

MINISTRY OF TECHNOLOGY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Solution of the Catapult Take-off Performance Equations by an Analogue Method

by

E. W. Addicott, B.A. and R. W. Jones, B.Sc.

LONDON: HER MAJESTY'S STATIONERY OFFICE

U.D.C.No.629.13.077 : 518.5 : 621.317.79:
 629.13.015.612.2 : 533.6.015.1

C. P. No. 977^{*}

Tanuany 1966

SOLUIION OF THE CATAFULT TAFE-OFF PERFORIMANCE ETUATIONS BY AN ANALOGUE METHOD

by
卫. V. Addicott, B.A. R. W. Jones, B.So.

SUMMARY

An analogue computer programme was derived, making as fev approximations as possible, for the calculation of the flight path of an aircraft leaving the end of a shap-borne catapult. Usang this 'complete' calculation, it was shown that, for most aircraft, other approximations could be made without significantly impairing the accuracy of the result, and greally simplifying the programme.

A description of both programes is given here, together with their derivation and method of use.

[^0]
CONTENTS

Page
1 INTRODUCTION 3
2 GENTRAL PRINCIPLES 3
3 ANALYSIS 3
3.1 Motion along the flight path 4
3.2 Forces normal to tine \ddagger inght path 7

4 ERRORS 10
4.1 Inearity assumptions and besic data errors 10
4.2 Other sources of error 10

5 SIMPLIFICAIION OF MIE EQUATIONS OF MOTION 13
6 USR OF THE TWO PROGRABIRS 15
6.1 Calculation of the coefficint values 15
6.2 Choice of speed and incidenoe datums, V_{0} and $a^{2} 15$
6.3 Generation of the incidence programme 16
6.4 The tail download term 16
6.5 Alternative use of the two inogrames 16
6.6 Computing procedura 17
6.7 Aircraft with boundary Iayer control 17
$6.8 \mathrm{~V} / \mathrm{STOL}$ aircraft whin Eeflected tintist i7
7 COICLUDING RHMARIAS 18
Symbols 19
Illustrations
Figures 1-i3
Detachable abstract cards

INIRODUCTION

One aspect of assessing the porformance of Naval aircraft is the estimation of take-off characteristics. This may arisc during design appraisal or when studying the effects of proposed modifications or changes in handling technique.

The equations governing the aircraft flight path off the catapult are such that no general solution is possible, and each induvidual case must be integrated eithor step-by-stop, by hand, or by a digital computer such as Mercury, which has beon used in the past for this purpose, or by an analogue computation. As will be soen later, tho problem is extremely woll suited to solution by analogue methods, and programmes were designod for the Solartron S.C. 30 computer, though it as clearly a simple matter to adapt them for use on any other analogue computer.

The purpose of this papor is to put on rocord the work that has been dono on this problom in order to avoid duplication at a lator dato, and to assist other workers in this fiold when it may be helpful to havo available a standard procedure.

2 GENLRAL PRINCIPLES

The analysis usod is falrly standard. The problom is essontially concerned with quite large changos of speod and incidonce, and thus the small porturbation method is not applicable. Homever, in the interests of being able to use as large percontago changes in each variable as possible, a datum speed and datum incidence were chosen at about the mean values of these parametors expected during the first fow scconds of flight, and incremental spoed and incidence variables considered about these datum points. Thus, although tho usual small perturbation approximations cannot be made, fullest use is made of the computer scaling accuracy, and approximations for $\sin \left(\alpha^{\prime}+a\right)$ and $\cos \left(\alpha^{\prime}+a\right)$ are facilitatod; thesc approximations boing an order better than the simple sin $a \approx a$, and considerably better than the use of a servo resolver, whose accuracy would be very poor for the angular changes we are considcring.

3 ANALYSIS

Tho vertical component of veloczty, h, is givon by

$$
h=\left(V_{0}+u\right) \sin \gamma
$$

For all practical flight paths, γ is less than 4° (the catapult being only 50 foet abovo sea level) so with loss than 0.05 , orror we may write

$$
\begin{equation*}
\dot{h}=P r+Q u r \tag{1}
\end{equation*}
$$

where P and Q are constants.
At any point on the flight path, the forcos on tho aircraft are as show in Fig. 1 and may be resolvod to produce equations of motion along and perpendiculor to the flaght path as givon bolow.

3.1 Motion along the flight path

Resolving:-

$$
\begin{equation*}
m \dot{u}=\left(T+\frac{\partial T}{\partial u} u\right) \cos \left(a^{\prime}+C\right)+m \delta \sin \gamma-D_{m}-\frac{\partial D_{m}}{\partial u} u-D \tag{2}
\end{equation*}
$$

We make the following approximations:-
(a) As in onuation (1), sin $\gamma \approx \gamma$
(b) $\cos \left(a^{\prime}+a\right)=\cos a^{\prime} \cos a-\sin a^{\prime} \sin a$

$$
\approx \cos a^{\prime}-a \sin a^{\prime}
$$

with only a small error $\delta 0_{1}$, which dupends on a^{\prime} and a as shown in Fig. 2
(c) $D=C_{D} \frac{1}{2} p\left(V_{0}+u\right)^{2} S$
where $C_{D}=C_{D_{O V}}+k C_{L}^{2} ; \quad C_{D_{O V}}$ boing a function of C_{μ} only, for fixcd configuration, and k being constant - the induced dras foctor.

At constant throttlo setting, C_{μ} dopends mainly on airspoed, and we may assume the linenrity

$$
C_{D_{O_{V}}}=C_{D_{0}}+\frac{\partial C_{D_{0}}}{\partial u} u
$$

where $C_{D_{0}}$ is the value of $C_{D_{O_{V}}}$ at specd V_{0}.
Also, in fixed configuration, C_{L} is very nearly a lincar function of a for fixed C_{μ}, and, over the range of C_{μ} we need to consider, a lincar function of C_{μ} for fixed a. Thus we may write

$$
C_{L}=C_{L_{a^{\prime}}}+\frac{\partial C_{I}}{\partial \alpha} a+\frac{\partial C_{L}}{\partial u} u
$$

whero $C_{L_{C^{\prime}}}$ is the value of C_{I} at incidence a ' and speod V_{0}. Thus

$$
C_{D}=C_{D_{0}}+\frac{\partial C_{D_{0}}}{\partial u} u+k\left(C_{I_{a_{1}}}+\frac{\partial C_{I_{1}}}{\partial a} a+\frac{\partial C_{L}}{\partial u} u\right)^{2} .
$$

Now $\left(C_{D_{0}}+k C_{L_{L^{\prime}}}{ }^{2}\right.$) is tho value of C_{D} at a^{\prime} and ${ }^{\prime}{ }_{0}$; i.o. $C_{D_{a^{\prime}}}$.
Therefore

$$
\begin{aligned}
& C_{D}=C_{D_{C^{\prime}}}+\frac{\partial C_{D}}{\partial u} u+k\left(2 C_{L_{\alpha^{\prime}}} \frac{\partial C_{L}}{\partial \alpha} a+2 C_{I_{\alpha^{\prime}}}, \frac{\partial C_{I_{i}}}{\partial u} u+2 \frac{\partial C_{I}}{\partial a} \frac{\partial C_{L_{L}}}{\partial u} u \sigma\right. \\
& \left.+\left(\frac{\partial C_{1}}{\partial a}\right)^{2} a^{2}+\left(\frac{\partial C_{L}}{\partial u}\right)^{2} u^{2}\right) \cdot
\end{aligned}
$$

The linearities assumed in (c) above shouli be oxtrerely good for most aircraft, but in any particular case, tho orror anvolvcd should be checked from the availablo acrodmanic dete. In most cascs, the terms arfectea aro small onough to acocpt quata arge porcontage crrors without significantly ampanire the overail accuracy of the calculation.

Using theso exprosizons therofore, equazion (2) becomos:-

$$
\begin{aligned}
& -m \dot{u}=T \cos a^{\prime}-T \sin a^{\prime} a+\frac{\partial T}{\partial u} \cos a^{\prime} u-\frac{\partial \eta}{\partial u} \sin a^{\prime} u \quad \alpha+m g \gamma-D_{m}-\frac{\partial D_{m}}{\partial u} u \\
& -\frac{1}{2} \rho S\left\{V_{0}^{2} C_{D_{a,}}+V_{0}^{2} \frac{\partial C_{0}}{\partial u} u+\because_{0}^{2} 2 \pi v_{I_{0}} \frac{\partial C_{I}}{\partial a} a+V_{\partial}^{2} 2 k C_{I_{a}} \frac{\partial C_{I_{1}}}{\partial u} u\right.
\end{aligned}
$$

$$
\begin{aligned}
& +2 V_{0} u C_{D_{a^{\prime}}}+2 V_{0} \frac{\partial C_{D_{0}}}{\partial u} u^{2}+4 k C_{I_{a}} \frac{\partial C_{I}}{\partial \alpha} v_{0} u a+4 k C_{I_{a}}, \frac{\partial C_{L^{\prime}}}{\partial u} v_{0} u^{2} \\
& +4 k \frac{\partial C_{L}}{\partial a} \frac{\partial C_{L}}{\partial u} V_{0} u^{2} a+2 k V_{0}\left(\frac{\partial C_{L}}{\partial a}\right)^{2} u a^{2}+2 k V_{0}\left(\frac{\partial C_{L}}{\partial u}\right)^{2} u^{3}
\end{aligned}
$$

Rearranging, we get:-

$$
10 \dot{u}=c_{0}+c_{1} \gamma-c_{2} a-C_{3} u-c_{4} u a-c_{5} a^{2}-c_{6} u^{2}-c_{7} u^{2} a
$$

$$
\begin{equation*}
\frac{-C_{8} u a^{2}-C_{9} u^{3}=c_{10} u^{2} a^{2}-c_{11} u^{3} a-c_{12} u^{4}}{n} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& C_{0}=\frac{10}{m}\left(T \cos a^{\prime}-D_{m}-\frac{1}{2} \rho V_{0}^{2} S C_{D_{a^{\prime}}}\right) \\
& C_{1}=\log \frac{1}{57 \cdot 3} \\
& C_{2}=\frac{10}{m}\left(\frac{\dot{T} \sin \alpha^{\prime}}{-57 \cdot 3}+k C_{L_{a}} p V_{0}^{2} c \frac{\partial C_{L}}{\partial \alpha}\right) .
\end{aligned}
$$

$C_{4}=\frac{10}{m} k \rho v_{0} s \frac{\partial C_{L}}{\partial a}\left(v_{0} \frac{\partial C_{L}}{\partial u}+2 C_{L_{a^{\prime}}}\right)+\frac{10}{m} \frac{\partial T}{\partial u} \frac{\sin }{57 \cdot a^{\prime}}$
$C_{5}=\frac{10}{m} k\left(\frac{\partial C_{L}}{\partial a}\right)^{2} \frac{1}{2} \rho V_{o}^{2} s$
$C_{6}=\frac{10}{m}\left(\frac{1}{2} \rho S C_{D_{a^{\prime}}}+\rho V_{0} S\left\{\frac{1}{2} k V_{0}\left(\frac{\partial C_{L}}{\partial u}\right)^{2}+\frac{\partial C_{D}}{\partial u}+2 k C_{L_{a^{\prime}}} \frac{\partial C_{L}}{\partial u}\right\}\right)$
$C_{7}=\frac{10}{m}\left(2 k \frac{\partial C_{L}}{\partial a} \frac{\partial C_{L}}{\partial u} \rho V_{0} S+k C_{L_{\alpha^{\prime}}} \frac{\partial C_{L}}{\partial a} \rho S\right)$
$C_{8}=\frac{10}{m} k\left(\frac{\partial C_{L}}{\partial a}\right)^{2} \rho V_{0} S$
$C_{9}=\frac{10}{m} \rho S\left(k V_{0}\left(\frac{\partial C_{L}}{\partial u}\right)^{2}+\frac{1}{2} \frac{\partial C_{D_{0}}}{\partial u}+k C_{L_{a^{\prime}}} \frac{\partial C_{L}}{\partial u}\right)$
$C_{10}=\frac{10}{m} \frac{1}{2} \rho \operatorname{sk}\left(\frac{\partial C_{L}}{\partial a}\right)^{2}$
$C_{11}=\frac{10}{m} \rho S k \frac{\partial C_{L}}{\partial C} \frac{\partial C_{L}}{\partial u}$
$C_{12}=\frac{10}{m} \frac{1}{2} \rho S k\left(\frac{\partial C_{L}}{\partial u}\right)^{2}$
Y and a are measured in degrees; $\frac{\partial C}{\partial a}$ is measured per degree.
3.2 Forces normal to the flight path

Resolving:-

$$
\begin{equation*}
L+m V_{0} \dot{\gamma}+m u \dot{\gamma}+\left(T+\frac{\partial T}{\partial u} u\right) \sin \left(a^{\prime}+a\right)=m g \cos \gamma \tag{4}
\end{equation*}
$$

We make the following approximations:-
(a) As in equation (1), $\gamma<4^{\circ}$ so with less than 0.001% error we may write

$$
\cos \gamma \approx 1-\frac{x^{2}}{2}
$$

(b) $\quad \sin \left(a^{\prime}+a\right)=\sin a^{\prime} \cos a+\cos a^{\prime} \sin a$

$$
\approx \sin a^{\prime}+a \cos a^{\prime}
$$

with only a small error, δe_{2}, which depends on a^{\prime} and a as show in Fig. 3 .
(0) $L=C_{L} \frac{1}{2} \rho\left(V_{o}+u\right)^{2} S-Z_{\eta} \eta$
where $C_{L}=C_{L_{\alpha^{\prime}}}+\frac{\partial C_{L}}{\partial a} \alpha+\frac{\partial C_{L}}{\partial u} u$ (see para. 3.1 note (c))
and Z_{η} is the tail downloed per unit eievator deflection.
Thus:-

$$
\begin{aligned}
& L=\left(C_{L_{a^{\prime}}}+\frac{\partial C_{L}}{\partial a} a+\frac{\partial C_{L}}{\partial u} u\right)\left(V_{o}^{2}+2 V_{o} u+u^{2}\right) \frac{1}{2} \rho S-Z_{\eta} \eta \\
& =\frac{1}{2} \rho s\left\{v_{0}^{2} C_{L_{a^{\prime}}}+V_{0}^{2} \frac{\partial C_{L}}{\partial \alpha^{\prime}} a+\left(2 V_{0} C_{I_{a^{\prime}}}+V_{0}^{2} \frac{\partial C_{L}}{\partial u}\right) u+\left(C_{L_{a^{\prime}}}+2 V_{o} \frac{\partial C_{L}}{\partial u}\right) u^{2}\right. \\
& \left.+\frac{\partial C_{L}}{\partial u} u^{3}+2 V_{0} \frac{\partial C_{I}}{\partial a} u a+\frac{\partial C_{I}}{\partial a} u^{2} a\right\}-Z_{\eta} \eta .
\end{aligned}
$$

Using these expressions therefore, equation (4) becomes:-
$m V_{\alpha} \dot{\gamma}=m g\left(1-\frac{X^{2}}{2}\right)-T \sin \alpha^{\prime}-T \cos \alpha^{\prime} a-\frac{\partial T}{\partial u} \sin a^{\prime} u=\frac{\partial T}{\partial u} \cos \alpha^{\prime} u \quad \alpha$
$-m u \dot{\gamma}-\frac{1}{2} \rho V_{0}^{2} S C_{L_{a}}-\frac{1}{2} \rho V_{0}^{2} S \frac{\partial C_{L}}{\partial a} a-\frac{1}{2} \rho S\left(2 V_{0} C_{L_{a^{\prime}}}+V_{0}^{2} \frac{\partial C_{L}}{\partial u}\right) u$
$-\frac{1}{2} \rho S\left(C_{L_{\alpha^{\prime}}}+2 V_{0} \frac{\partial C_{L}}{\partial u}\right) u^{2}-\frac{1}{2} \rho S \frac{\partial C_{L}}{\partial u} u^{3}-\frac{1}{2} \rho S 2 V_{0} \frac{\partial C_{L}}{\partial \alpha} u a$
$-\frac{1}{2} \rho S \frac{\partial C_{L}}{\partial a} u^{2} a+z_{\eta} \eta$.

Rearranging, we get:-
$\underline{-10 \dot{\gamma}=K_{0}+K_{1} a+K_{2} u+K_{3} u a+K_{4} u^{2}+K_{5} u^{2} a+K_{6} u^{3}+K_{7} u \dot{\gamma}+K_{a} r^{2}+K_{9} \eta}$
where
$K_{0}=\frac{573}{m V_{0}}\left(T \sin a^{\prime}+\frac{1}{2} \rho V_{0}^{2} S C_{L_{a^{\prime}}}-m E\right)$
$K_{1}=\frac{273}{m V_{0}}\left(\frac{T \cos a^{1}}{57 \cdot 3}+\frac{1}{2} p v_{0}^{2} \& \frac{\partial C_{L}}{\partial a}\right)$
$K_{2}=\frac{273}{m V_{0}} \rho V_{0} S\left(C_{L_{a^{\prime}}}+\frac{1}{2} V_{0} \frac{\partial C_{L}}{\partial u}\right)+573 \frac{\partial T}{\partial u} \frac{\sin a^{\prime}}{m V_{0}}$
$K_{3}=\frac{573}{m V_{0}} \rho V_{0} S \frac{\partial C_{L}}{\partial \alpha}+\frac{10}{m V_{0}} \frac{\partial T}{\partial u} \cos \alpha^{\prime}$
$K_{4}=\frac{573}{m V_{0}}\left(\frac{1}{2} \rho S C_{L_{\alpha^{\prime}}}+\rho S V_{0} \frac{\partial C_{L}}{\partial u}\right)$
$K_{5}=\frac{573}{m V_{0}}\left(\frac{1}{2} \rho s \frac{\partial C_{L}}{\partial a}\right)$
$K_{6}=\frac{273}{m V_{0}} \frac{1}{2} \rho s \frac{\partial C_{L}}{\partial u}$
$K_{7}=\frac{10}{V_{0}}$
$K_{8}=\frac{5 g}{57 \cdot 3 \mathrm{~V}_{0}}$
$K_{9}=\frac{573}{m v_{0}} z_{\eta}$
η, γ and a are measured in degrees; z_{η} and $\frac{\partial C_{I}}{\partial a}$ are measured per degree and $\dot{\gamma}$ is measured in degrees/sec.

The solution of equations (1), (3) and (5) forms the basis of the 'complete' programme (Programme I) shown in Fig. 4 (see also Fig.5). The programme plots out the flight path of the aircraft, from which the maximum height dropped below deck level may be read off.

The scaling coefficients are all unity, ie. for one volt we have

$$
\begin{aligned}
u & =1 \mathrm{ft} / \mathrm{sec} \\
\dot{u} & =1 \mathrm{ft} / \mathrm{sec}^{2} \\
\theta=\eta=\gamma=a & =1^{\circ} \\
\dot{\theta}=\dot{\gamma}=\dot{\alpha} & =1^{\circ} / \mathrm{sec}
\end{aligned}
$$

Integration takes placed in 'real' time, however the time-scale in volts/sec is purely arbitrary and mav be altercd at will by altering the coeffirient R.

4 ERRORS

4.1 Linearity assumptions and basic data orrors

The errors introduced by the assumptions of linearity in the assessment of thrust, lift and drag are considerably smalior thon those due to the tolerances to which these farameters are measured in aircraft flight tosts. These measurement errors are separate from, and additional to, the calculation errors, hence the effects of the linearity assumptions are not included here in the assessment of overall calculaition errors, ard tie vilues of thrust, luft and drag are assumed to be known whin perfeot accuracy. Since this is not nomally the case, the catapult periormance of the airoraft shoula be determined for a range of values of these paramoters to cover the expected range of error in the basic data.

4.2 Other sources of error

The peroontage errors introduced by the anglo uptriximations made in the calculation are as follows'-

In aquation (2)
(a) $\cos \left(a^{\prime}+a\right)$ is given to Ψ^{U} Se, j^{\prime} by tho approximation $\left(\cos a^{\prime}-\alpha \sin a^{\prime}\right)$. If we impose a limitation that $\left(a^{\prime}+\infty\right) \$ 80^{\circ}, \delta 0_{1} \leqslant 2.5,-300 \mathrm{Fi} \varepsilon .2$ and para. 6.8.
(b) $\sin \gamma$ is given to $\pm \delta s \%$ by the anproximation $\sin \gamma=\gamma, \delta$ being less than 0.05 - see equation (1), para.3.

Samplifying eguation (2), we havo:-

$$
m \dot{u}=T \cos \left(a^{i}+a\right)+m g \sin Y-D^{\circ}
$$

where D^{\prime} is aerodynamic dreg + momontum crag, and the orrors in T ard D^{\prime} are ignored as discussed above in para.4.1. Thus the crror in \dot{u} is givon by:-

$$
-\frac{T}{m} \delta e_{1} \leqslant \delta \dot{u} \leqslant g \sin \gamma \delta s
$$

If t_{D} ser is the tame to the bottom of the drop, the error in u is given by:-

$$
-\frac{T}{m} t_{D} \delta e_{1} \leqslant \delta u \leqslant g t_{D} \sin \gamma \delta s .
$$

In equation (4)
(c) u, as described above, is given to $\left.\begin{array}{l}+g t_{D} \sin \gamma \delta s t_{D} \delta e_{1}\end{array}\right\} f t / \mathrm{sec}$
(d) $\sin \left(a^{\prime}+a\right)$ is given to $-\hat{0} e^{\prime}$; by the approximation ($\sin a^{\prime}+a \cos a^{\prime}$), see Fig.3. By careful choice of $\mathrm{c}^{2}, \mathrm{Se}_{2} \leqslant 2 \cdot 5 \%$.
(e) $\cos \gamma$ is fiven to $-\delta 0 \%$ by the approximation $\cos \gamma=1-\frac{\gamma^{2}}{2}$,

סc being less than 0.001 - see note (a), para. 3.2.
Simplufying equatson (4), we have:-

$$
\frac{m \dot{\gamma}}{57 \cdot 3}=\frac{m g \cos \gamma-m \sin \left(a^{\prime}+a\right)-L}{\left(V_{0}+u\right)}
$$

the errors in I and L beang ignored, as discussed in para. 4.1 above. Thus, the error in $\dot{\gamma}$ is given by:-
$-\frac{57 \cdot 3}{\left(V_{0}+u\right)}\left\{8 \cos \gamma \delta c+\frac{6 t_{D} \sin \gamma \delta s}{57 \cdot 3} \dot{\gamma}\right\} \leqslant \delta \dot{\gamma} \leqslant \frac{57 \cdot 3}{\left(V_{0}+u\right)} \frac{T}{m}$

$$
x\left\{\delta e_{2} \sin \left(\omega^{\prime}+a\right)+\frac{t_{p} \delta e_{1}}{37 \cdot 3} \dot{\gamma}\right\} .
$$

Integrating,
$-\frac{57 \cdot 3}{\left(V_{0}+u\right)}\left\{E t_{D} \cos \gamma s 0+\frac{E t_{D} \sin \gamma \delta s}{57 \cdot 3} \gamma\right\} \leqslant \delta \gamma \leqslant \frac{57 \cdot 3}{\left(V_{0}+u\right)} \frac{T}{m}$

$$
x\left\{t_{D} \delta \epsilon_{2} \sin \left(\alpha^{\prime}+\alpha\right)+\frac{t_{D} \delta e_{1}}{57 \cdot 3} r\right\}
$$

Substifuting tipical values, $T=18000 \mathrm{Ib}, \mathrm{m}=1400$ slugs

$$
\left(v_{0}+u\right)=200 \mathrm{ft} / \mathrm{sec}, t_{D}=2 \mathrm{sec} .
$$

Approximately, $-18(\delta c+0.001 \delta s \gamma) \leqslant \delta \gamma \leqslant 7.4\left(\delta e_{2}+0.013 \delta e_{1} \gamma\right)$.

Now $\gamma \nmid 4^{\circ}=0.07 \mathrm{rad}$, therefore we may neglect the $\delta \mathrm{s}$ and $\delta \mathrm{ie}$, terms. Thus we may write:

$$
-\frac{57 \cdot 3}{\left(v_{0}+u\right)} g \cos \gamma \delta c t_{D} \leqslant \delta \gamma \leqslant \frac{57 \cdot 3}{\left(\varphi_{0}+u\right)} \frac{T}{m} \delta e_{2} \sin \left(a^{\prime}+a\right) t_{D}
$$

This results might have been expected from considoration of the equations of motion; $\dot{\gamma}$ depends on the balance of forces normal to the flight path, and these forces are modified only slightly by the longluadinal acceleration of the airoraft during the first few sconds of inigit. Tixs one would expect that the errors in u-as calculated by equation (3) will produce only a small error in γ compared with the 'direct' assumption errors δc and δe_{2}.

Now from equation (1);

$$
\dot{h}=\frac{\left(v_{0}+u\right) r}{57 \cdot 3}
$$

Thus percentage error in \dot{h} is givan by

$$
\frac{\delta \dot{h}}{\dot{h}}=\frac{1}{57 \cdot 3}\left[\frac{\delta u}{\left(T_{0}+u\right)}+\frac{\delta \gamma}{r}\right]
$$

therefore

$$
\begin{aligned}
&-\frac{\dot{h}}{57 \cdot 3}\left[\frac{T}{m} \frac{t_{D} \delta \theta_{1}}{\left(V_{0}+u\right)}+\frac{57 \cdot 3}{\left(V_{0}+u\right)} \frac{g \cos \gamma \delta c t_{D}}{\gamma}\right\} \leqslant \delta \dot{h} \leqslant \frac{\dot{h}}{57 \cdot 3} \\
& \quad \times\left\{\frac{\Gamma t_{D} \sin \gamma \delta s}{\left(V_{0}+u\right)}+\frac{57 \cdot 3}{\left(V_{0}+u\right)} \frac{T}{m} \frac{\delta e_{2} \sin \left(a^{\prime}+a\right) t_{D}}{\gamma}\right\} .
\end{aligned}
$$

Substituting typical values again,

$$
-\dot{h}\left(0.0025 \delta e_{1}+0.32 \frac{\delta c}{\gamma}\right) \leqslant \delta \dot{h} \leqslant \dot{h}\left(0.0004 \delta s+0.13 \frac{\delta e_{2}}{\gamma}\right)
$$

Now $\gamma \neq 4^{\circ}=0.07 \mathrm{rad}$, thus once moro we may neglect the δe_{1} and $\delta \mathrm{s}$ terms.

Substituting from equation (1)

$$
\frac{\dot{h}}{\gamma}=\left(\frac{v_{0}+u}{57 \cdot 3}\right) .
$$

Thus

$$
-\frac{E \cos \gamma \delta c t_{D}}{57 \cdot 3} \leqslant \delta \dot{h} \leqslant \frac{T}{m} \frac{\delta e_{2} \sin \left(a^{\prime}+\alpha\right) t_{D}}{57 \cdot 3} .
$$

On integrating, error in h is given by

$$
-\frac{\varepsilon \cos \gamma \delta c t_{D}^{2}}{57 \cdot 3} \leqslant \delta h \leqslant \frac{T}{m} \frac{\delta e_{2} \sin \left(a^{\prime}+a\right) t_{D}^{2}}{57 \cdot 3} .
$$

Typical values give $-0.00003 \mathrm{f}^{\prime t} \leqslant \delta h \leqslant 0.9 \delta e_{2} \sin \left(\alpha^{\prime}+a\right) f^{\prime} t$.
The lower limit of error as negligible in onsideration of height drops of the order of 15 foet.

On the right-hand side, $\sin \left(c^{\prime}+\alpha\right)$ for a conventional aircraft will be of the ordor of 0.3 , but for $V / S T O L$ alrcraft with deflected thrust, may be almost 1. Examinirig Fig.3, it will be seen that we can always chooso a^{\prime} such that $\delta e_{2}<2.5 \mathrm{i}$ (sec para. 6.2). Thus wo may say that in the vorst case, the height drop calculated by the corputer may bo optimistic by up to 0.025 feet, although for a conventional aircraft and a good chozce of paramcter datums, this error is probably less than 0.01 feet.

It should be noted that this error in h is directly proportional to the error introduced by the approximation for $\sin \left(\alpha^{\prime}+\alpha\right)$ in oquation (4) i.e. δe_{2}. Thus the chozce of incidence datum is of paramount importance.

This analysis takes no acount of the computer systom errors (of the order of 0.1) which should have little effect, or of the accuracy to which the output trace can be raad - this bean completely under tho control of the computer operator.

5 SIMPLIFICATION OF THE ERUATIONS OF MOTION

The above assessment of errors is nocossarily simplified, but is suffaciontly pessimistic to make the final figure more than adequate.

An error of this size 13 obviously swamped completoly by the variations which can occur in basic data, cven froin one aircraft to anothcr of the same typo.

The size of these errors, which are beyond the control of the computer, leads to the idea that a vory much simpler programe maght be adoquate for most purposes.

The simplification of the programe necessitates a comparison of the relative magnitude of tho terms in the calculation as follows:-

The torms of equation (3) for a typzeal modurn Naval aircraft have the folloring approximate numorical valucs and represent the stated percentage of 10 u.

14

Term	Ap,Trox. vaiue	Percentage of 10 ' u
$10 \mathrm{u}=$	70	100.
$C_{0} \quad(+v e)$	22	31.5
$c_{1} a \quad(+v e)$	15	21.5
$\mathrm{C}_{2} a^{\circ} \quad(-v e)$	${ }^{\prime} 20^{\circ}$	\% 29
$\mathrm{C}_{3} \mathrm{u}$ (-ve)	9	13
$\mathrm{C}_{4} \mathrm{u} a \mathrm{a}$ (-ve)	$1 \cdot 5$	$2:=$
$c_{5} a^{2} \cdot(-v e)$	2	3
${ }^{6} \mathrm{c}^{2}{ }^{2}$ (-ve)	$0 \cdot 3$	Negligiblo
$c_{7} u^{2} a \quad$ (-ve)	0.04	. "'
$C_{8} u^{-} \alpha^{2}$ (-ve)	0.12	$\therefore "$
$C^{\circ} \mathrm{c}^{3} \quad(-\mathrm{ve})$. 0.006	"
$C_{10} \dot{u}^{2} a^{2}$ (-ve)	$\bigcirc \cdot 0.003$	"
$\left(\begin{array}{lll}C_{11} u^{3} & a & (-v a) \\ c_{12} u^{4} \ldots & (-v e)\end{array}\right.$	0.0003 $5 \times 10-9$	- "

Clearly, ignoreng terms of suffiz 6 and above introduces less than 1%. error in ü. Hence we will recuce equation (3) to:-

$$
\underline{\bar{q}_{0} \dot{u}-\ddot{c}_{0}+c_{1} r-\dot{C}_{2} a-C_{3} u-c_{4} u a-c_{5}=a^{2}}
$$

Equation (5) for the same aircraft has terim with the following approxamate values:--

Term	$\begin{aligned} & \text { Approx. } \\ & \text { value } \\ & \hline \end{aligned}$	Percentafe of $(-10 \dot{\gamma})$
$-10 \dot{r}=$	30.6	$\because 100$
$\mathrm{K}_{0} \quad$ (+ve)	2	$6 \cdot 5$
$K_{1} a \quad(+v e)$	20	$65 \cdot 5$
$\mathrm{K}_{2} \mathrm{u} \quad(+\mathrm{ve})$	5	$16 \cdot 5$
$\mathrm{K}_{3} \mathrm{u} a \quad$ (+ve)	0.6	2
$K_{4} u^{2} \quad(+v e)$	$0 \cdot 1$	Negligible
$\mathrm{K}_{5} \mathrm{u}^{2}$ a ($1+\mathrm{va}$)	0.02	"
$K_{6} u^{3} \quad(+v e)$	$0 \cdot 001$	"
F_{7} u $\dot{\gamma}$ (+ve)	$1 \cdot 2$	4
$\mathrm{K}_{8} r^{2}$ (+ve)	0.09	Nogligible
$\mathrm{K}_{9} \eta$ (+ve)	$1 \cdot 6$	$5 \frac{1}{2}$

Ignoring terms of suffix $4,5,6$ and 8 only, introduces a total error of less than $1, \dot{s}$ in \because. Hence we will reduce equation (5) to

$$
\begin{equation*}
-10 \dot{\gamma}=K_{0}+K_{1} a+K_{2} u+K_{3} u a+K_{7} u \dot{\gamma}+K_{9} \eta \tag{5b}
\end{equation*}
$$

Equations (1), (3b) and (5b) form the basis of the simplified programe; programme II, shown in Figu6 (see also Fig.7).

6 USE OF THE TMO PROGRAREES

6.1 Calculation of the coefficiont values

The tables given $1 n$ Figs. 10 and 11 aid the calculation of the coefficiont values for both programmes. Initially the farst column should be completed, since this consists entirely of information derived from the basic aerodynamic data. Column two contains tire initzal calculations requircd to put this data into a usable form, and the other columns are simply the calculation of the required constants.
6.2 Chozce of speed and inczdence datums, V_{0} and a^{1}

The chozee of V_{0} and a is to some extent arbatrary. Ho:,ever, it is a good guide to choose V_{0} as being about $10 \mathrm{ft} / \mathrm{sec}$ above the expected
minimum launch spoed. This ensures that in the most-important of the series of calculations (the minimur launoh-cendetion) the value of u is kept sinall, and its variation is in the rigit dirccion for greatest accuracy.

The choice of a^{\prime} is somowhat simpler than this, since the incadence timehistory is fixed boforehand, and a good daturn valuc can be chosen. It will be noted, by reference to Fig. 3 , that if $\left(a^{\prime}+\alpha\right)$ is to take any values loas than 10°, it is best to choose a^{\prime} as snall as possible consistent with keoping $a<10^{\circ}$, so as to stay as far array as possable from the discontinulty at $\left(a^{\prime}+a\right)=0$ when a takes nugativo valuos. Similurly, by reforence to Fig. 2, if ($\alpha^{\prime}+\alpha$) is very large, it is bost to choose a^{\prime} as large as possible, consistent with $a>-10^{\circ}$, to stay as for away as possible from the second discontinuity at $\left(a^{\prime}+a\right)=90^{\circ}$ whon a tares positivo values.

6.3 Goneration of tho incidence prow mane

- The inoldence programe has to be set up on a function gonorator. It may be taken directly from inciacnee time-history rocords of flight tests, or as a simple "ranp" type rotation betweon two inciànces at a given rete. Experiments have shown that the resulis of tho height drop calculation aro very sensitive to changes in the a-programe, and for the purpose of comparing results, a standard a-jrograme must be choson and adiered to throughout. If the programe is used in conjunction with a flignt simulator the a-term may be computed wathin the simulator itsclf and fed into the appropriate terminal.

6.4 The tail-plane download tem (Sce footnote on list of Syrbols)

Although having quite large extreme values the tail-plane download term often almost cancols out whon integratod over the initial part of tho flight path, sinco, if a large tail-plane domload is required to initiaio a noso-up rotation after launch, a correspondngly large unload will bo required to stop it, hence it may often be noglected. when uscd, the value of η may cither be set up on a function juncrator, using filght tost time-histories; be put in from the stick output of a flight simulator, or be computed, for a given incidence programme, using a longitudinal stability programe such as that shown in Fig. 8 (sso also Flg.9). In the latcor casc, it inll be noted that the straight line ranp incidence programe used for simpluczty in comparison calculations (sce above) cannot bo roproduced.

6.5 Alternative use of the two prosrames

For some aircraft, the approximatiors maủ in simplifying tho programe may be inadequate, and a check should always ba made before using the second programe, that this is not the case; otherwise programme I must be used.

6.6 Computing procedure

Having "patched-up" the programme required on the computer, and set up the relevant potentiometer values, operation is sarplicity itself. The α-programe is fed into the appropriate terminal, and tho catapult end (air) speed required is set up on pot. CJ2 on programe I and B21 on programme II (values of initial u, both positive and negative, may be set up using Key I to change the sign) and the flight path, speed variation or a time-history may he plotted out for the initial part of the flight path, depending on the position of Key II.

Sophistications to the besic calculation can be made such as those listed below.

6.6.1 Deck run

Allowance can be made for the fow feet of dock boyond the ond of the catapult by calculating the new airspoed at the end of the deck using rectiInnear kinematics. This is a simple colculation by hand, or if requared, it could easily bo programned into the computer circurt.

6.6.2 Initial concition of γ

Pot. $\mathrm{E}_{4} 2$ in programe I and pot. B51 in progrome II, provide a facility for varying the inftial condition of the flight path angle, γ. This would be one way of ostimating the effect of cnergy recovery from undercarriage olcos and tyres, or the effoct of launching from a catapult on a pitching and/or heaving deck, etc.

6.7 Aircraft with boundary layer control

Since most modern naval aircraft are equipped wath blown flaps and/or blow leading odge, the variation of the effects of "blow" was writton into the programmes. Should tho procrammes be requirod to deal wh th the case of an azreraft with surface suction boundary layer control, $\frac{\partial C_{L}}{\partial u}$ and $\frac{\partial C D_{0}}{\partial u}$ may be detcrmined from the offects of variation of suction mass flow rate and the rate of change of this quantity with aurspeed. It is suspected that, as with the caso of "blow" boundary layor oontrol, triis varlation will have littie effect on the overall result of the calculation.

6.8 V/STOL airoraft vith dofloctod thrust

This paper does not deal with the case of a varying thrust daflection angle during the period of the height drop. Horicver, it is doubtful if such variation would bo a foasible technique during the first few seconds after a catapult launch.

The present colculation does covor thie cose of a large but constant thrust deflection angle, which reans, in effect, a lonee value of a'. Study of Figs. 2 and 3 shows that this roquiremont is quito compatiblo with the assumptions mede, provided that a still lies within the rans $\pm 10^{\circ}$ (which is almost cortain since the chosen a-time-history will be dictated by the roquirements of a more or loss conventional wing) and thet the total aigle $\left(a^{\prime}+\alpha\right)$ does not excced a value of about 80° (which again is very likciy sinco the purposo of the catapult launch of such an aircreft is to give the aircraft forward specd, and in order to maintain this speed or accislurate, therc must be at least some horizontal component of thrust).

To suri up, thon; the voctored thrust aircraft may be dcalt with by the programos horein, provided that the total inclination of the thrust line. above the flight path does not excecd about 80°, and the inclination of the thrust line to the wing datum doos not vary during the farst fow soconas of flight.

Clearly; if either of the above roquircmonte are not fulfilled, the prosent programes are inedoquato and modification must bo mado to cover the case.

7 CONCLUDING REMARIS

The calculating accuracy of both programes is considorably better than the accuracy to phich the basic aircraft data con be obtained. Consequently, for most aircraft, thero is liftlo to choose betwcon the programmes. . Howevor, for some unusual cesos (c.e. lerge excoss thrust; small initiol liftt) the "complete" programme is nocassary to incluade all relevant torms.

Tho main advantage of the $2 n d$ progrime (apart from its inherent simplicity) is that at leaves more than helf the $S C 30$ computer frce for other purposes, such as tho longitudinal stabilaty programe show in Fig. 8 ,

Fig. 12 shows a comparison between results for both programes for an aircraft in tro vory different configurntions intin results for the sanc cases calculated indopendentiy on a :ercury digitill corpater and by hand. The nain reason for disagroment with tho hand oalculation results is a discrepancy in basic aerodymic data. Fig. 13 shows a plot of the height dropped against tino as produced by programe I and as ocloulated by hona for idention basic data.

SYBBIS

a	incremontal angle of incldence above datum
a^{\prime}	datum incidence of thrust lino relative to the flight path
C_{D}	$\text { arag coofficient }=\frac{D}{\frac{1}{2} \rho V^{2} S}$
${ }^{C} D_{0}$	drag coefficiont at zero luft and specd V_{0}
${ }^{C_{D}}{ }_{O_{V}}$	drag coefficient at zero lift and sreed V
$C_{D_{a^{2}}}$	drag coefficient at datum incidence and speed
$\mathrm{C}_{\mathrm{L}}{ }^{\text {* }}$	$\text { lif't coefficient }=\frac{L}{\frac{1}{2} \rho V^{2} S}$
${ }^{C_{L_{\alpha^{\prime}}}}$	lift coefficient at datum incidonce and speed
C_{μ}	boundary layor control momenturn coefficlent
D	acrodynamze dras force
D_{m}	momentum drag forco (total for airoraft)
γ	anglo botween flaght path and horizontal (positive on descent)
6	acceleration due to gravity
h k	height dropped bolow deck levol inuuced dras factor $=\frac{\partial C_{D}}{\partial\left(C_{L}^{2}\right)}$
L *	aerodynamic lift force
m	mass of aurcraft at take-off
η *	clevator angle
p	air density at take-off conditıons
S	total wing area of aircraft
T	gross thrust of aircraft moasurod at spoed V_{0} and ambient air density
u	incremental velocity of aircraft dbove datum
V_{0}	datum spoed
V	total speed $=V_{0}+u$
Z_{η}	vortical force/acgree elcvalor deflection
	A dot implies differentiation with respect to time.

\% If trammed values of lart and C_{L} aro used, η is tho incromental elevator ancle over the trimmed elovator position. This is clearly the method to be adopted if the $\underset{\sim}{ } \quad$ term is to be neglected (soe lator). If stick fixed (untrimmed) values of η Inft and C_{L} are used, η has the usual meaning of elevator displacemont from the datum position.
CARRIER DECK LEVEL

drawing not to scale
FIG.I FORCES ON AN AIRCRAFT AFTER A CATAPULT LAUNCH

FIG. 2 PLOT OF THE ERRORS IN THE APPROXIMATION $\cos \left(\alpha^{\prime}+\alpha\right) \approx \cos \alpha^{\prime}-\alpha \sin \alpha^{\prime}$

FIG. 3 PLOT OF THE ERRORS IN THE APPROXIMATION $\sin \left(\alpha^{\prime}+\alpha\right) \approx \sin \alpha^{\prime}+\alpha \cos \alpha^{\prime}$

FIG. 4 PROGRAMME I

8^{0}	3^{5}	$0^{00^{4}}$	$\sqrt{v^{2}}$	$\begin{aligned} & p^{3} \\ & v^{2} \end{aligned}$	$\begin{aligned} & 3 \\ & r^{3} \end{aligned}$	
All						
A12						
A21						
A22						
A 31						
A 32						
A41						
A42	10a	C		SHA	T OF	SM 2
A5!						
A52						
BII						
812						
B21	u	$10 \mathrm{~K}_{7}$		SHA	T or	SM 1
822						
831	$-\frac{x^{2} u^{3}}{100}$	$\frac{10 C_{4}}{\mathrm{Ky}^{2}}$		10	85	$+C_{8} H^{2}$
832	$-\frac{1810}{10}$	$\frac{10 c_{4}}{10}$		1	B5	+C. ${ }^{4}$
B41						
842	$\underline{+\frac{k^{3}}{}{ }^{3} 0^{2}}$	$\frac{10^{4} c^{2}}{k 7}$		1	C4	$-\frac{c_{n_{1} \mu^{4}}^{10}}{10}$
B 51	- $\frac{c}{10}$ ua	$\frac{C_{4}}{c_{6}}$		10	85	+ $c_{4} 4 \alpha$
B52	-u	c_{3}		1	85	$+c_{3} 4$
CII						
C 12						
c 21						
c22	- $\frac{\mathrm{Ky}^{1} \mathrm{~L}^{1}}{100}$	$\frac{10^{3} \mathrm{~K}}{47^{4}}$		1	E1	$K_{6} u^{3}$
c31	$\frac{K^{2}{ }^{2} c}{10^{2}} u^{3} a$			1	c5	$-C_{11} u^{3} \alpha$
C32	I 6	u				
C41	$\frac{6}{10} \alpha^{2}$	C^{c}		1	64	$-\frac{C_{8} \alpha^{2}}{10}$
C42		$\frac{1067}{\mathrm{~K}_{7} \mathrm{t}}$		1	C4	$-\frac{C_{7} M^{2} \mu}{10}$
C51	10~	$\frac{c_{1}}{10}$		1	c4	- $\frac{C_{8} \alpha}{18}$
C52	-100	$\frac{1880}{1080}$		10	c5	$+c_{0}$

SELECTS SIGN
of IC-u
KEY 2
SELECTS O/P TO
X / Y PLOTTER

Q^{0}	s^{3}	$0^{2^{\varepsilon^{4}}}$	$\sqrt{34}$	$\left\lvert\, \begin{aligned} & p^{5} \\ & b^{3} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & r^{2} \\ & r^{2} \end{aligned}\right.$	$م_{0}^{N^{2}}$
Dil						
D12						
D 21		$\frac{10 k_{6}}{k_{7} \mathrm{c}}$		10	E 3	$-x_{g} u^{2} d$
D22						
D 31						
D 32	$-\frac{K_{7} 4^{2}}{10}$	$\frac{10 K_{4}}{K_{7}}$		1	E 5	$+K_{4} L^{2}$
041	-108	$\frac{c_{1}}{10}$		1	c5	+ $C_{1}{ }^{8}$
D42	108	10 K		SHAF	T OF	SM4
D51	$\frac{614 \alpha^{2}}{100}$	$\frac{10 c_{1}}{c^{2}}$		10	c5	- $\mathrm{C}_{0} u a^{2}$
D 52						
EII	$-\frac{\cos \alpha}{10}$	$10 \frac{k_{3}}{4}$		1	El	+ $x_{3} u \alpha$
E12	-100	$\frac{k_{0}}{100}$		1	E1	κ_{0}
E 21						
E 22						
E 31	μ	K_{2}		1	E3	$-K_{2} \mu$
E 32	10 r	$\frac{P}{10}$		1	F2	-PYdt
E41	10a	$\frac{1}{10}$		1	$\varepsilon 3$	-K, α
E 42	I C	$10 \times$				
E 51						
E 52						
FII						
$F 12$	$+107$	K,		$\cdot 1$	E1	$-x, 7$
F21	+K, u 立	$\frac{6}{10 K_{e}}$		10	F2	$-04 \dot{y} d t$
$F 22$						
F31	-100	$\frac{1}{100}$		1	53	R dt
F32						
F41						
F 42						
F 51						
F 52						

FIG. 5 LIST OF COEFFICIENT POTENTIOMETERS FOR PROGRAMME I

FIG. 6 PROGRAMME II

FIG. 7 LIST OF COEFFICIENT POTENTIOMETERS

FIG. 8 LONGITUDINAL STABILITY PROGRAMME FOR GENERATION OF
η FOR A GIVE a TIME-HISTORY

p^{0}	$P^{s^{1}}$	$c^{0^{<^{<}}}$	$a a^{2}$	$\begin{aligned} & r^{2} \\ & r^{2} \\ & r^{2} \end{aligned}$	R	
D11	$+10 \times$	M α		. 1	DI	$-M_{\alpha}{ }^{\alpha}$
D12	$+\dot{\theta}$	$M q$		1	DI	$-M_{q} \dot{\theta}$
D21						
D22						
D31	± 100	REQUIRED FINAL α		1	03	$\begin{aligned} & \text { +REQ } \\ & \text { FINAL } \alpha \end{aligned}$
D32	+10 ${ }^{\text {人 }}$	$\begin{aligned} & \text { DAMPING } \\ & \text { COEFF } \end{aligned}$		1	D3	-10K $\dot{\alpha}$
D41	η-LIMIT					
D42	-10η	$\frac{M \pi}{10}$		1	E1	$+M \eta \eta d t$
D51						
D52						
Ell						
E12	$-\dot{\alpha}$	M ${ }^{\text {a }}$		1	E1	$+M_{\dot{\alpha}} \dot{\alpha} d t$
E21						
E22						
E31	I.C. $+10 \alpha$					
E 32						
E41						
E 42						
ESI						
E 52						
FII						
F12						
F21						
F22						
F31						
F32						
F41						
F42						
F51						
F52						

FIG. 9 LIST OF COEFFICIENT POTENTIOMETERS FOR LONGITUDINAL STABILITY PROGRAMME

CONSTANT	$\begin{aligned} & \text { RAW } \\ & \text { DATA } \end{aligned}$	CALCULATE	VALUE
acceleration due to gravity ($\mathrm{ft} / \mathrm{sec}^{2}$) ALL-UP WEIGHT OF a / c AT t / \circ (ib) MASS OF $0 / \mathrm{c}$ AT $t \%$ (SLUGS) RATE OF CHANGE OF GROSS THRUST WITH SPEED GROSS THRUST AT SPEED V_{0} (ib) gross thrust at speed V_{0} (ib) rate of change of momentum drag with speed MOMENTUM DRAG AT SPEED V_{0} (ib) angle between wing datum and thrust line datum wing incidence datum incidence referred to thrust line Lift coefficient at datum incidence drag coefficient at datum incidence LIFT CURVE SLOPE AT DATUM INCIDENCE LIFT-DEPENDANT DRAG FACTOR ($\partial C_{0} / \partial C_{\mathrm{L}}{ }^{2}$) fate of change of C_{μ} WITH speEd RATE OF CHANGE OF $C_{D_{0}}$ WITH C_{μ} RATE OF CHANGE OF C_{L} WITH C_{μ} RATE OF CHANGE OF C_{D}, WITH SPEED RATE OF CHANGE OF CL WITH SPEED AIR DENSITY AT $\%$ CONDITIONS OVERALL WING AREA RATE OF CHANGE OF TAIL DOWNLOAD WITH ELEVATOR POSITION ($16 /{ }^{\circ}$) DATUM SPEED ($\mathrm{ft} / \mathrm{sec}$) USEFUL CONSTANTS			

1 SIGN CONVENTION FOR δt_{ω} IS AS FOLLOWS :-
2 DATUMS CHOSEN TO BE IN THE CENTRE OF THE WORKING RANGE OF INCIDENCE AND SPEED
$3 C_{L}$ AND C_{0} AT DATUM WING INCIDENCE
4 DERIVATIVES TAKEN AT DATUM INCIDENCE AND SPEED

FIG.IO TABLE FOR CALCULATION OF POTENTIOMETER VALUES

DRAG ${ }^{\text {EQUATIONS }} 10 u=C_{0}+C_{1} \delta-C_{2} \alpha-c_{3} u-c_{4} u \alpha-C_{5} \alpha^{2}-C_{8} u^{2}-C_{7} u^{2} \alpha-C_{8} u^{8}$
LIFT: $-10 \dot{d}=K_{0}+K_{1} \alpha+K_{2} u+K_{3} u \alpha+K_{4} u^{2}+K_{5} u^{2} \alpha+K_{8} u^{2}+K_{7} u \gamma+K_{8} \delta^{2}+K_{9} \eta$
HEIGHT DROP: $h=P \delta+Q u \delta$
FIG.II CONSTANTS FOR EQUATIONS OF MOTION

FIG. 12 COMPARISON OF RESULTS OBTAINED BY VARIOUS METHODS

FIG. 13 COMPARISON BETWEEN COMPUTER PLOT \& HAND CALN. FOR IDENTICAL BASIC DATA

A.R.C. C.P. No. 977	629.13 .0778
January 1966	518.58
	621.317 .798
Addicott, E. W.	629.13 .015 .612 .28
Jones, R. W.	533.6 .015 .1

SOLUTION OF THE CATAPULT TAKE-OFF PERFORMANCE EQUATIONS BY AN ANALOGUE METHOD
An anslogue conputer progrance vas derived, making as rew approximations as possible, for the calculation of the flight path of an aireraft leaving the end of a ship-borne catapult. Using this complete' calculation, it mes shown that, for most aircralt, other approximations could be mede without significantly inpairing the accuracy of the result, and greatiy sipplifying the programe.

A description of both programes is given here, together with their derivation and method of use.
A.R.C. C.P. No. 977

January 1966
Addicott, E. W.
Jones, R. W.
629.13.077:
518.58
621.317 .798
$629.13 .015,612.28$
533.6 .015 .1

SOLUTION OF THE CATAPULT TAKE-OFF PERFORMANCE EQUATI ONS BY AN ANALOGUE METHOD

An analogue computer programme mas derived, raking as tew approximations as possible. for the calculation of the flight path of an alreraft leaving the and of a ship-borme catapult. Using this icomplete' calculation, it mes shown that, for most aircraft, other approximations could be made without significantly impairing the accuracy of the result, and greatly simplifying the prograntie.

A description of both programes is given here, together with their derivation and rethod of use.

© Crown Copyrıght 1968

Published by
Her Majesty's Stamionery Office
To be purchased from
49 High Holborn, London w c 1
423 Oxford Street, London w. 1
13a Castle Street, Edinburgh 2
109 St Mary Street, Cardiff
Brazennose Street, Manchester 2
50 Farrfax Street, Bristol 1
258-259 Broad Street, Birmingham 1
7-11 Linenhall Street, Belfast 2
or through any bookseller

[^0]: * Replaces R.A. E. Tech. Report 66026 - A. R.C. 28521

