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SUMMARY 

Sheets having three directmns of fibre reinforcement are considered on 

the basis of nettmg analysis. Load envelopes of shear combmed vnth both 

uruaxlal and blaxlal tension are assumed and optimum fibre arrangements are 

determined on the assumption that limits etist on the compressive and tensile 

forces which may be developed in a fibre. Such optimum fibre arrangements 

are compared with the best-arranged motmpic reinforced sheets and mth 

hypothetical solid sheets havmg the same properties as the fibres. The 

total allowable load envelopes of the optmum arrangements are derived and 

are related to the prescribed load envelopes. The elastic constants of the 

optimum systems are slso derived. 

* Replaces R.A.E. Techrucal Report 66367 - A.R.C. 29320 
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I INTRODUCTION 

Numerous materials exist having high tensile strengths and high elastic 

moduli which, in the large, are imperfection-sensitive. Such materials may, 

however, be produced in imperfection-free forms3 fibres which allow high 

tensile strength and stiffness to be achieved, albeit In a limited form. 

Particularly when comblned,with low density this provides a considerable 

attraction and has led to the production of composite materials in which 

fibres are used to reinforce a matrix materzal.. The form in which the rein- 

forcement is incorporated in the matrix may vary; fibres may be orientated 

either randomly or in a regular manner, and at different volume fractions, 

depending on the properties which are required in the composite. Paper, for 

example, is basically a sheet of fibres randomly orientated in a plane and 

packed at high volume fraction; the elastic behaviour of such materials has 

been studied for some time (see, for example, Cox'). Glass-fibre filaments 

are also used in the construction of pressure vessels and studies have been 

made to determine optimum properties 233 in such oases. Glass-fibre 1s also 

used.in the construction of directionally reinforced laminated and sandwich 

materisls. All these applications generally aim at aohicving high fibre 

volume-fractions to reproduce as far as possible the desirable properties of 

the fibre in material form. 

The properties of composite materisIs depend in general on the material 

properties of both the fibres and the matrix and analysis which takes this 

into account is essential mhen considering, for example, the properties of 

unidirectionally reinforced composites 4 in directions inclined to the fibres. 

However, in a large class of problems ‘,2,3 a consistent physical model is 

possible in which the applied load system can be entirely carried as axial.~ 

load in the fibres without any'assistance from the matrix insofar as load- 

carrying capacity is concorned. melysis based on this assumption is usually 

referred to as 'netting' analysis since the mechanism for carrying load is 

that of a fibre-network. NOW a sheet with unidircotloncl reinforcement can 

be regarded as carrying loads having that direction entirely in the fibres, 

its resistance to loads in other direction3 depending to a considerable degree 

on the propertles of the matrix. iL cross-ply sheet reinforced in two 

orthogonal fibre-direction3 mill carry in tho fibres loads which are applied 

in these direotions; resistance to shear, hourever, will again dcpcnd to a 

large degree on the shear properties of tho matrix. Tho simplost 

directionally reinforced shoot able to carry goneral applied loading systems 
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as forces in the fibres is thus one which is reinforced in threo different 

diractions and it is composites of this Cope which are considsrcd on the 

basis‘& netting hnalysis in this Report. !L%c material propertics of 0 

reinforced shset oontsixnng continuous fibres aligned in thr3c dircctibns 

will depend to a considcrablo dcgrecon the angles of alignment and the . 
numbers bf fibres in any direction. For example, an arrangcmcnt ha;ving ' ., 
equal n&bers of fibres tho anglos bctncerrwhcso directions are 60' and isO0 _ 

13 one possible drrangcmcnt and behaves elastically as M isotropic sheet - 

having a Poisson's ratio of l/3. This Paper considers sheets having 

fibre3 C&n&d in three direotions rrhere the quantities and directions of 

the fibre3 ai-e cptiwsed nith regard toscne assigned load envelope. A 

three-directional netuorlc is statically determinate and no appeal to the 

elastic properties of the fibre3 is necessary. 

T_I ,General expressions are derived in Seckon 2 for the-load carried in 

any fibre direction vrhen a load system is ippliod. !L'he optimum fibre 

quantities and directions can then be found ud this is done in Sections 3-5 

for sheets which are subjected to uniform uniaxidl and biaxial tensions 

together with a shear. Uniiaxisl tension combined nitb shear is @pical, 

for example, of a ming or fuselage under-panel which derives tension from 

bending and shear from torsion. Biatidai-tension combined with shear is 

typical of a pressure cabin panel, the biaxial tensions arising frcm 

pressurisatlcn and the she3r from tiselcge torsion. Since isotropic sheet 

is a standard form in which reinforced materials are made-up, a compsriscn 

is made between the de&.ities of optimum sheet and the optimum isotropic 

reinforced sheet required to carry the s&me iood system. ‘.A sheet subjected 

tc unizkil tension &gned in any arbitrary direction is also considered 

in Sec$ion 6. The use of netting analysis iS particularly welcome since 

the optimisation3 carried out here mould be difficult under a theory which ' 

accounted also for the propertios of thematrix. Farther, since matrix- 

fibre combinations differ in their properties it is relevant to perform an 

ansJ.y&~in which only the fibre properties arc considered. In prcotioal 
I. ..' 

~335s it is important to know the total load envelopes which can bo carried 

by the sy&ems, and these-are considered in Section 7 for the systems of 

reinforcement pihi& arise. ' Although the optimisations carried cut make no 

use.of fibre elastioi"c;r, the elastic constants of optimum systems arc clearly 
_ 

of iiterbst a63 theso.are-derived in Appendix 6. 
'_ ..- 1 
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There is a similarity between the optimisation of a statically deter- 

minate fibxe net with rospcct to a given load cnvolope and the optimisation of 

a plane framework with respect to a finite number of distinct loading 

conditions. The theory of Michell structures, whch deals with the pmblem 

of determining the minimum-weight fYamework able to carry a single load system 

applied at specified points in space, has been summarised by Cox5. Extensions 

of this theory to allow consideration of a number of loading conditions have 

been indicated. by Sohmiat6. Howvcr in the fiela of Michell struotures, 

frames consisting of numbers of members are &rived to aocomnodate loads 

applied at distinct points in space whereas tho present Paper is concerned 

with the optimisation of three fibre directions for a continuous envelope of 

lOt3d. 

Now fibre reLnt'orcement must appear inefficient if considered solely as 

a mode of construction for a material available in other forms. ,3 30lia 
sheet of any conventional matorid is onpable of oarrying a combined load- 

system of tension and shear which is determined by a yield criterion such as 

the Mises-Hencky (soe, for example, Hill'). The same material prepared in 

a fibre form and made-up into a unidirectional composite would be able to 

carry the same unidirectional tensile load as the solia matonal., but its 

capacity to carry other loads would be severely impaired. In addition, the 

composite would be heavier since a matrix material would have been added. 

The argument in favour of composite materisls is that, although they must 

soem inefficient if their form of construction alone is considered, the fibres 

ore not available in other forma and their properties arc so attractive that 

this inefficiency can be more than offset. Thus, to make a valid assessment 

of the efficiency of composites on the basis of comparing like with like, 

comparisons are also mat?@ in this Report botwecn the densities of reinforce& 

and 'solid' sheets optimised to carry the same load system; in view of the 

above remarks the existence of such solid sheet is hypothetical but the 

comparison is necessary to enable the further conparlson betnccn reinforced 

and conventional materials to be made meaningfully. 

2 GEi?EIGIL ECUA!CIOI~ 

Consider a rectangular sheet having sides parallel to the co-ordinate 

axos O(x,y) in which continuous fibres are arranged in parallel systems 

hiving three dircotlons a, p and y, dofincc? so that 

1800 3 y > p > a > 0 
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(see Fig.1). Although individuel flbrzs may vary ir, cross-sectional area, 

strength etc., an assemblage of average fxbros with average properties will 

be assumed; the disposition of these fibres in the plane of tie panel is 

such that they are arranged at densities of p, q and r fibres per unit 

distanca, while the corresponding tensile forces in smgle fibros are P, Q 

and x. The sheet is subjected to an applied load-system, 

as shown in Fig.1; N, etc. and T, etc, have the dimensions of force per unit 

length. Equations for P, Q, R &e derived by considering equilibrium of' 

the sheet. Equilibrium at the sides x = constant gives 

pFcos2a i q Q (30s~ p + r R cos2 Y = T,' 

p P sin a cm ~7, + q Q sin p 00s p + r R sin y oos y = S, 

while equilibrium at the sides y = constant gives 

p P sin a cos a t q Q sin p cos S + p R siny cos y = S, 

p ? sin 
2 

a + q ? sin* p + r 2 sin* y = !r2. 

Since the equation related to equilibriuu of shear is the same in oath case, 
these equations reduce to 

pP+qQ+rR = T,+T2, -1 

I 
pPcos2a+qQcos2~ +rRcos2y = T,-T2, (2) 

p P sin 2a + qQ sir? 26 + r R sin 2y = 2s, 

which determi.neP, Q and R coapletoly. The solution of equation (2) is 



p P sin(ga) sin(Y-a) = T, sin p sin Y+T2 03s P oos Y-S sin(p+Y), 
1 

q Q sin(a-p) sin(y-p) = T,, sin y sin a + T2 cos y cos CWS sin(y+a) , 

I- 

(3) 

r B sin&y) sin(a-y) = T, slfl a sin @ + T 2 cos a coa P-S sin(a+p).J 

Equation (3) is general. If systems of reinforcement symmstric with 

respect to Ox are consdered, then either 

p = iso - a, y = 180°, P = 9, (4) 

which will be referred to in what follows as longitudinslly sy;nmetric 

(abbreviated to 1,s.) systems, or 

p = 309, y = 180’7 a,, p = r, (5) 

which will be referred to as transversely symmetric (Lo.) systems. 

The 1.~. system of equation (4) then gives for the forces in tile fibres 

pP = $-T2cosec2a+Scoseo2a, - 

p 'J = & T2 cosec'a - S coseo 2a, I 

rB = T, - T2 cot’ a, J 

(6) 

from equation (3), while the t.s. system of equation (5) gives rise to fibre 

forces 

pP = $ T, sec2 a + S cosec 2a, 

sQ = - T, tan2 a + T2, (7) 

p R = 4 T, sec2 a - S coseo 2c. I _ 

Now, sheet having three fibre-directions is elastically isotropic when 

the differences in angle betiieen the fibre direotlons ADZ _+60°, while the 

numbers of fibres aligned in these three directions are the same (see 

equation (81), Appendix A). Thus 
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B = a + w, y =- a + 1200, p<= q = r; (8) 

suppose the an+e,s defined so that 0 -C a < 60'. Such sheet is not isotropio 
in all respects since its strangth, -for exampie, ve+s according to direction; 

it is however, ussally referred to as 'isotropic', and this will be fo~owed 

in the present Paper. The fibre forces P, Q and $ are:then given by 

3PP = (T, + T2) + 2(T, - T2) ms 2a + 4s sin 2a, -I - 

3pQ = (T, + T2) + 24 - T2) cos(2ai 120') + @ sin(b++ 120'), 

3pR = (T, + T2) + 20, - T2) ms(2a+ 2&O") + 4S sin(2u + 2&@), 

fro= equation (j). Wi-~en isotropic sheet is aligned in en 1.~. manner, that 

is when 

the fibre f&es are given by 

3pP = 2T2 + 2 f3 s, 

3~0 = 2T2-2433, 

3pR = 3'=,-T2 

(11) 

from equation (6). The t.3. isotropic system, defined by 

a = 3@, p = 900, y = 150°, p = q = r, (12) 

gives rise to fibre forces 

3p P = m, + 2 ?3 s, 

3pQ = - T, + JT2, 

3p R = 2T, - 2 -f3 S. 

. 

: 

(13) 
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The applied load is carried in the fibres as either tension or 

compression. The tensile force in any fibre will clearly be lass than the 

ultimate strength U of an average fibre and the compressive force will be 

greater than some other value. The restriction 

- p U i tension in an average fibre < U (14) 

(II i 1) is therefore introduced. Tha ability of fibres to take compression 

is uomplicated and differs according to fibre material, matrix and form of 

construction; an individual fibre may develop a high strength in tension but, 

having a low bending stiffness due to its innate thinness, will not be able to 

demonstrate any appreciable strength in compression on account of instability. 

When set in a matrix, however, fibre behaviour in compression will be 

similar to that of a beam on an elastic foundation and individual fibre- 

stability will be improved. An assemblage of fibres lsminatcd in a matrix 

material will exhibit other tendencies; a fibre in compression which has 

lsminae of fibres in tension adjacent to it may be expected to derive some 

stabilising influence from these. It is thus clear that, if an optimisation 

is to be carried out, some overall simplification must be made and it is 

assumed that n, defined above, is a constant. There is thus some lower 

limit, derived from unspecified strength or stability considerations, on the 

compression which can be ~cvclopcd in atq single fibre. 

The mass of fibre per unit arca of sheet is 

(P+ q+ r‘) Au, 

where A is the cross-sectional area of an average fibre and o' is the density 

of the fibre material. Thus, in what follows a non-dimensional 'density' of 

fibre per unit area of sheet, 

P = ;(P+q+rL (15) 
. . 

will be used, T being a typical applied force, Other dimensional constants 

of the sheet follow; in fact 

Mass of fibre per unit area of sheet = w, (8) 
i (16) 

Ultimate strength of fibre material 3 ! ' (b) 
-' 
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It is relevant to consider also the strength properties of sheet fabrioated 

from solid material ha&g the SEG? properties as the fibres in order to make 

like-with-like comparisons between the properties of reinforced end sheet 

materiels. Yield in-a solid sheet of thiokness h which-is governed by .Ule 

Mises-Hen&y yield criterion' is given by . 1 

N, NY + N; + 32 = h* C* A-2 
XY 

(cf. equation (16b)). 7%~ thinnest sheet able to carry the lpad system of 

equation (I) thus has density given by 
i 

.p = $j-$&T$z-, (17) 

from equation (16a).~- 

'1 Stiffhe& of reinforced sheet is not specifically used in+the e&ysis 

of this Report: ?or completeness, however, the elastic constants of the 

fibre-system; above *&e:derived in Appendix A. . 

3 - OPTIMUM ARR&GEhEhTS FOR lJNIAX& TENSION AND SYXXWRIC S&AR VARIATION 

-'- Expressions having been established for the load carried in any fibre- i 
direction t&optimum arrangement of fibre needed to carry given uniform load 

systems may be considered. The applied load-system first considered is _ 

.T2 = 3, (18) 
. - 

-XT<S<XT 

(cf. equation (1)); - this corresponds to a rectangular load-envelope in the 

(Nx, NT) plane, s6etri.c with respect to the Nx-axis. The optimisation 

oarried out 13 that of minimising the density p subject to the constraint that, 

for-all the applied load fields of equation (18), the restriction of equation 

.(ll+~on fibre,forces is observed at all points on the load envelope. _. . 

Since the applied load system of equation (18) is symmetric withrespeot 

to-the Ox and Oy axes, a&e&ion is rostr=cted: to symmetric fibre'arrangements. 



' 3.1 General optimum arrangement 

If the 1.~. system of Section 2 is considered, then 

p P = - p Q = S cowc 2a, 

rR = X 
1' 

. i 
_' 

(19) 

frw equations (4), (6) and (18). The (P, Q) and R-fibre systems thus osrry 

shear and tension independently and may be indepcndontly optimised, 

Since the R-fibres are always in tension, it is easily seen that 

min (r) = 5 , 

corresponding to X 
1 

= X and R = U. One of the P and Q fibre-systems will 

be in compression, and for any given a it follows that 

min (p) = '$ 003cc 2a 

corresponding to S =hX and Q = - ,~U(or S = -XX andp = -Ill. The lowest 

fibre-density for a given value of a is thus 

nin (p) = + min(2p+r) = I+: 003cc 2cL. 

The minimum density for al3 values of a occurs when a. = 45’; the fibre 

orientation and dist+bution arc then given by 

PO 
= I+?, a 

0 
= 45O, Lo, qo, ro) = fj ($ t fj, I) l (20) 

'This best arrangement is dcterminod by limiting tension in the R-fibres at the 

maximum value of N, and liuiting compression in the (P, Q) fibres at the 

maximum shear N 
xf' , 

In the t.s. system of Section 2 the fibre forces are 

.pP 4T, sec2 a + s CO.x?C 2a, 

sQ = - T, tan2 a, 

1 

" (21) 

pR = 
2 

$- T, 3~0 a - S cosec 2~2, _ 
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fmm equations (5), (7) ad (IS). The Q-fibres.are slw&ys in oompression, 
. . 

and it-follows that 

min(q) = $ tan2 a, 
3 

corresponding to T, = T end Q = - MU. If S z 0, the minimum vslue of p 

will be determinea either by having enough fibres to resist the meximum 1 

tensile P.(when T, = T, S = XT) or the maxiinum compressive R (when.?; = i . . 

s = al-). It foXLows that 
, 2 = .- 

. . 

.min (p) = $msx i+ se4' a * +:oosec Za, z coseo 24 , 

whence 
~- when 0 <a<$,, 

P = imin(@+ q) (23) 
when 6, < a < YO', 

where 
> - 

__ 
.i pqa> = a coseo 25 i: tsn2 ; 9 . 

pf2(al = p seo2 2 a + Z?+ cosec 2a+ tan a _- 

- , ten $1 
_’ 

2’y - ;). 
_ _ .: -.-- ; . - ..+ -r 

If the=re.striotion that S 2 0 is removed; gquntion (23) still hqlds since_& _~Z e-3. 
roles of the P and R-fibres in resisting tension and compression ape reversyii 

Each of the functions i,(a) and f,(o,> has a single minimum for 0 < a < Y?i 

thes&*are a, and a2 respectively, defined by '- 
._ 

Since p 5 I, a2 c a, < 45'. 

: -The ininimum value of the aensityp(a), defined by equation (23);depeks 
, .__I 

on the--&dative magnitudes of the anglesCfl,, a2.e.d +,; it oan be shown tkiat _. 
this minimum is achieved at the median o&those engles; if the median is- :' 

either a, or a2 the minimum is a convktiond one (i.e. &responds to a . 

vanishing first derivative) whereas if it is at $, the minimum lies at the 

in&-section of the two mctions f,(a) end f,(a-), The minimum density for 

+ t.s. systems depends on the shear-ratio h, and is gLven by 



if 0 C A < A,, 

I f,(a,) , a = a2 

with,-in eIL cases, 

9 
T tan2 a 

= 
UP 

, 2p =$P-Q (27;) 

and 

1, F A,., = ufil . 
2 (28) 

(1 - PI J2 - t-l2 (I -.~~ l . . 
. 

For malh variations of the shear, the orientation in this arrangem+ is the 

same whatever the value of p (cf. equations (26) and (27s)). 

Now the line . 

PO = I+$ -* (20) bis 

touches the curve 

at the point where 

tana = p. 

the 1.5. and t.s. systens udlich correspond to equations (20) and (27b) will 

have the same density for the one particular shoar h of oqustion (29). If 

~1 = I the above argmont brejca dam; this equality of density batmen the 

1.s. and t.s. arrangcnonts onb holds when p < 1 snd is thus a consequence of 

the inefficiency of the fibres in resisting compression. . 



The 1-s. and t.s. systems are the two contenders for the title of 

optimum arrangement. It may be shown by computation that the 1.3. system 

cf equation (20) has, in all oases, a lower density than the t.s. system of 

equation (27) and is thercf'ore the true optimum. Figs.2-4 have been prepared 

to shorn the variation of optimum fibre density p, with shear/tension ratio h 

ard to compare these optima with the best fibre densities arising from the 

t.s. fibre-arrangement. !Phe fibre orientations tithe t.s. system are 

indicatea. In Fig.2, corresponding to the case when fibres are allowed to 

develop the same tensile and compressive load (p = I), it is seen that the 

1.3. arrangement has a considerable advantage for all positivo vciluea of h 

over the t-3. system. It is, of course, unlikely that the allowable 

compressive and tensile fibre loads ~11 be the same, and Figs.3 and 4 

correspond to values of p = 0.75 and p = 0.5 respectively. The 1.~3. arrange- 

ment is generally superior to the t.s. arrangcmont although, for 1-1 = 0.75 and 

moderate values of the shear, the superiority is only marginal. Norsover , 

for the one particular value of h .alroa&y referred to (cf. equation (29)) 

the two alternative arrengemcnts lead to the same fibre-density; for clarity 

the part of the curve corresponding to the t.s. system is omitted in this 

region in Figs.3 and I+. 

The fraction of fibre in the optimum 1.3 . system of equation (20) which 

is aligned in the k&5" directions is shove in Fig.5 to illustrate the 

variation of the fraction of fibro needed to resist shear; the inclusion of 

p = 0.25 shows the effect of using fibres which can only devolcp very low 

compression, considerably more fibre boing needed to withstand the compressive 

component of any applied shear. 

The elastic constants of the 1.~. and t.s. systems of equation (20) and 

(29)are given in equations (78) and (80) of Appendix A. 

3.2 Optimum isotropic arrangement 

Elastically isotropic sheot'subJectod to the load distribution of 

equation (18) and aligned as a 1.3. system n-ill have fibre forces given by 

pP = - P Q = 2 J3 S/3 

I 

(JOa) 
PR = T,, 

from equation (II). Isotropic sheet aligned in a t.a. manncr and subjected 

to the load system of equation (18) will have fibre forces given by 



75 

3pP = 2T,+243S, 

3p@ = -T,, 

3pB = 2T,-20S, 

(Job) 

from equation (13). Optimisation of symmetric isotropic fibre arrangements 

thus depends on choosiw the bcttcr of tho 1.~. and t.s. arrangomcnts and 

minimising the fibre density. In either of thoso two arrangements the density 

~11 be determinea by the need to provide sufficient fibre to resist limiting 

tensile and comprcssivc forces. Thus for 1.~. arrangements 

nin (p) = ma% 
c 

3, 2 v’3 ;j * 

which is determined Vjr limiting tensile R or compressive (P, Q) in equation 

(30a), while for t.s. arrsngcments 

min (p) = max Cl! 
IfJ ' 

2+2?f3x, 

which corresponds to limiting tensile P or compressive (Q, B) In equation (job). 

The optimum isotropic arrangcnent will thus have density 

For ocmparison with the gcnorsl optimum, this isotropic-optimum density is 

also shown in Figs.Z-4 alongside the density of gonoral optimum shod. 

It is of interest that for no applied shear (h = 0) equation (31) gives 

Hence, unless the fibres are poor in compression (p < l/3), it is better to 

use the t.s. orientation of isotropic sheet to carry uniaxid tension. Thus 

it is better to have two fibre systems e.ll;?led ot +_30° working a little 

ine?ficiently by carrying en increased component of the tensile load than it 
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is to have only one fibre system at 180' which carries the full tensile load 

effioien"tly with the other two fibre systems not contributing at all. The 

restriction on p arises since with fibres aligned at +-30’ the role of the 

transverse fibres is to resist compression. 

A further parameter relevant to the possible use of reinforced 

composites is the ratio of the density of optimum to isotropic sheet for arly 

particular load envelope; this ratio gives *n indication of the efficiency 

of isotropic sheet. Fig.6 shows this variation for sheets in which p = t-0, 

O-75 and O-5. Now, when X = 4 p (3, . I 

Ontimum p 
Optimum isotropic p 

= y 22 0.91, 

from equations (20) and (31); this*is independent ofp. It is seen in 

Fig.6 that the density ratio varies between 0-j and the above value of 0*9l 

for all sheets for shioh p > 2. For sheets in which p < $ the ratio falls - 

below 0-j but these ara not specifically considered. It 3.5 of interest that 

when 7. = $ p 0 the optimum density is only 0.91 of the best isotropic density. 

In fact, for this particular value of A, 

(po, 9, ro) = f (0.866, 0466~ 11 

in the optimum akangement eligned at (+4j", 180'), while 

(P,, qoS ro) = f (I, 1, 1) 

isthe isotropic arrangmnent aligned at (+60“, j8o“). Thus the.only -- 

ineffYoienc.y in the isotropic arrangement is that of aligning fibres at 260’ 

rather than at k&50 in addition to those aligned at 180°, and this is Slight. 

3.3 Densit?? of solid sheet 

The optimum arrangement may also be compared with sheet fabrioated from 

solid material; the minimum density of such ah&et is 

P = J-- I +3 FL*, (32) 

from equations (17) and (IO). This density is also shown in Figs.%4 to 
tnailJi+ntn comperi wa tith the fibre-reinforced sheets alzoady considered. 



The ability possessed by solid material to withstand complex loading without 

the 33me increase in density a3 fibre-reinforced naterial is illustrated; it 

should be borne in mind that p is a property of the fibre-matrix composite 

rather than a constant of the material. 

Fig.7 shows the ratio of the density of solid to optimum sheet for 

various values Of &l; this ratio gives the efficiency of optimum sheet when 

regarded a3 a method of construction. The value p = 0.25 has been included 

to shon the effect of restriction of the compressive load allowsd in the fibres. 

As might be expected, in all cases the density ratio has an upper limit of 

unity corresponding to simple tension. Even if the compressive fibre load is 

unrestricted (i.e. p = 1) the efficiency can fall to 0.65; further restrictions 

on compressive load imply, in general, lcwcr efficiencies and the lowest 

value illustrated is cno of C* 21 when p E 0.25. These figures, of ccurse, 

must be interpreted with care if used in assessing a practical application; 

30 far as the composite is concerned they relate solely to tho weight of fibre 

and this is assumed to be working mth full efficiency. Actual composite 

efficiencies will bs much less than those quoted abovs; a 'loading' factor 

in the region of O-59 (for low density fibres) to O-66 (for higher density 

fibres) is probably reasonable if accounting roughly for the presence of a 

resinous matrix materid at a volume fraction of 0.5, while a firther 

'loading' will exist to account for the loss in fibre efYiciency; Porter', 

for example, quotes a fibre efficiency of 0.68 for cross-plied continuous- 

fibre composites. 

4 OPTIMUM ARRANGXKZNTS FOR BIAXIAL TENSION AND SyE5IETRIC SHEAR VARIATION 

The example of Section 3 having bcon conccrncd u&th combined uniaxial 

tension and shear, a problem in which biaxial tension exists is next considered. 

The optjmisation is carried cut for the applied load-envelope 

0 < T, < T, 

0 < T2 < $T, 1 (33) 

-)rT<S <XT. J 

The load-envelope is a rectangular solid in the (Nx, NY, NV) load-space. 

Since the loading is symmetric, attention is again restricted to the 1.3. 

and t.3. fibre-arrangements of Section 2. 
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4.1 General optimum arrangements 

The fibre forces in the 1,s. system-are given by equation (G), from which 

it follows that the minimum densities p and r for any particular orientatian a 

are given by . . 

T 

c- 
A cosec 

2. 
P.= Em= 4 a + X~cosec 2ci, t coseo 213 

I 1 
and - . 

r t-$max 1, 

c + T2 a =’ 3 - 

_ (34) 

? - - _ 

the te?s on the &ht corresp&ding to limiting tensile P, compressive Q 6 

limiting tensile and compressivi R respectively (when S z- 0). The form 1 
taken:)Jy the density t&s depends on the lk-ger of;the expfessions on the . 

right of eq&kon (34); it follows. that- *’ 

-- 

P ‘f 

cosec 20 when .0 2 < a 

I+2 ! P . 
cgaec 2u when 0 < a 

. 1 J . _. 

where 

+ g,(a) = p cosec* a + WI p coseo 2a + cot2 a, 
. ._ 

:+$d = oot2.+4X cosec~, 

and 

cot 0, = f&i,:- cot e2. = - ) x3 = u dii 
P (1 -p)J2 * 

(36b) 

The fhnctione g,(a) and g,(a) each have single mi$.ma for 0 < a < 90’; they 

ere a’ and a’ 
1 2’ 

where 



cot* a; + * cot 29 = 0 

and 1 

cot* a; + zh cot 2 a; = 0, d 

IV 

(37) 

whence it follows that 

90' > a; > a; > 45'. 

Since 1 + $ ccsec 2a has 8 minimum when a = 45', it cnn be shown that the 

minimum of the density function, as definea by equation (35), depends on the 

relative magnitudes of the at&es a' ,, a;, 45“, 0, and e2, the minimum being 

achieved at the median of these angles. If the median is a;, a$ or 45' then 

the minimum is conventional (i-e . corresponds to a vanishing derivative) 

whereas if it is 0, or e2 it lies at the intcrseotion of two functions. 

The minimum density is then, in general, given by 

P, = 

if ac = 45' is the median, 

if a0 = a; is the median, 
(38s) 

2 + g,(a;) if a0 = a' 2 
is the median 

p = 
0 

I 
yf@+p+$ if a = 8, is the median 

0 
and X <X3, (38b) 

idk@ld + *J+j if a0 = e2 is the median 

P 

if a0 = a' 
2 is the median 

if a0 = 8 
1 

is the median ana A> h 3' (380) 

1 

-zFJ 

+ .2x211-~ 

P3 

ifa =tl 
2 

is the median 
0 
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Equations (38a,b,c) enable the mtium density to be found in any 

particular Case. A simplification ensues.if-&tentibn is restricted to sheets 

for which p > a, sinca then 0, < 45O and : . 

a; > a; > 450 > 8, 

(cf. equation (37) and the *emarks following). Dependitig on the magnitude of 

e2, only a:, 45' or O:, can then be the median, .&I the following expressions 

for the m&mum aensi& are derived; 

a0 
.z a1 2 whenO‘<)r<X 

4', (4 

- 
there - 

.:-x4 = 
u & . . 

-_ *IA5 =*.; 
2(1 - p)J2 -p 

!4p) 

. It is noteworthy *ha<, for-m&l values of the shearratio X, the orientation .- 
ma density in this 1.~. skngement we indepkndent of p (cf. equations (37) 

. ma (39a)). ’ -. 
_ . 

Ii a t.s. Syst‘em, the fibre foroes sre given by equation (i);‘ it 

follo&the+t the minimum densities p and q f;or,eny particular orientation a _- 
are given by .. 

'7 
5 

. and 

r 2 . . 
P = $max,;seo a, .+-h cosec 2a, X coseo 7 25 t 

P c j r  ̂ (411 

9 = 5 max f, 1 
_ .i 

i - 
?a ;tana , 1 - , I-. _ 

.s: _- _ . : 
the terms on the-right corresponding, when S > 0, to lidting tensile P,. 

compressive R sna^tensile ana compressive Q rBspeotive>y.. It follows that 

the lowest densi~$ is 
. 
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cosec 2a hen 0 < a < 4, 

when $, < a < +2 i.fh<X 
3 (424 

i f,(a) when e2 < a 

and i- 

coseo 2a when 0 c a -C q52 -l 

when e2 < a < @, (42b) 

when I$, < a - -_ 

where I$,, f, (a) and f,(a) are defined by equstlons (24) and (25) and 

(43) 

The minimum density corresponding to equation (42) is achieved at the median 

of the,angles a,, 0'2, 45’, $J, and $2; it has already been remarked that 

0 < a2 < a, < 45O. It follo~~s that 

i 

++h 
Y 

P= P 
if 45’ is the median,\ 

1 

?- 0444 

f2(a2) if a2 is the median,! 

ifa 
1 

is the median 

+ & if 4, is the median land?.<1 
1 

3s (44b) 

if 42 is the median 

. 



if a, is the median 

‘ , 1 
- 

P E if $, is the median and X> x3- (GC) 

i- 

. - 

if ,$2 is the median 

The two contenglers for the title of optimum system are thus the 1;s. - 

and.t.s. systems whose densities are given by equations (38),an$ (i++j __ 

respectively. Computation sho& that,'of these two systems,‘the-1.3. one .- 
leads in general to a~lower density and is therefore the true optimum. 

Figures 8-10 show thg vsriation of optimum fibre density p, f"r fibre systems _ 
in which IJ = ?:O,-O-75 aa 0.5 respectively; the comparison of the-optimum 

. J . 
density with the higher.density-arising from the t.s: arrangement is also: - . . : 
Made ,in these figures. .=_ .~ 

When p <‘ I:, as~iin Section 3.1,. at one particular value of the'shess 

ratio the 1,s. and t.s. Systems give rise to the seme density. :&ii is~ - 
. . - 

again a conseque'nce.of the cbmpressive ineff'ioienoy of the f'ibresi wlien _- 

p > 0.5, nis equelity ocdurs-nhen : - . r 

The optimum 1.~3,~de@%y near this value of X is 
5. - _ : 

PO = I+$ 

; ..-_ 
. . _f 

and the densitiAoeWGt.he t.s. system is 

1 
p=- + h’ (.I -.p); s _ 

lJ3 _ 

$9;) bia 

_(l$i) his 

referring to equaticn (29) end the-preceding remarks, the local behaviour here 

is seen to be exactly the same as that for uniaxisl tension in Sectioi‘3.7. 

The densityand orientation here are thus also given by equation (26). In 
Figs.9 and IO the part of the t.s. density curve in this region is omitted. 
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while the density of the 1.9. arrangement is, in general, lower than 

that of the t.s. arrangement, for C, = 0.75 (Fig.9) and moderate shear the 

superiority is only marginal. For small shears it can ba seen that the 

optimum fibre arrangement is indcpandent of p; it is the ability of the 

fibres to carry tonsilo load which determines the arrangement and only for 

larger variations of the shear do compressive fibre forces have an influence. 

The optimum system is again found to be the arrangement having one fibre- 

direction aligned parsllel to the applied tension which is alloived the larger 

variation; this was also the case for the fibre-arrangement corresponding 

to uniaxial tension in Section 3.1. 

When h q 0, the optimum angle of fibre orientation is 90' and corresponds 

to two, rather than three, fibre directions aligned in the direction of tile 

two applied tensions. For p ='I the variation of a is indicstcd in Fig.8. 

mhen O-5 < p -c 1, the variation with X initially follows that of Fig.8 until 

h = $4; for larger shears the orientation reaches the constant value of 45' 

at the point indicated in Figs.9 and 10, the optimum density then varying 

linearly while the o$inum distribution is the same as that for uniaxial 

tension in Section 3.1 (sco equations (20) and (390)). 

The optimum fibre densities p o and r. also follow from equation (34); 

when u > O-5 

r = - 
0 ,'P 2p. = : P, - ros (45) 

p. being given by equation (39). 

The elastic constants of the above fibre-systems are given in 

Appendix A. . . 

4.2 Optimum isotropic arrsnganents 

The fibre forces in 1.~. or t.s. sheet will be given by equations (II) 

and (13) respectively. %en SubJected to the symmetrically varying load 

distribution of equation (33) the optimum density is given by the requirement 

that Just sufficient fibre must be provided for no fibre to carry greater than 

limiting load. In the 1.3. arrangement this gives a minimum density of 



while in the t.8. arrangement the minimum density is 

The optimum is'the minimum of these and 

For caeparison tiith the density of the general optimum confi&i+i% this 

isotropic optiunus density is also shown in Figs.9710..t 
I - 

For sero applied sheer (h = O), e&&ion (46) gives 
.- . . . ,_ 5 

p, -= 2 if p > 0.5; 

. .I. . 
oorr&ponding to the t.s. s.l+gnment. 

-. ,_ 
Thus, for sheets having suffic5.bntly 

goodcompressive properties (II > 0:.5). the better aligmontof isotropic sheet 

to carry the bxaxial tension of equation (33) *en X = O is the t;o. arrange- 

ment in which fibres a~$ aligned at +30°.to the direction of the-largsr tension; ~. 
‘this-is analogous.to the behkour of isotropic sheet under unia+l t&&on ._. 
‘in Ssction '3.2. 

Fig.11 hes.been prepared to show the ratio of the optimum densitjr-to 

the optimum isotropic de&ty for sheets~in vhich p :: 1.0, 0.75 and O-5. 

Since for &all values of h the opttiua isotropic density is independent of 

p, the variation for &! x 0.75 and p = 0.5 is shown only when it deviates fmm 

the curve for JJ = 1. For biamel tcnsqn alone (i.e. when X, = O) the J' 

density ratio is.O*75; while 

a 
optimum P 

Optimum isotropic p 
=!+,. 

243 
* 0.58 asX+m. 

. 

In view k-the WE@ in which the load envelope has been spocificd, h +T merely 

corresponds to no biaxial tonsion-rather than to en infinite sheer. *The 

meximum value of-the dcnsit$ ratio depends on p; thus, when p = 1 and 0~75 

the optimum density varies between 0.58 and 0.99 of the density of the best 

isotropic sheet. HoMover, isotropic sheet in which p = 0.5 dots not achieve 

the 9~2118 efficiency. 
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The maximum value 0.99 of the donsily-ratio cccu~~s ;hcnh k 3.58; at 

this particular h 

(PO' qo9 'J = 5 (o-99, 0.99, 1) > 

in the optimum arrangement which is a&nod at (+56’, 180'), while 

(PO' g8 ro) = 5 (I, 1, 1) 

in the isotropic arrangomcnt which is aligned at (+60', 180'). !I710 only 

inefficiency in the isotropic arrangcmont arises from eligning fibres at 260’ 

rather-than 256’; the resulting kkfferzncc in donsi& is only alight. I 

4-3 \ Density-of-solid she& 
LL 

The optimum arrangement of Section 4.l.mey also be corn&red Clh the ' 

' ' density of solid sheet; the minimum density of such sheet is 

p :=\.& 3+12 p.2i 
,i (47) 

from equations (17) and (33). To enable comparison to be made with the 

reinforoed sheets already considered this density is also shown in Figs&IO. 

The direct comparison between'optimum reinforced sheet and solid sheet 

is made in Fig.12, where the efficiency of optimum sheet is shown as a 

density-ratio. The value p = O-25 has been included to illustrate the 

effect of fall-off in compressive fibre-performance, .thc optimum fibre density 

being determined from equation (38). - In aI oases, the efficiency which 

corresponds to biaxial tension alone (i.e. A = 0) is 0% since matcridl has 

to be provided in reinforced sheet to vnthstend oath component of the tension 

separately, whereas in solid sheet this is not SO. For very large shear+ 

ratios ( h +CO) the efficicnoy is the same as for uniaxial tension in 

Section 3.3; a minimum efficiency again exists, and varies betwoon d-43 

(when p = 1) and O-20 (mhon v = 0.25). As was emphasised before in 

Section 3.3 thbso efficicnoios should bo interprctod rvith core. 

5 OFlTMUM ARRANGEMNTS FOR UNLT.AXIAL TSXSIOK AN' ASYLPBTXIC ShFAR 
VARIATION 

The optimisation for uniaxial tension combined with shear varying 

betvreen equal. positive and negative limits was considered in Section 3. 
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In the wing skin of an aircraft the shear, deriving from wing tOrslOn, iS 

likely to be greater when arising from noso-up twisting than when derived 

from nose-down twisting, and in this case there would bc larger limits On 

positive shear than on nogativc shear. Accordingly tho optimisation is here 

carried out for the applied load system 

0 < T, < T, 

1 
T2 

= 0, 

1 

(48) 

O<S<hT, _I 

which is asymmetric in character and may be expected to give rise to asymmetrio 

systems of reinforcement. The load-envelope in the (Nx, ?rW) plane'is-in 

this case rectangular and has no symmetry about oither axis.,,'& applied load 

of equation (48) is chosen to illustrate the principl_cs involved, tho lower 

bound of zero on the shear being taken to simplify the analysis. 

5.1 General optimum arranngcment 
/ 

The fibre-forces arc given by 

p P sin(p - a) sin(y - a) 5 T, sin y sin g - S sin(y + p), 

q Q sin(y - p) sin(p - a) = S sin(a + y) - T, sm a sm y, 

rRsin(y-a)sin(y-p) = T,singsina-Ssin(a.+P), 

1 

* (49) 

from equations (3) and (48). Depending on a number of inequalities bctwcen 

a, g and y, the three fibre densities p, q and r oen be minimised separately 

to be Just sufficient to carry the applitd load of equation (48). Theso 

expressions are given in equations (83)-(85) of Appendix B and lead to a 

general definition of the density p(c, p, y). The optimum fibre density follow3 

if the values of (o,, p, y) which make p anabsolute minimum are then found. 

In view of the numerous inequalities involved (cf. equations (83)-(85)) it is 

clear that the problem of minimising p(a, g, y) nill be difficult analytically 

and resort to computational minimisation techniques will bc noedcd at an 

early stage. However, the previous analysis provides a useful guide; in 

each of Sections 3.1 and 4.1 whore the shear was alloncd to vary bctwecn 

equal positive and negative limits, two alternative fibro arrangements contended 
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for the title of optima. Each arrangement corresponded to Au minimum 

of the aensi@, considered as a f'unction of fibre orientation, and the 

absolute minimum was decided by computation. A similer situation will 1 
probably exist in the present cese end local 6inime'of p(a, S1 y) will exist, 

the absolute minimum being dooided computatior.ally. 

Possible local minima of p are thus sought; s&e >e op%i&m ' 

solutions were found in Sections 3.1 and 4.1 nith v = 180°, the possibility 

of at least a local minimum for y = 180" is considered. If this is assumed 

then the fibre densities ere 

(a) 

(b) * (50) 

frcm equations (83)-(85) ark it has been assumed that sin(y + p) < 0, 

sin(y + a) < 0 ard sin(a + F) > 0. In equation (50) the densities p and q 

are determined entireljj by the resolved tensile ad compressive comsonents ' 

respectively of the shear while the value of r is deternine either by direct 

tension i&e f&t term in the curly brackets of equation (5Co)) or a 

compressive force arising from the resolved component of the shear (the 

second term). Now whatever the shear-ratio X, R-fibres ~Zi.l have to be _ 

provided to resist 

fibres to the fill 

direct tension; it is clearly efficient to use these 

in compression also, i.e. to take 

h sin(c, + B) 
p sina sinp = 1, (51) 

if that is possible. Now, so fez as the R-fibres are concernerl, for very 

low sheers (h << I) tension &U be paramount and use of the fibres to the 

limit-to carry sheer in this wey is unliiiely to be cffioient; it may be, 

desirable, however, for' shears above some veluo h'. Then, 

cot a + cot p = f if ?. > i;, (52) 
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from equation (51). The fibre-density is then given by 

(53) 

from equations (50) ad (52); the minimisation of this density is an 

unconstrained one if X < 5[ and SUbJeCt to the oonstreint of equation (52) if 

x >A. 

When this minimisation is carried out it is f0ma that 

and that p has a minimum when 

y = 18Q", p 
0 

= 9oC + a 
,O’ 

p, =$f(p +Jm), (P,, qol ro) =$b cotaoS Etsnao, 1)) 

1 

(54) 
0 

ten 2a. =F ifh>*. 
! 

The density has been minimised ~6th respect to a and p nhilc holding 

y = constant = qOO". It is shown in Appendix B that equations (5b,b,o) 

also represent a minimum of the density when y is allorred to vary and these 

equations thus represent a true locnlminimum. 

'Ike analysis so far has been confined to the investigation of a local 

minimum at y = 18W'. Xqustions (83)-(85) of Appendix B provide a general 

definition of the density and this has been used in conjunction with a 

digital computer programme which uses Piggott's mechanisation' of Powell's 

conjugate direction method 
10 

of function minimisation to find optimum values 

of fibre density. iiieohnniscd search procedures for finding minxma employ 

various techniques of cfficicnt search on genzrsl surfaces In hypwspace; 

U-IQ Powell method is psrticulsrly powcrfil in that it has qudrctio convcrgencc 
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near 8 minimum. In eny prooedurc only local minima aro found and different 

local minima can be rcoovcrcd if different starting points are chosen. It 

was found that, in goneral, for ‘any chosen values of (h, II) the fibre-density 

~(a, p, y) has three local minima. -lko of those local minima correspond to 

- asymmetric values of (a,.S, y) which oonsistantly-give vslucs of the density 

greater than the third local minimum which is found to occur when y I 180'. 

The local minimum at y = IGO is recovered repeatedly, thus eonflrming~the 

above analysis. The arrangement typifies by equation (!i$a,b,c) is therefore 

the absolute minimum and the true optimum. 

It is of interest that when p = 1 the optimum solution of equation (5&b) 

is the ssme as that of equation (20) for symmetrio variatidn'of shear. The 

fact that'asymmetrio systems of reinforcement have-been derived is thus a _. 
direct consequence of the assumed inefficiency of fibres in compression. ---" 
Since one set of fibres~resists compression only and two sets rasist tension 

only the inefficiency ca&-be offset by re-orientation, but this possibility 

was not open for the symmetric shear variation of Section 3. 
_ 

It is notable that for mnall shears, when the compressive E-component 

r of shear is small, the geometry of the optimum fibre distribution 

(cf. equation (sb)) remains constant with . i. _ 

-1 a;- = tan r.i, (2 
0 

= PO0 + cLo. 

For larger shears, when the R-fibres are.usod efficiently in both tension 

and compression, the orthogonolity of the (a,, p,) direotiohs is retained, 

while the orientation a0 increases from the value a 
0 

= tan-' JP to a0 = 45" 

when h 100 (cf. equation (So)). For valuas of p close to unity (i.e. for 

fibres which have good compressive properties) this implies very littlo 

variation of the orientation. For example, 

and 
41' < a0 -c 45' if p = O-75 

1 
forO<Xioc. 

35"<a x45' if p = 0.5 I 
I . 

J 

The fibre-density r. is 2lweys doter&nod b;r the need to resist tension, 

For small shears, the donsitios p, and qo are equal (equation (5&b)) but, for 

large shears this is no longor so (equation (54~)); the ratio of the 

densities of these two shear-cszying fibre systems is 
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5= 
c 1 

i 

if A<*, 

B I-1 cot 
2 

a0 if A>*. 

This ratio remains initially constant for small shears, boconing close to p 

when h becomes large and a0 approaches 45'. The density of the optimum fibre 

arrangement is show in Figs. 13-15 for sheets in whxh ~1 = 1.0, 0.75 and O-5; 

the orientation a0 is indicated whenp = 0.75 and 0.5. 

The elastic constants of the asymnotric arrangcmcnt of equation (54) 

are given in equation (82) of Appendix A. 

5.2 Optimum isotropic arrangements 

Isotropic sheet aligned in a general manner and subjcotcd to the-load 
I 

distribution of equation (46) vnl.l have fxbrc forces glvcn by,, c 

F-' 

3PP = T,ll + 2 cos 2aj + 4S sin 2a, ' -1 

3p Q = T,ll + 2 COS(~U.+ 12O')j + 4g sin(2a+ 1200), 
/ 

j;p B = T,il + 2 OOS(~U,+ UCO")] + 423 sin(2a+ 2400), 
i 

(55) 

from equation (9). Non in equation (55) the s%pprcssions 

1 + 2 co3 2G, sin 2a and 1 + 2 cos(2a+ u.o"; 

are positive for 0 < a < 60'; ;he expressions 

1 + 2 cos(2a+ 120') and sin(2a+ 240') 

are negative for 0 < a < 6o", vhilc 

sin(2e.+ 120') a O if 
I 

0 <as30°, 

<O if 30~<a<6~'. 

Sufficient fibre must be provided for none of the (F, 0, E) fibres to develop 

limiting load in either tension or compression; It follows that,for aw 

orientation a, 
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p = maxiI+ co9 2a,+4h sin 2a, I+2 COS(2a +2400), - F sin(2a +240’), f,(a)] 

where ..*. (56a) 

7 
I J ( -1 

max 
- 2 cos(2a + 12dq 

CI 
, WI sin(2a + 120') 

3 
if 0 -catsjO', 

f3(a) = \ 

-$I + 2 cos(2a + 12@) + Ia. sin(2a + 1200)] if 30" < a < 60'. 
1 

. . . . (56b 

The particular functional form of the density depends on the implied 

inequalities of equation (56). Encouraged by the results of Section 5.1 it 

'may be supposed thaq efficient arrangements result from choosing the 

orientation a to ensure equality botwcen suitable pairs of the functions in 

equation ($), since this moans that fibres arc used to the full in both 

tension and compression at different points on tho load-envelope, The 

optimum arrangement will then bc found to correspond to such a point of inter- 

section. It is most prof'itable to restrict further attention to sheets for 

which p > O-5; equation (56) provides a suitable definition of the density 

if p < o-5. It can then be shown that for small velues of the shear 

h < $5’ say) the optimum occurs when a is given by 

1 + 2 cos(2a + 240') = 1 + 2 cos 2a + WI sin 2a, if h c X6, ( 574 

while for hxgh values of the shear 

1 + 2 00s .Zb. + 41 sin 2~ = - $1 + 2 cos(2a + 120') + &A sin(2a + 120')] 

if X?Xg. (57b) 

It follows that, in general, 

PCI = I +J.2 , 2a, = tan-' (-&-j-$ if h < h6, 

. . . . (!%a) 
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P, = 
3(1 -&I) i' 48x2(1 -u + L12) + 9(1 _ f 

2(1-p+$) . ' 

- -I + zh ,'3 + .& si;-l i+U 
a0 

= 900 - & tan-' al -_-__ 
2x(qI-1) -f3 2,;4Twj(1-p+f.5 

if h-z ?.6, 

._ 

. . . . (58b) 

the inverse tangent being between 0' and lKI". The constant 'h6 is the positive ' 

i-oot of 

48x4 -16 v-3(1+,,) x3+%(2-p) x2- 6 <3(5-p*) X-;9(1-+) = 0, 

. 

being derived by equating the two w&es of p, in cquationsd(-58Q). 

(59) 

Figs.13-15 show, for p = l-0, 0.75 ad O-5, t$e-variation of the 

optimum isotropio density to allow comparison with-the gcnerd optimum' 

density of Section 5.7; it may be seen in aqu~tidn (58~2) that this density . 
is independent of‘p for small shesr-ratios i. Fig.:6 has be& grcpared to 

illustrate the ratio of the general opt&m acn&ty tj th6 optimum‘isotropio 
-. 2s .> 

density. WXen p = 1 the optimum density varies bCtnocn O**j ana O*Yl-of tAe 

density of the best-orientatea isotro?io sheet, xddle for p = O-75 and 0.5 

isotropic sheet is iess effidient. Whenp=l snaX = 2 <j both the optimum 

and isotropic srrangcmonts are the same as in Swtions 3.1 and 3.2; the 

maximura density ratio, 0.91, is thus the ssme giving sn e?ficien% isotropio 

arrangement for the reasons discussed in Section 3.2. In the r,resent case- 

the orientation of isotropic sheet csn be varied ac&&ding to the amount of 

shear to be osrried; thus is illustrate?. in Pig.17. ihen p = 1 the 

orientation a, takes values betx?een 30° nnlld 60' while for 0.5 c-p < 1, a0 is 

mo3-e restrictea in its variation. This arises since the oompession taken 

in those fibres which are aligned at (a0 + 60') must be kept within the 

allowable 1imits;'the Festriction is thus greater for fibres which have a 
. . - _- 

restrict& compressive performance. This o$y holds <of. large shears, and 

for small shears it msy be seen that the orientation is independent of p 

(cf. equation (58s)). 

5.3 Density of solid sheet 

The ccanpsrison between the density of optimum reinforced shset and solia 

sheet may again_ be made; the mfnimum density of sol53 sheet is again 

(3:)bi.a 
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(from equations (17) and (L&3)), tInis density is the sane as that of Section 3.3 

since solid sheet derives no particular benefit froa the asymcvctry of the 

shear. Figs.l+15 shorn the density of solid sheet alongside the dcnsitles 

of optimum ena isotropic sheets for :vhich p = l-0, O-75 and 0.5. 

Fig.18 shows the density ratlo of solid to optimum sheet; the pattern 

is broadly similar to that discussed for symnctric shear variation in 

Section 3.3 and illustrated in F1g.7. In the present cast, hwaovcr, the 

efficiency varies between unity and O-65 (Aen p = 1) or 0*3k (when p = 0.25); 

when ~1 < 1 the reinforoed sheets derive a benefit fran the asy;nmctrJ of tho 

sheer by using asymmetric roinforcemcnt and these efficiencies arc slightly 

better than thoso derived in Section 3.3. 

6 OPTIMUM AF3ANGEhEIIT FOX ARBITRARILY DIRECTED WIAXIAL TENSION 

The optimum‘arrangomc.~t of fibre-reinforcement needed to carry a 

uniaxial tension which msy vary arbitrarily in direction is next consldcrcd, 

since this typifies the capability &ich is usually assumed without question 

in solid sheet. When arbitrarily dircctod applied tension is rosolvod along 

fixed axes both shear and dsrcct components of load must exist; a minimum of 

three directions is thus necessary if this load is alwys to be carried by 

the fibres. Since the load envelope has no preferred direction, the optimum 

three-fibre arrangement'will be smetric in distribution and orlcntation; it 

will therefore be isotropic. In the context of the present Paper, it is 

more convenient to fix the direction of the applied tonsron end vary the 

orientation of the isotropic fibre-distribution. The fibre-loads arc thus 

given by 

3p P = T, II + 2 co9 2a) , 
3p Q J T, [I t 2 cos(2a t 120°)j , 
3~ R = T, tI + 2 cos(2a + 24P)l , 

from equation (9), the applied load being governed by 

(60) 

0 < T, < T, 

i T2=s=o- ! 

(61) 



34 

The minimum density follows from ensuring that none of the (P,Q,Z)-fibres 

exceeas limiting lOad for any a(0 < a d 60c). From the extrend. vd.ues of 

the functions on thk ri.&t of equation (60) snd the remarlck which follow 

equation (55) it is fauna that .~ 

(‘52) 

Now the general optfmum fibre-density for uniaxial tension.sppli&! in a 

preaeterminea direction is 

p, -= 1,' -63) 

-.. _ 
from equation (20); thus, carrying uniaxLl tension in a~' r&%~kon~requires 

three times the fibre naeacd to~csrr;r the sage unidirectional tension: 

Equation (63) also represents the minim& &sity_of solid shoot needed for 

arbitrarily directed unzizd.dL tension. For this applied lo&., optimum 

reinforced sheet is thus one thiraas efficieqt as the correspo$.ing solid 

sheet; the cautionaryrcmarks of Section 3.j, on ma!& &h a dir&t 

comparison,,apply here also. 

_ The above comparison also holds for sheets having more tnsn three fib& 

Ci-b&ions; From Cox's .an.alysis' for sheets reitiorced~i:1 a ?Ui?ber.of 

different &e&ions it may be sho,vn that the optimum densit{ of any sheet 

eqd!Jy reinforce& at cquiangular intervals an& subjoctc? to arbitrarify~ . 

directed uniaxial tension is also given by cquuetlon (62);. the rosdijis thus 

also true for the random fibre mat, which I& be ~rcgar&.i ns the limiting -.- . . 
aasp of such f&e-arrnngcmonts. 1 

? ( 

7 - LOAD EWELOPES OF OPTTWJM SYSTEMS 

Wile any structure may be optimisea dth re&.rcI to applied loa& 

vdithin a specified cnvclopo, in practice it may occnsionally also be subject&d 

to loads which lie outside this envelope. The abiJ.ity to resist such 

unexpected loads could ITOU be a factor in oonsiderizg the praoticnbili."~ of an . . ._ 
optimum system; in particulsr, if other ncnr-optimum systems &istea, tile 

ability to carrypsrticular typos of load outside-t& aesim envelope could 

well be a crucial point of comparison. For oxampie, in the fibre-systems of 

Sections 3 and 5 the spzcXi.cd applied load invoivos or&~ longitudin+ tension 
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combined 12th shear. ' The ability of the optimw systems to resist transverse 

load'is clearly of interest ES, also, is thu ability.& the ayotoma to resist. 

occasional excesses of the design loads boyonathcir spccifiod values. The 

total load-envelopes of. the optimum arrangements of Sections 3-5 ere therefore 

oonsiclered. These fibre-arrangements are bf interest in-this respect. They 

include two examples, one syrmetrio and one asjrmmetric, optimisd dth respect 

to two applied load3 only in wh,.ich the variation of the t+rd load appears ' 

via the optimum solution, vrhile'the otiler exsmple is of d syStem Optimised 

with respect to all three applied loads. 

In Seotions.J.to 5 attentton ma3 fooused on the 1.~. &d t'.s. reinforce- 

ment Qr.stern.9. The fibre forces in the 1,s. syste6 are given by eq&stion (Q) 

and, since the fibre-forces (P,Q,R) are all restricted by the ineq&.& (14), 

the following hold: - 

- p p U <‘.4,T2 coseo2a+S coseb 2a < p'IJ, 
-- 

-~pU<&T~ccse~*a-Scoseo2a<pU l 
.' !( 

-$rU<T, - T2 cot*c,< r U. 

These defined the bounding onvolopo in three-dimensions& load-space 

(T,, T2, S); this region is-the interior of G hexahcdral prism r;hose faces 

are the planes 

_- ‘ . 
$,T2 cosec2 O, + S oosec 2a = PU, 

7 
>I . T F2 cosoc2 a + S &se0 2a = - b p U, 1 I 

_ +.T2 aosoo2 a 

:-.’ _. 
(4 

- s oosoo az = r,v, 

+ T2 c&CO2 a - s cosoc 2 a q - p p u, 

_. J 

(65) 

T -T I 2 cot* a Z\ r u 
- '- 

T1 
- T2 cot2 a E -prU. 

The four planes of equation (65s) are psrsllcl in pairs, pwsllel to the T, - 

axis and bound an infinite prism mhose crpss-section is a rhombus of vertex 

angle a; the interior of the hexahedron is the section of this prism lying- 

between the twu parallel planes of equation (65b) (7ihich are themselves p&sllel , 



to the S-axis). This bounding surface is shorn schcmaticdl;r in Pig.19; 

since this figure illustrates further points wLch will be nadc in Scotions 7.1, 

7.2 and 7.4, the prism cross-section is sholm to be square. 

!?he load-envelope of the t.s. system is sinilar to that of the 1.s. 

system, except that the roles of T, and T2 arc interchanged. With this 

qualification, the foregoing remarks apply; such a load-envelope is shown 

schematically in Fig.20, which zl.so illustrates points to bs mad0 in 

Sections 7.1 and 7.4. 

The load-envelope of a s,hcet of generally oriented fibres inll f'ollo:v, 

in the shove manner, from equations (3) and (14). This wLll also be a 

hexadron in (T,, T2, S) space, having three pairs of parallel faces. _ 

7.1 Utriaxial tension and syrsnotric variation of shear 

The arrangomcnt first considered 1s the 1,s. system--given by equation (20). 

The faces of the load-envelope are tho planes 

T,+s- = -XT., T2+S'= XT, -1 
P 

*- (a) 

T2 
i 

-s = -XT, T2-S = ;T, , 

(66) 

T2 -T , = - T, T2 - T, = pT, (b) 

from equations (20) and (6.5). Those Tlanos bound a hoxahcdral prism of 

square cross-section, which is illustrated in hg.19; the aroa represented 

by the applies load system of equation (18) is inds.catod by the fntersoction 

of this surface with the (T,, S) plane. 

The complete intorscction of the bounding rogion with the ("1,) S) plane 

is also of interest, bolng related to the allowable onvclopc of loads for 

which the system was optimised. This intcrscotion is 

(67) 

-hT<S<hT, I 
_' 

from equation (66); in addition to the applied load of equation (18), 

combined uniwCl compression and shear in the range 
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-pT<T, <o, 

-AT< S<A!C 

can also be carried. 

Also of intorcst is the shape of the bounding region near the (T,, S) 

plane, since this gives possible small variations of the transverse load T2 

not allowed for in the optimisation. It osn be shown that the region 

0 <T,<T, 

-AT< S <AT, i 
2 

I L 

I 

:(I-p)T if L-C*, I 

Q < T2 < ';, 
2 

I 
PT if A>+ 

-I-' 

lies holly within the boun&ng surface; this is slso illustrated in F~g.19. 

Some unrestricted tensile varintion of T2 is thus permissible; further 

tensile and compressive variation of T2 are possible, but both are governed 

by the shape of the load envelope and, as may readily be seen from Fig.19, 

can only take place if corresponding restrictions are placed on T, and S. 

The above 1.5. fibre system was shown in Section 3.1 to be the general 

optimum for uniaxlal applied tension and symmetric shear; however for the 

particular shear given by equation (29) the t.s. arrangement gave rise to 

the ssme fibre density, while o"Aer fibre arrangements with densities close 

to the optimum existed in this vicinity. The load cnvclope of this t.s. 

system is therefore consderocl; this is the hoxahedral rhombic prism which 

is bounded by the planes 

T, +; T s =-, T+-=- 
1-p ' M 

s 
T1 -; 

T s =-, T--s 
1-p ' I-r 

1 

-,T,+‘lT 
P 2 

= T, -FT, + 1T = -FT,' 
P 2 

(GV) 

from equations (7), (14) and (29). This region 1s shown schematically in 

Fig.20; the area rcprosontcd by tho applied load of equation (18) is 

indicated. 
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The intersection of the bounding region of equation (69) with the 

(T,, S) plane determines the allowable envelope of forces for xhich the system 

W&S optimisoa; this region, 

P 
-----T<T,+ 

1 'P 
T.9 

-+--T<T 
-P 1 

T --<T 
P 

, < T, 

is shown in Fig.21 where it is compared with the corresponding re&ion for the 

1.~. arrangement (of. equation (67)) when p = 0.6. The optimum 1,s. system 

all!ows for the additioraldevelopment of compressive T, in the range _ 
..' 

-yT<T,<O- 
_ 

: 
in 0onjunotion'~ith the full range of shear. The t.0. system alloms small 

. increases in shear for tensiZe '2, which 2s Less tmn the maximum value T;while 

compressive T, is possible only if the shcsr is restricted. Thhek2 points 

typify the co&iderations &i&might arise if decJ.ding betwen.ti?npcting 

optimum and near-optimum systems. : 
J 

Permissible %ri&ions of T2 &re govexed by the inequditics 
,. .- 1 . . 

O..< Ti < T, 

-XT< S<?.T, z 

O<T2<pT, 
-, 

., - . . 
which defina a region lying k&& the bouna,i@ &rfacT?; this is also shown I - 
in Fig.20. Smsll tenele vsriat~ons of T2 are thus s&n unconrditionally 

possible in combinstion with the-f&l variation in T1-and S; tensile and _- 
compressive T2 vsriations beyond these limits arc governed by the shape of 

_ 
the bounding surface, snd ten or& take place if T, and S are restricted. 

It is of intcrest that both the 1.~. and t.s. system allow ad&itiwd 

variations if the txan&rse load T2; since the 1.s.' system is-the genersl 

optimum while the Z.S. system oorresponds only to a particular value-of the 

shear, they do not compote directly however; 
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I 7.2 Biaxial tension and symmetric varietion of shear 

It Was shown in Section 4.1 that in all oases the 1.8. distribution 

was the optimum; the load envelope is therefore that bounded by the planes 

of equation (65) and illustrated schematically in Fig.19. For inoreasing X 

. the aotusl shape of the load envelope will vary, since it depends for its 

detailed form on the fibre-distribution defined by cquations(3S)'and (39). 

For 0.5 -C p < 1 and large values of' the shear the optimum distribution is'that 

of equation (390), and this is the same as that derived for the load system 0-f 

uniaxial tension and combined shesr in Section 3.1. The analysis of 

Section 7.1 relevant to the 1,s. fibre-distribution therefore applies here 

also; in particular, the rectangular solid shoivn in Fig.19 now oorrosponds 

to the applied load envelope of equation (33). 

7.3 Uniaxisl tension and asymmetric variation of shear 

In the optimised arrangements in which the shear is allowed to vary 

between asymmetric limits, the fibre orientations and densities ere given by 

equation (54). If this optimum 8yatem is subjected to a &eneral applied load, 
_ . 

the fibre forces are given by 

p, F = T2c S cot ao, 

qoQ = T2-Stanao, 

-1 
I- 
/ 

r. R = T - T - 2S cot 2a 
12 0.'. J 

(7C) 

from equation (3). The load envelope is thus the hcxadron out from the 
infinite rectangular prism bounded by the planes 

T2 tan a0 + S q -X J.I T, T2 tah a0 + S ‘= ?.. T, 

(714 
T2 cot a, - S = - h T, T2 cot a0 - s4 f h T, 

P 
.‘ 

which are parallel to the T,-atis, by the two parallel planes 

Tl - Ip2 - 2S cot 2a. = - Jo T, T, - T2 - 2S cot 2a. = T. (i'lb) 

This region is BhOWn schematically in Fig.22 for small values of the shear 

corresponding to equation (sb); the relatibn to the bounding surface of the 

area represented by the applied load of equation (4S)'i.s indibated: In " 



contrast to the system of Section 7.1, tensile and compressive variations of 

T2 near the region of equation (L+8), for which the optimisation wascarried out, 

csn only take place if T, and S are correspondingly restricted. 

The intersection of the load-envelope with the (T,, S) plane is shown in 

Fig.23, for u = 0.6 and smallvalues of the shear (cf. equation (5&b)); to 

illustrate allowable 'unexpected' load variations, tne area corresponding to 

equation (48) is also indicated. Negative values of the shear S can ority 

be allowed if restrictions on T, are introduced. Compressive T, variation 

in the range 

- g IP Jl - h(l - p)] < T, < 0 (72) 

is allowable without any corresponding restriction on the shear; this no 

longer holds, however, for larger limits of shear ahich correspond to 

equation (543), and compressive T, variation then also implies restrictions on 

S. 

7.4 Isotropic arrangements 

The symmetric isotropic arrangements whxh have been considered will 

have similar load-envelopes to those dxcussed in Section 7.1; the envelope 

will be a hexahedral prism of 120' rhombic cross-section whose faces will be 

defined as in equation (65) for 1.~. systems. Figs.19 and 20 thus serve to 

give a schematic indication of the load-envelope in this C~SC also. 

8 CONCLUDING REMAIKS 

A technique has been presented for the optamisataon of the fibre systems 

in reinforced sheets having three directions of reinforcement and subjcctcd 

to combined tensile and shearing load systys. . The theory is based on the 

conventional assumption of netting analysis that the load is carried axially 

in the fibres. All the systems which are found to be optimusi for the load- 

envelopes considered have one set of fibres aligned in the darection in which 

the tension is allowed the larger variation. In cases involving uniex~al 

tension the quantities of those fibres which carry shoar are determined 

entirely by the magnitude of the shear while for asymmctris shear variations 

these fibres are best sllgnncd asymmetrically; the tension-carrying fibres 

are also determined entiroly by the tension in this case. 

T%O assessments of the efficiency of reinforced sheet are made. To 

assess fibre-reinforcement solely as a mode of construction the optimum fibre 
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densities are compared with those of solid sheet ma& of mcterid having tho 

fibre propcrtics.S For %ne systems of combined tension snd shenr the lowest 

I fibre-efficiency (rcgwaed 5s 5 density-ratio)-is found to be 0.1~3 when thoro 

is,Ltio.?+l-off in compressive fibre perfonance sna is 0.20 if considerable 

fell-Off is ass&a. If arbitrarily dire&d uniaxid tension is considered 

?n$.there is no f&L-off in com~rossivc fibre performance th6 efY'iciency_is 

o-33. All the;; figures will be further reduce&-in an actual composite by 

fibre-inefficiency and the presence of a matrix. 

To a&&sS-the prac'ciwbility of such standard forms of composite' 

construction as isotropic sheet the seoond oolnpsrison'mnde is between optimum 

and isotropit systems,of reinforcement. It is fauna that, given reasonable 

ftbre co&pressive prope+.es, the density of opt&urn deot lies between 0.5 

- and O-99 of th6 density of the best-orientated isotropic-sheet. In particular 

casks, at intetiediite values of the shear, isotropic sh?et shows up ._ 
- favour?bly since the amount of shesr happens to 'fit' the isotropic alignment, 

/ a 
The total allowable load-envelopes of both optimum end near-optimti 

configurations are dso considered and provide criteria of choice in'sny 

particuler applioation. It is known5, for example, that structuresS optimised 

for one given load conditioncsn exhibit unwelcome prop&ties in other load 

conditions; no such behaviour is observed in the present Paper. 
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msnc CONSTANTS 0~ WINFORCED SHEETS 

(see Section 2) 

This Paper has derived optimum distributions of fibre for psrtw.ular 

load-envelopes; for cmplcteness, this Appendix gives expressions for the 

elastic constants of the optimum systems which have been found. The analysis 

follows that of cox' . 

In an aeolotropic sheet in which the strains arc (eX, ey, y ) the loads 

carried in typical (P,Q,R)-fibres em 
w 

P = AE(c COS~CL+.~ 2 

Q = A E (s: Cm2 

sin a+y 
w 

sin a 00s a) 

P+E Y 
sin2 p t y xy sin B co.3 P) 

R = A E (sx cos' 
2 

Y + EY sin y + y 
w 

sin y cos y) 

(73) 

where E is the stiffness of the fibre natcria2.. If the stresses am based 

on the effective sheet thxkness (i.e. the volmc of fibre per unit area of 

sheet) so that 

then the stress-strain relations are 
7 

ox = c 
11 'X + '12 "y + ‘16 ?& 5 

(75) 

from equations (I), (Z), (7j) and (74), where the elastic constants are given 

by 

pT 
EU 'II 

= p cos4 a + q cos4@ + I‘ co&, 
7 

pT 
E U '12 = p sin2 a cos2 a + q sin* p cos2@ + r sin' y cos* y 

I 

pT 
EU '22 = p sin4 a + q sin4 p t r sin4 y, 

pT 
E u O16 = p sin a cos3 a + q sin p cos3 p + 2‘ sin y cos3 y, 

i 

pT 
E U ‘26 = psin3aoosatqsi~3j3~~~$+rsin3ycosy. 

i 
.*.. (76) 
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Note that 

c1l 
t 20 

12 + c22 
= E. 

A.1 Lcn.dtudinallg symmetric srrsn~cments 

For a general1.s. system 
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+ u 11 
= 2p ccs4 P-z 2 

a t r, EU '12 
= 2p sin 

(77) 

from equations (4) and (76); this system is crthctrcpic. In Sections 3.1 

and 4.1 the particular 1,s. system of equatlcn (20) was fox-d to be the 

optimum, and in this case the elastic constants are 

c11 = 
(Xt Zt.11 E 
2(2A t p) ' c12 = O22 .= & ) c,6 = c26 = 0. 

*... (78) 

A.2 Transversely symmetric arrangements 

For s general t.s. system, 

pT 

EU 'II 
= + 2p ccs4 a, pT 

EU c12 
= 2p sin2 a ccs2 a, 

(79) 
LT 
2 II O22 

= 2p sin4 a t q, C,G = C2G = 0, 
I 

from equations (5) and (76); this system is slsc orthotropic. For the 

particular t.s. System which was found to be optimum in Sections 3.1 and 

4.1, the elastic constants are 

E 2 
Oil = (, + cl)(' + r2) ' c12 = iJ Oil' 1 

I (80) 

O22 = y(l- I-I +P2) C,,' C,G = C26 = 0, ) 

from equations (27d), (29) ana (79). 
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Appendix A 

A.3 Isotro3ic arrangements 

The general isotropic arrangement is that defined by equation (8); in 

this case 

O11 = O22 = 3E/0, '12 . 
=- E/8, .'16. = '26 

= 0, (81) 

from equation (76). The elastlo properties of the sheet are thus those of 

an isotropic elastic sheet having a Young's modulus of S/8 , a skeer modulus 

of E/8 and a Poisson's ratio of q/3. 

A.4 Asymmetric optimum arranaement 

The elastic constants of the asymmetric system of Section L.1 may also 

be derived; they .sre given by 

PP 
AC hE ,2 = sin a0 00s a0 (sin2 a0 + p cos2 ao), 

PP 
OC 

XE 22 = s=n =o 
cos ao(psin2 a0 + oos2 ao), 

! 

Oil 
= E - ~22 - 20,~' 

4 
16 = p cos4a - sin a 

0 0’ 

y&2 
AE '26 = - (1 - Id 

2 
sin 0, 

2 
0 

cos .a 
0’ 

from equations (54) ana (76); this system is aeolotropic but, sinse the righi+ 

hand sides of equations (82) depend-on two parsmeters (1; p) only, rel&tion- 

ships exist between the elastic constants. 
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Ap~ondix B 

FIBRE DENSITY PO9 SYSTEIIS SUBJ?XTED 10 UIJIAYZL TENSION 

WITH ASM'iRIC,~Y V?AYING SHEILR 

(so0 Section 5.1) 
. 

Under the aqmmetric applied lqad of equation (48), the fibre-forscs 

P, Q and R are given by equation (49). It nilI be necessnrjr to consider the 

form taken by the fibre density when tho condition 180' > y > 0 > a. > 0 is 

relaxed and it is merely as&mea that y > p > a, 7 - p < 180~ and 6 -b. < i80°. 

In this ease the densities p, q and r take different forms depending on a 

number of inequalities. The foll&ing expressions are derived for the , 

minimum values of p, q and r, the denaitioa being determined to bo Just 

sufficient to carry the loails of equation (48); 

+‘p sin(y-a) sin(~ - a) = 

.f i 
mex shy sinp, 

t 
t My + PI] if sin(y+j3)>0, sin y sin p > 0, 

, t sin(y+P) 

1 

-z sin y sin p if sin(ytp) >O, sin y sin p ~0, 

sin y sin B-X sin(y+p) 

c 
-1 sin(y+p), -$ 

3 
if sin(y + p) < 0, sin y sin p < 0 

I 

(a) 

(b) 

if sin(y+p)<O, sin y sin p>O,. (0) 

max sin y sin p 

c 11 
(a) 

..:. (83) 

corresponding to limiting tensile and comprcssivo P for points on the load 

envelope, 

$ 9 sin(y-p) sin@-a) = 

fmax 

I- 

c 
X sin(a+ y), : sin a sin 

3 
if sin(a+y) >O, sin a sin y SO, 

sin y sin at X sin(a +y) if sir& ty) > 0, sfn a sin y -zO, 

I 

isin ainy-i sin(a + y) if sin(a +y) x0, sin a sin y>O, 

max 
c 
- sin a sin 7, -g sin(aty) 

3 
if ain(a+y)~O, sin a sin 7 ~0, 

‘I 
I! 
i 
i, 
1, i 

. . . . (84) 

(4 

(b) 

ICI 

(4 



corresponding to limiting & for points on the load envelope, and 

5 r ain(y-p) sm(y- a) = 

max c sin 0, sin p, - i sm(a +p)] if sin(a.+p) > 0, sin a sin p >CJ, 
J 

-t sina sinp +4 s.in(a,+p) if sin(a+p)>O, sin a sin (3x0, 

sin a sin p - h sin(a +a) if sin(a+p) ~0, sin a sin p>O, 

max 
c 

- h sin(a+p), -t sin a sin p 
3 

if &(a+$) x0, sin a sin p <O, 

(4 
(b) 
(0) 
(a) 

. . . . (85) 

corresponding to limiting R. The density is obtained by adding the values of 

p, q and r given by equations (83) to (85). If the assumption is made that 

y = 10o", equation (50) is recovered; it has been shown in Section 5.1, that 

a minimum of the density for variations in a ana p only is found in equation (50) 

when 

'I = %30°, p 0 = 900 * a 
0 64a) his 

and ao is given by equations (xb, o). If small variations in y from the 

above are taken and 

y = 180' - 6, (86) 

where 6 is small, then the dcnsitics p, q and r arc given from equations (83) 

to (85) to be: . 

$ p sin(y - ao) = 
sin y sin p, - h sin(y + PO) 

- h tidy + PO) 

. . . . (87) 

{ q sin(y - p,) 
1. 1 

= j G sin a0 sin Y - t sin(ao + y) if 6 > 0, -l 

I.- $ sin(ao + y) if S < 0, 
i 

. . . . (88) 
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: r sin(y-pi) sin(y - ao) s sin a0 sin po ; (89) 

in deriving equations (87) to (89), USQ has been made of tic fact that 

s$n(y + p,) c 0, sin(y + ao) < 0, sin(ao + PO) > 0 (cf. the romrks following 

equation (50)), sin(po - CL;)-= 1 (from oquation (5&a)) &l t!m fact that 

sin y is small. 

For smell 6, each of p, q and r can bc derived to the first order in s 

from equations (87) to (89); tho density p follows and,.to tho first order,e 
, *ilh..,h )3 7.. ._ 

if6> 0 / 
i : 

P \'-cl L&L japdh<,-p (GOi) 

( ,) 
f+$ _ if 6 <‘O . J. , 

and 
- I 

a-(tan2 d. .- u 
2 

1 ifb>O 
, -..3 . u <u (YOb) P - P," 

I 
- s(1 * p) cot a0 

L 
d 

The expikons on iho &k-hand sides of equations (YOa, b) dhioh mul.tip+y 

6 (when 6 > 0) and - 6 (;Jhcn 6 < 0) arc self-evidently positive, and so the 

density of the Mbro system of cqwtion (54) is a local minimum. 



A zero subscript is used to denote an optimum distribution. 

A cross-sectional area of an average fibre 

cll'c12'c22~c1s'c26 elastic constants of sheet 

stiffness of fibre material 

functions defined in equation (24) 

function defined in equation (56b) 

functions defined in equation (36a) 

forces in sheet 

fibre densities per unit distance m plane bf sheet 

tensile forces iA average fibres 

applied shear 

typical applied tension , 

applied tensions in longitudinal and trarkverse directions 

limiting tensile force in a single fibre; see equation (11;) 

particular values of a defined by equation (26) 

particular values of a defined by equation (37) 

fibre-orientations; see Fig.1 

defined by equation (86) 

strains 

particular values of a defined by equation (36b) 

ratio of limit of applied shear to limit of applied 
tension 

particular values of X defined by equation (28) 

pertioular value of X defined by equation (36b) 

particular vdlues of h defined by equation (40) 

particular value of ?. defined as the positive root 
of equation (59) 

we equation (52) and text prccedmg equation (5&a) 

ratio of allowable compressive end tensilo forces in a 
single fibre; see equation (14) 

non-dimensional fibre density, defined by equation (15) 

aeneity of fibre material 

stresses in sheet, based on effective sheet thickness 

particular values of a defined by equations (25) and. 
(43) respectively 
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Title, etc. 

The elasticity aid strength Of paper ~0~3 Other 

fibrous materiels. 

British Journal of Applied l'hysics, 1, 72-79, 1952 

The application of filament winding to the manufacture 

of rocket motor-cases. 

British Plastics Federation; Prcceedings of the 3rd 

International Reinforced Plastics Conference, 

Section 29, 1962 

Netting analysis of filament-wxnd pressure vessels. 

American Society ofliechanical Engineers, 

Paper Eo. 65+~-223, 1963 

The effect of fibre-orientation on the tensile 

strength of fibre-reinforced metals. 

J. Xeoh. Phys. solids, I& 49-64, 1966 8 

The design of structure of least weight. 

Pergsmon Press, 1965, Chapters 8, 9 

Minunum weight layouts of elastic, statically 

determinate triangulated frames under alternative 

load systems. 

J. Mech. Phys. Sclids, IO, 139-149, 1962 

The mathematical theary of plasticity. 

Oxford University Press, 1550, p.300 

The effect of filament geometry on reinforced 

composite strength. 

American Institute of Aeronautics and Astronautics, 

Paper No. 66-T42, presented at the 3rd AIAA Aerospace 

Sciences Keeting, Jan. 1966 

Private c cmmunicatlon 

An efficient method for finding the minimum of a 

function of several variables without calculating 

derivatives. 

Computer Journal, 1, No.2, 155-162, 1964 
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FIG. 22 SCHEMATIC LOAD ENVELOPE ; ASYMMETRIC ARRANGEMENTS 
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