 @ ~ 8 cosee 2 g = -rPU,
(65)
2 -
T, -T,¢c0t a = rVU
1 2 . NS l- (b)
T1-T200't a = =-urU. J

The four planes of egquation {65a) are parallel in pairs, parallel to the T, =
axis and bound an infinite prism whose cross-scction is a rhombus of vertex

angle a; the interioxr of the hexahedron is the section of this prism lying’
between the two parallel planes of equation {65b) (which are themselves parallel .
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to the S-axis). This bounding surface is shown schematically in Fig,.19;
since this figure illustrates further points which will be made in Scotions 7.1,

72 and 7«4, the prism cross-section is shown to be square.

The load-envelope of the t.s., systom is similar %o that of the l.s.
system, except that the roles of T1 and T2 are interchanged. Vith this
qualification, the foregoing romarks apply; such a load-envelope is shown
schematically in Fig.20, which olso illustrates points to bo made in
Sections 741 and 7.4 ‘

The load-envelope of a sheet of generally oriented fidres will follow,
in the sbove manner, from equations (3) and (14). This wall also be a
hexadren in (Tq, Ty S) space, having thrce pairs of parallel faces,. ) ¥

Tel Uniaxial tension and symmetrie variation of shear

The arrangement first considered i1s the 1l,s, system-given by equation (20).
The faces of the load-envelope sre the planes

T,+ S = =T T2+S=ﬁ’l‘, ]
> (a)
?,-8 = -AT, T,-S = 27T, |
2 L 2 1t ? )
(66)
T,=-T, = =T, T,-T = pf, (b)

from equations (20) and (65). These planes bound e hexohedral prism of
square cross-scction, which is illustrated in Fig.19; the arca represented
by the applied load systom of ogquation (18) is indicated by the interscction
of this surface with the (T1, S) plane,

The complete interscetion of the bounding rogion with the (T1, S) planc
is also of interest, being related to the allowable cnvelope of loads for

which the system was optimised, This interscction is

~uT<T <7

T,

: ~AT<3<ANT,

(67)

il
O
™
e

from equation (66); in addition to the applied load of cquation (18),

combined unisxial compression and shear in the range



-uT< 'I‘1 < 0, L

«~-AT< S <AT ‘

-

can also be carried.

Also of interest is the shape of the bounding region near the (T1, S)

plane, since this gives possible small variations of the transverse load T2

not allowed for in the optimisation, It can be shown that the region

0 «< T, < T, B
-AT< 8 <AT,
2
oA (o) T oar e E— N (68
}! “ p) 1_“’ )
C < T2 < [ 5
pT it Ao q“LL**

lies wholly within the boundang surface; +this is also illustrated in Fig.19.

Some unrestricted tensile variation of T, is thus permissible; further

2
tensile and compresaive variation of T, are possible, but both are governed
by the shape of the load envelope and, as may readily be seen from Fig.19,

can only take place if corresponding restrictions are placed on T1 and S,

The above l,3, fibre system was shown in Secction 3.1 to be the general
optirum for uniaxial applied tension and symmetric shear; howvever for the
particular shear given by equation (29) the t.s, arrangcment gave rise to
the same fibre density, while other fibre arrangements with densities close
to the optimum existed in this vicinity. The load envelope of this t.s.
system is thereflore conszrdercd; this is the hoxahedral rhombic prism which
is bounded by tho plancs

I S okl )
tw T e Tt T TAog
s _ I 8 . ol
T1'p"1-p’ T T 1ep? r (69)
1
"pr,'+;T2=T, —-pT1+"‘T2=-pT,

from equations (7), (14) and (29), This region 1s showm schematacally in
Fig.20; +the area represented by the applicd load of cquation (18) is

indicated,

37



38

The intersection of the bounding region of cquation (69) with the
(T1, S) plane determines the allowsble envclove of forces for which the system

was optimised; this region,

.
1 1
-7 T < T1 +— 3 <3 . T,
T per - lgiden
Top s TS TR .
~Een o,
b1 y

is shown in Fig.21 where it is compared with the corresponding recion for the
1.8, arrangement {cf, equation (67)) when g = 0-6. The optimum lese system

allows for the additional development of compreasive T, in the range

4

-

-uIT< T1 <0

in conjﬂnction*with the full range of shear. The %45, system allows small

- increases in shear for tensile T1 which is less tuan the maximun velue T, while
compressive T1 is ﬁossible only if' the shear is rostricted. These points
typify the considerations which might arise if deciding between éompeting -

opiimum and near-optimun systems.

Permissible @ariations of T2 are governed by the inequalities

O.< T.{ < T,

-xT< S<AT,
P <T, <p T, J B

which define & region 1&ing inside the‘ﬁoun@iﬁg éurfadé; this is also shown
in Fig.20,. ’éﬁall ten§%le variations of I, arc thus again unconditionally
possible in combination with the full variation in T, and §; tensile and
compressive T2 variations beyond these limits are governed by the shape of
the bounding surface, and can only take place if T1 and 8§ ere reostricted.
It is of interest that both the l.s. and t.s. system allow additional
variations iv the }ransﬁérse load T,; since the l.s. system is.the general
optimum while the t.s. system corresponds only to a particular value .of the
shear, they do not compcte directly however,
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_ 7.2 PBiaxial tension end symmctric varistion of shear

It was shown in Section 41 that in all cases the l.s. distribution
was the optimum; the load envelope is therefore that bounded by the planes
of equation (65) and illustrated schematically in Fig.19. For increasing A
the actual shape of the load envelope will vary, since it depends for its )
detailed form on the fibre-distribution defined by equations(38) and (39).
For 0-5 < u < 1 and large values of the shear the optimum distribution is that
of equation (39¢), and this is the same as that derived for the load system of
uniaxial tension and combined shear in Section 3.1. The asnalysis of
Section 7.1 relevant to the l.s. fibre-distribution therefore applies here
also; in particular, the rectangular solid shown in Fige.1%2 now corresponds

to the applied load envelope of equation (33).

7e3 Uniaxial tension and asymmetric variation of shear

In the optimised arrangements in which the sheer is ellowed to vary
between asymmetric limits, the fibre orientations and densitles are given by
equation {54). If this optimum system is subjected to a general applied load,

the fibre forces are given by

P F = T2 + 5 cot G ?

q, ¢ = T,~S tana, } (70)

T R = 'I‘1 - 'I‘2 - 23 cot 2(10‘,.

ot

from equation (3). The load envelope is thus the hexadron cut from the

infinite rectangular prism bounded by the planes

]
T2 tan a, + S = -ApnT, T2 tan a, + S = AT,
: (71a)
- = A
T, oot ey - S = AT, T, cct a, - S.= " T,
which are parallel to the Tﬁ-axis, by the two parallel planes
Ty ~ T, = 28 cot %2 = -pT7 T,-T,-28ct2 = T (71b)

This region is shown schematically in Fig.22 for small values of the shear
corresponding to equation (54b); the relation to the bounding surface of the
area represented by the applied load of equation (48) is indicated. In *
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contrast to the system of Section 7.1, tensile and compressive variations of
2
can only tzke place if T, and § are correspondingly restrictede.

near the region of equation {48), for which the optimisstion was_carried out,

The intersection of the lcad-envelope with the (T1, S) plane is shown in
Fige23, for p = 06 and small values of the shear (of. equation (54b)}; to
illustrate allowable 'unexpected! load variations, tne area coryesponding to
equation (48) is also indicated. Negative values of the shear S can only
be allowed if restractions on T1 are introduced., Compressive T, variation

1
in the range

-7 v =Mt~} <, <O (@
is allowable without any corresponding restriction on the shear; this no
longer holds, however, for larger limits of shear which correspcond to

equation (543}, and compressive T, voriation then also implies restrictions cn
Se

7«4+ Isotropic arrangements

The symmetric isotropic arrangements which have been considered will
have similar load-envelopes to those discussed in Section 7.%1; the envelope
will be a hexshedral prism of 120° rhombic cross~sestion whose faces will be
defined as in equation (65) for l.s. systoms. Pigs.19 and 20 thus serve to

give a schematic indication of the load-envelope in this casc also,

8 CONCLUDING REMARK

A technigue has been presented for the optimisation of the fibre systems
in reinforced sheets having three directions of reinforcement and subjectcd
to combined tensile and shearing load systqss. " The theery is based on the
conventional assumption of netting analysis that the load is carried axially
in the fibres, A1l the systems which are found to be optimum for the load-
snvelopes considered have one set of fibres aligned in the direction in which
the tension is allowed the larger variation. In cases involving uniaxaal
tension the quantities of those fibres vhich carry shcar are dctemined
entirely by the magnitude of the shear while for asymmetric shear variations
these fibres are best aligned asymmetrically; the tension-carrying fibres

are also determined entircly by the tension in this casc.

Two assessments of the efficiency of reinforced shect are made., To

asseéss fibre-reinforcement sclely as a mode of construction the optimum fibre
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densities are compared with those of Qolid shect made of moterial having tho
fibre propertics.  For tne systems of combined tension and shear the lowest
fivre-efficiency (regardsd as a density-ratio)-is found to be 043 when thore
is-no .fall-off in compressive fibre performance and is 0+20 if considerable
fell-off is assﬁmed. If arbitrarily directed unioxial tension is considersd
and there is no fall~0ff in compressive fibre performance the efficiency. is
033, All the;é'figures will be further reduced - in an actual composite by

- fibre-inefficiency and the presence of a matrix.

- To assess -the practipgbility of such standard forms of composite
construction as isotropic sheet the second comparison‘made is bestween optimum
and isotfopiq systems ,of reinforcement. It is found that, given reasoneble
fibre co&prsasive properties, tﬁe‘density of 0ptiﬁum sheot lies between 0+5
" and 0+99 of thé density of the best~orientated isotropic-shests In particular
ceses, at intermediate values of the shear, isotropic sheet shows up

favourably since the amount of shear happens to 'fit' the isotropic aligmment.

The total sllowable load—envelopss of both optimum and near-optimum
configurations are also considered and provide criteria of choice in any
perticular application. It is knowns, for example, that structures optimised
for one given load éonditicn can exhibit unwelcome properties in other load

conditions; no such behaviour is observed in the present Paper.

-



Appendix A
ELASTTC CONSTANTS OF RRINFORCED SHEETS
(see Section 2)

This Paper has derived optimum distributions of fibre for particular
leoad~envelopes; for completeness, this Appendix gives cxpressions for the
elastic constants of the optimum systems which have been found. The analysis
follows that of Gox1.

In an acolotropic sheet in which the strains are (sx, ey ny) the loads

carried in typical {P,n,R) - fibres are

2
P = AE(cxcoic,+sysin2a+yxysina.cosa.),“\Q
g = AE(sx coszﬁ +sy sinzﬁq--rxy sin @ cos B) , L (73)
R:AE(sxcos '\{+sysin y-q-rxysinycosy),

where E is the stiffness of the fibre material. If the stresszs are based
on the effective sheet thickness (i.e, the volume of fibre por unit area of
sheet) so that

U

(O'xs Uy: 'TXY) = 1) AT (NX, Ny: ny): s (7}4')
then the stress-strain relations are

% T %41 8t Oy Sy * %6 Y’ L B

Oy = Cyp &+ Oy &, * Cop Yay? [ (75)

Ty - %16 Sx Y o Byt Cyp Yyt ]

from equations (1), (2}, (73) ard (74), where the elastic constants are given
by

%—-g-c” = pco.sl"a+qcosh'ﬁ+rcosl"'r, w
. 2 .

%—%‘ 012 = p sin ¢ c;oe,2 o+ g s:':.n:2 g 0032{3 +r 31n2 s 0032 v
T < 4 L b b \
%——ﬁczzzps:.n a+qgsin f +r sin ¥y, r“

m
%—ﬁ 016 = p sin a c:o.fe.3 a + g 8in B 0033 B+ rsiny cos3 Y
-%—% 026 = p sin'?’q, cos a + q s:‘Ln3 PosP+r sins v cos ¥,

sess (76)
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Note that

011 + 2012 + 022 = E,

AL Longitudinally symmetric arransements

For a general l,s, system

-

T 4 g T _ . 2 2
%rﬁ c11 2p cos g + I, EU 012 = 2p sin o cos a,

(m

oy _
EU 22 p sina, e = Oy

¥
[+
u

= 0,

from equations (&) and (76); this system is orthotropice In Sections 3.1
and 4.7 the particular l,s. system of equation (20) was found to be the

optimum, and in this case the elastic constants are

c = A+ E ¢ = ¢ ‘= AE c = ¢ = 0.
ki (2 + ) ' 12 22 202+ ) 7 16 26
X ] (78)
A2 Transversely symmetric arrangements
For a general te.s. system,
T . 2 2
%—% €y = * 2p cosh Oy %?E Cyo = 2p sin o cos a,
L (79)
-E—T = ! = =
FU S22 2P sinta + g, Oy ®26 °

from equations (5) and {(76); this system is also orthotropic, For the
particular t.s. system which was found to be oplimum in Sections 3.1 and

L1, the elastic constants are

c,, = E c 2

11 2y 7’
(1 + )1+ ) 12

il
=
o]
)
—t
~-

1]

c

|
? (80)
2
g = Bl=pap) e o = 0 = 0,

from equations (27d), (29) ard (79).
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A3 Isotropic arrangements

The general isotropic arrangement is thet defined by equation (8); in
this case

¢,, = o, = 3E/8, o

11 22 12 = - E/8, ) .016_ = 026 = 0, i (8'])

from equation (76). The elastic properties of the sheet are thus those of
an isotropic elastic sheet having a Young's modulus of 3E/8 , a shkear modulus
of E/8 and a Poisson's ratio of 41/3,

Al Asymmetric optimum arrangement

The elastic constants of the asymmetric system of Section L.l may also
be derived; they are given by

" Po e = S8ing ¢©Os a (sin2 o + i 0052 o) )
AE 42 o ) o o’?
9hg° ¢, = sina cos q,o(psin2 a, * cos? ao),
0 = E-c,,~ 20, >> : (82)
5&%2 Cig T M cosh Gy = sinh Uy
uxgo o = = (1-u) sin” % °°32""o'~ J

from equations (54) and (76); this system is aeolotropic but, since the right--
hand sides of equations (82) depend on two parameters (A; p) only, relstion-
ships exist between the elastic constants,
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Appendix B

FIBRE DENSITY FOR SYSTEHS SUBJECTED TO UNIAXIAL TENSION
WITH ASYMMETRICALLY VARYING SHEAR

(soe Section 5.1)

Under the asymmetric applicd load of equation (48), the fibre-forces
P, Q end R are given by equation (49). It will be necessary to consider the
form taken by the fibre density when the condition 180° 2 v > 8 > a > O is
relaxed and it is merely assumed that v > B> a, vy = B < 180° and 8 - o < 180°,
In this ocase the densities p, g and r take differont forms depending on a
number of inequelities. The following expressions are derived for the
minimum values of p, g and r, the densities being determined to bo Just
sufficient to carry the loads of equation (48);

-

% p sin(y-q) sin(f - a) =

-
¥

| max {sin y sin B, ﬁ- sin(y + pﬂ‘ if sin(y+§>0, siny sin >0, (&)
-

-E- sin(y+p) -ﬁ- sin vy sin B if sin(y+p) >0, sin y sin g <0,| (b)

sin y sin g~ sin{y +8) if sin{y +B) <0, sin v sin p>0,] (o)

max [- » sin(y +B), —-:-; sin y sin ﬁ} if sin(y +B) <0, sin y sin p<0,| (&)

¢
aess {83)

corresponding to limiting tensile and compressive P for points on the load
envalope,

7 @ sin(y-p) ein(p-a) =
(max [‘)\ sin(a+vy), ﬁ- sin a sin% if sin{o +¥) >0, sin o sin vy >0,](a)

- sin y 8in a+ A sin{a +y) if sin(a +7)> 0, sin o sin y<O,!(b)

{

"
'El' sin g sin y --ﬁ- sin(a + y) if sin(a +¥) <0, sin a sin y>0,{ (o)

max [- sin o sin vy, --3- sin(a +y)] if sin(a+v)<0, sina siny <0,J (a)
.
sese (84)
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correspoending to limiting Q for points on the load envelope, and

%r sin(-y-ﬁ) s:.n(-r- a.) =

~max [sin o sin B, -:f sin(a +fiﬂ if sin(a +8} >0, sin a sin >0, (a)
A

--3— sin o sin B +-7: sin{a +p) if sin{a+ B) >0, sin a sin 8<0, | {b)

i sin o sin B = A sin{a +8) if sin(a+B) <0, sina sin 850, | (e}

\_max {- A sin(a +8), «& sin g sin p} if sin(e+8) <0, sina sin §<0,/ (&)
soeh (85)

corresponding to limiting R. The density is obtained by adding the values of
P, q and r given by equations {83) to (B85). If the assumption is made that

¥ = 180°, equation (50) is recovered; it has becn shown in Seciion 5,1, that

a minimum of the density for variations in g and B only is found in cquation (50)

when

¥ = 1800, Bo = 90°+ao (52‘;_51)1313

and LR is given by cquations {54b, o). If small variations in v from the

above are taken and

¥y = 180° - 8§, (86)

where & is small, then the densities p, q and r arc given from equations (83)
to (85) to be

% p sin(y _ “o) - j' sin vy sin ﬁo ~ % sin(y + {30} 11' 6> 0,
| - sin(y + ) if & < O,
LA N ] (87)
1o . A o ] 1
% q sin(»( - 30) = a sin u,o sin oy - u Sln(a.o + T) if & » O’

Ao .
---l_1 81n(cc0+‘r) 1f5<0,k

—

.ees (88)

P N
v '
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and

u N e : : ‘
7 T sin(y~p ) sin(y - a.o) = sinaj sin B ; (89)
in deriving squations {87) to (89), use has been made of the fact that

sin{y + ﬁo) < 0, sin(y + a,o) < 0, sin(a.o + go) > 0 (cf. tho romarks following
equation (50)), sin(ﬁo - a.;})-= 1 {from aquation (5ha)) é;nd the fact that

sin y is small,

For small &, each of p, q and r can bo derived to the first order in 5
from equations (87) to (89); tho donsity p follows and,-to tho first order,

’»

fa 1-J4+21‘Ll,(ufp___k)] if5>0% -
- .fp “‘ \1-“’ ! d J .
P =Py > an 7;<£'—'E'"1_“ (90s)
2 . 1 _ -
o e = v if 8§ <0
( p)(p %) ‘ , |
and - - -
[‘3‘« cot c»‘:,(’ceu'x2 Qg = u%) i£f&>0)
p ~-pPF . N L oand A >£-E—¢ . (90v)
° 1 1T-u" .
- 8(1 + p) cot a Co if § < oJ -

The expressions on the J::ight-ha.ncl sides of equations (90a, b} which multiply
& (when & > 0) and - § (v_.rhen & < 0) arc self-evidently positive, and so the
density of the fibre system of cquation (54) is a local minimum,



SYMBOLS

A zero subscript is used to denote an optimum drstribution.

A

©442%422%027%157%06

E
f’I ((1) ’ fz(a)

f3(al

8,{a), g,(a)

Nx’Ny’Nﬁy

PaGyT
P,Q,R

T 20, 5%
Y ox

¢‘1’¢2

cross-sectional ares of an average fibre

elastic constants of sheet

stiffness of fibre material

functions defined in equation (24)
function defined in equation (56b)
functions defined in eguation {36a)

foreces in sheet

fibre densities per unit distance in plane of sheet
tensile forces in average fibres

applied shear

typical applied tension

applied tensions in longitudinal and transverse directions

limiting tensile force in a single fibre; see equation (14)

particular values of a defined by equation (26)

particular values of ¢ defined by equation (37)
fibre-orientations; see Fig.1
defined by equation {86)

strains

particular values of a defined by equation {36b)

ratio of limit of gpplied shear to limit of applied
tension

particular values of A defined by equation {28)
particular value of \ defined by equation (36b)

particular values of % defined by equation (40)

particular value of )\ defined as the positive root
of equation (59)

sce equation (52) and toxt preceding equation (54a)

ratio of allowable compressive and tensile forces in a
single fibre; sce equation (14)

non-dimensional fibre density, defined by eguation {15)
density of fibre material
stresses in sheet, based on effective sheet thickness

particular values of g defined by equations (25) and
(43) respectively
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IN PERMITTED APPLIED LOAD; ASYMMETRIC ARRANGEMENT, pu=C-6
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the basis of netting analysls. Load envelopes of shear combined with
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ments are determined oh the assumption that 1limits exist on the compressive
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