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I,JQiilING EDGE EFFECTS ON CARET WINGS 

J. C. Cooke 

The two planes of the lower surface of a caret wing are treated as though 

they were infinite and swept, and the leading edge shock boundary layer inter- 

action for each is investigated. It is found that the shock shapes are curved 

near to the leading edge and the pressure there is higher than the design 

pressure. However, in certain circumstances each shock may soom becane parallel 

to the design shock and the pressure near to its design value. In extreme 

conditions this may never happen and for these cases it is concluded that the 

design is not achieved, A tentative condition for the achieverihent of design 

conditions is given. 

*Replaces LA.% Technical Note No. Aero 2963 - A.&C. 25840 
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1 1NTRODuCT101\I 

Caret or Nonweiler' wings have the property that there is an attached 
plane shock at the base (see Fig.l), supposing the leading edges to be sharp; 
after passing through the shock the air flow is everywhere parallel to the 
ridge line. The leading edge may, however, not be sharp and in any case the 
growth of the boundary layer is such that the displacement surface is rounded. 
Consequently, the shock in fact stands off from the surface, but it may still 
be plane over most of the region of interest, in which case it may appear as in 
Fig.2, and the basio mechanism of the design will still work. This, indeed has 
so far been found to be the case in experiments, which have mostly been at 
sufficiently low Mach numbers and high Reynolds numbers for the effect to be 
confined to such a small region near to the leading edge as scarcely to be seen. 
The effect is known to depend on the prameter x equal to M3/Rik, the boundary 

layer vlteraction parameter. In the literature the effect has been divided into 
two parts, the swcalled 'lstrong't interaction which occurs near to the leading 
edge ad the "weakl'interaction which occurs a little further downstream. These 
are asymptotic states characterized by K >> I and K << I where K = Y8, in which 
8 is the angle of turning through the shock. Nearer still to the leading edge 
there may be a region of flow with l'slipl' and nearer still a "free-molecule" 
regime. We shall only consider here the weak and strong interaction regimes, 
and indeed mainly only the weak interaction case. WC shall suppose the flow to 
be larr.inar throughout. 

The simple caret wing has two plane surfaces underneath and, for simplicity, 
in order to gain some idea of the effect, we shall suppose each of these planes 
to be extended so as to be semi-infinite, their leading edges being straight 
extensions of that of the caret; these plates may have rounded leading edges. 
We shall only consider their iower surfaces. These plane surfaces cannot of 
course really act independently of each other, but we may expect the leading 
edge effects to be independent if we are not too close to the apex, which is 
excluded altogether from the analysis. We shall I'ind that the shocks at the 
edges are in fact curved, as in Fig.2, but that near the middle they may become 
parallel and it seems reasonable to suppose that they join up. On the other 
hand there may be cases in which they never become parallel, and so there must 
in such a case be an interaction between the surfaces, the nature of which it 
is not possible to determine at present. A better model might be to treat the 
flow as conical (instead of oylindrical) but this renders the analysis difficult 
or impossible to carry out at present. 

So far in weak interactions it has only been possible to carry oJt tne 
analysis in two dimensions and for either the boundary layer displacement effect 
on infinitely thin flat plates, or the thickness effect without the displacement 
effect, It has not been possible to combine the two effects, though it has been 
shown that, as far as pressures are concerned, fair agreement with experiment 
can be obtained simply by adding the pressures for the two cases independently2; 
this has been done in the present work. Once the pressure is known it is possible 
to work out the shape of the shock. For strong interactions Cheng, Hall, Golian 
and Hertzberg have been able to combine the two effects and obtain what 
call a zero-order approximation in (y - l)/(y + I). For the cases we are 

they 

considering here, which are highly swept, the method is not applicable, since 
in our case the strong shock region is too near to the rounded nose for the 
theory to apply. 
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2 WEAK INTERACTION 

If the leading edge is sharp and unswept but at an incidence a, the growth 
of pressure is given byb 

b id3 
p. = I+" 
Pa Ra x5 

where the suffix a refers to inviscid sharp wedge conditions at incidence a, 
that is, conditions behind the straight shock at the leading edge. In this 
equation ba is given by 

ba = Y f 0.166 (y - I) 1 
where T 

W 
is the wall temperature, assumed constant. 

If the Flate is new swept, the boundary layer growth should proceed in 
approximately the same way and equation (1) should still apply provided x is 
measured along the section of the plate by a vertical plane containing the 
direction of the oncoming flow, We should note that the independence principle 
does not apply in these high supersonic flows. 

If the plate is unswept and the leading edge is blunt with diameter or 
thickness d the pressure due to this is given by 

P 
pa 

I 2/3 where B = (I) , c = cY (CC) 2/3 , C+, being the drag coefficient of the leading 

edge for flow normal to its and c = 0.112 for air and 0.169 for helium. 
Y 

If the plate is now swept, equation (3) still applies, provided s is 

replaced by CD cos2 4, where 9 is the angle of sweep. One must be careful here 

about the definition of 6; actually, its value is to be talc% as (90" - the 
angle between the incident direction of flow and the leading edge). Creagerk 
gives this factor as cos3 #I, but it can be shown that he is in error here. 
(Indeed his experiments suggest that the power j is far too large and ought to 

be replaced by 1, not 2 as given here on theoretical grounds.) 

Finally, the combination of displacement and thickness effects are added. 
There is no theoretical justification for this, but apparently it gives results 
in agreement with experiment&. Henoe the pressure ratio p/p, can be found, the 

full formula being 

-4- 



(4) 

where ba is given by (2), B = (4) 2/3 , o = cy(CD oos' #) 2/3 , Ok = 0.112 for air. 

3 SIXCNG INTE3ACTION 

It can be shown that the approximate analysis of Cheng et al? still applies 
to a swept flat plate at incidence. We measure everything streamwise ard the 
only differenoe is in the drag coefficient of the leading blunt edge. If the 
unswept drag coefficient is CD (denoted by k by Cheng et al.) we simply write 

f$ cos2 9 in place of CD, as indeed we did in section 2. Then all the analysis 

will still apply and in particular we can find from their curves the value of the 
pressure ratio. We have recomputed these Curves so as to be able to plot them on 
a larger scale and to extend their range. 

In the work of Cheng et al. it is necessary for &, 6 to be large, whilst 6 
should be small. In many oases there can be found a range of values of 6 between 
which both these relations hold sufficiently wall for the analysis to be valid. 
Cheng et al. give a pair of inequalities which determine this range. It is 
found for the examples considered here that there are no values of 6 which satisfy 
both these inequalities simultaneously, and so we shall give no further details 
here. 

We have nevertheless described the modification to the analysis of 
Cheng et al. which is required to take sweep into account, since it is simple 
an3 may well be applicable if models of less sweep are ever contemplated. 

4 THE SHCCK SHAPE 

If the position of the shock at some point near to the leading edge is 
known, and its streamwise slope is known at all points downstream the position 
of the shock can be obtained by integration. For simplicity of description we 
shall take the incident flow as horizontal, and then we take as Vbase plane" a 
horizontal plane through P, the point of the leading edge under consideration. 
Distance X is measured from P in this plane downstream and Y is measured 
perpendicular to this plane. We nrust therefore find the streamwise slope of 
the shock at points downstream of P, knowing the pressure rise p/p, across it. 
This is a problem of three dimensional geometry, together with the shock 
relations across an oblique shock and is discussed in Appendix 1. Provided 
that G is small where G is the angle between the free stream and the tangent 
plane to the shock, it oan be shown that the streamwise slope of the shock is 
approximately tan G and so, if Ys is the Y co-ordinate of the shock, we have 

X 

Ys = 
I 

tancdX + Y. (5) 
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where (Xo, Yo) are to co-ordinates of the starting point. Now Z is found from 

the shock relation 

and so we can find the position of the shock. 

Near to the leading edge it may be necessary to use the more accurate 
formula of Appendix 1. In this region the direotion of flow after the shock is 
no longer streamwise so the basic flow is not so nearly achieved. Consequently, 
the greater apparent accuracy of the full formula may not have much ;;tistification. 

5 EXMPLES 

We shall consider two cases for which boundary layer calculations were made 
by Catherall5, the details being as shown below:- 

TABLZI 

Case Height % 
6 

/"a! ' *w R 
C ax 1 d/c T, M a 

1 200,000 ft 10.1 4.1° 8 600% 3.003~~0~ j 0.005 2544c 7.065 

I 2 f 300,000 ft 7.046' 1.046' g 600% 3.68x10 G j 0.005 197% 8.692 

Each of these has a chord of 200 feet and so we are taking in each case a 
leading edge diameter d of 1 foot. Each has a ridge angle of 6O and the angle 
E is 66.7'. (See Fig.3.) The other angles concerned may best be calculated 
from spherical trigonometry and their values are shown in Fig.3 which represents 
the projection of the body on a sphere whose centre is the apex. The particular 
features of these are that in case 1 the displacement thickness is very small, 
and so is its slope over most of the body. In case 2 the displacement thickness 
is very much larger owing to the much lower Reynolds number, ard it seems possible 
that for this case the leading edge effect might not be confined to a very small 
region of the body. We have assumed that the wall is cooled sufficiently for its 
temperature Tw to be constantly equal to 600oK in each case. 

We use equation (4) to calculate the pessurc ratio at various points 
downstream of the leading edge. This equation reduces to 

where the constants a', b1 and c* are given by 
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TABLE 2 

I a' 1 b' 1 0' t 

I Case 1 
I 

2.13 0.0507 
I 

0.0404 

I Case 2 1 I .A.Z f 0,593 1 0.0468 f 

The values of a' are in fact the amount of pressure rise if there were no 
interaotion effect. The term in b' represents the displacement effect and that 
in cl the thickness effect. We have taken CD= 2 as a reasonable value, 

suggested by Cheng et a14. It of ccurse varies with the shape of the leading 
edge. 

The results for pressure rise are given in Fig.& Note that tp scale 

of x/c! has been stretched near to the leading edge by pgotting (x/c)~ as 
abcissa. As the leading edge is approached the pressure ratio rises and 
indeed tends to infinity as x/c tends to zero. This cannot happen really and 
the error is due to the fact that the analysis is being extended to the region 
of the bow shock where it does not apply. However it is possible to calculate 
the maximum value that the pressure rise through the shock can have. The 
tangent plane to the shock is swept and the maximum possible value of the normal 
component is b& co9 54. From this the pressure rise can be calculated. We have 

therefore extrapolated the pressure curves to this value and adopted the 
resulting relation as a means of calculating the shock position, provided that 
this position is l~~uwn at some point. We do not know this as it depends on the 
stand-off distance of the shock. What we have done is started from a point not 
too near to the leading edge and adjusted the value of Y there so that the 
resulting curve passes smoothly through the leading edge. Actually it will 
stand off a small distance further than this, but inaccuracies here scarcely 
affect the overall picture. 

Finally we have plotted the calculated positions of the two shocks at 
the trailing edges fo, ,- each of the two cases in Fig.5. It must be realised 
that the shock is not conical in this figure. If we wish to find the shock 
position at say half way down the body we must cut off the figure by two 
vertical lines half way out as shown dotted in the figure and exclude the 
middle part, moving the two outside parts towards each other until they meet. 

6 RESULTS AND DISCUSSION 

It will be seen that for case 1 the shocks are compatible over a large 
part of the body. They are curved at the edges, but one may well expect that 
the design flow will in fact be achieved and design shock will be present, 
thoilgh slightly displaced from its design position. The two sides will not 
interact except very near to the apex. 
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On the othsr hand, we see that in case 2 tho shocks are not compatible 
anywhere and the two sides must interaot everywhere. It is possible that the 
flow adjusts itself in such a way that there is one uniform rounded shock, but 
at any rate it seems certain that the basio feature of the caret wing is not at 
all closely aohieved. There is a sideways pressure gradient everywhere inside 
the wing which will make the surface flow curve inwards, so that the flow 
pattern on which the calculation was based does not apply. This is in contrast 
to case 1 where the pressure is constant over a large psrt of the surface. (It 
should be remembered that inFig. the prt near to the leading edge has been 
stretched by the method of plotting. The pressures are correctly scaled in 

Fig.5.) 

I A CRITERION FOR CARET FLOW j 

On the basis of this work we suggest a highly tentative criterion for the 
existence of the planned oaret flow. 
given by 

The basic interaction parameter x, is 

*3 & 
x, = a . 

R 5 
aX 

The constant Ca comes from the ChaIxaanRubesin formula. x, is what was called 

x orig by Hayes and l?robstein6. It is generally taken that the effect of the 

interaction is negligible in regions where the parameter x, has a value less than 

unity. We will suppose that if the effect only takes place in a region !.5$ of 
the total chord from the leading edge the basic caret wing theory will work 
reasonably well in praotice. We give below the values of x, for the two examples 

at various values of x/o. It will be sufficient here to take Ca = I. 

Case 1 

0.05 
0.1 
0.2 

0.4 
0.8 
1.0 

T 
‘a ‘a 

0.77 14.5 
0.54 10.3 
0.38 7.3 
0.27 5.0 
0.19 3.6 
0.17 3.2 I 

Case] 
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Thus we see that for case 1 the criterion x, < 1 is satisfied at 5yd chord 

from the leading edge, whilst for case 2 it is nowhere satisfied. A glanoe at 
Fig.5 suggests that we are being somewhat oonservative in our choice of unity 
for the maximum value of x,, and that possibly a larger value might be used. 

For convenienoe it may be preferable to give the maximum allowable value 
of x, based on the full chord. We denote this by xaoa The result is 

M3 
X ac = 4 = 0.22 . 03) 

R Y 
a0 

Par values greater than this one may have doubts as to whether the 
design caret flow will be achieved. 

One of the experiments of Sykei8 was made at a Mach number of 10.3, with 
a design value of 5 - $ equal to 5 . There are two possible configurations 

satisfying the design conditions for this model, one with $, = 8', hD = 3' and 

the other with s = 20°, $ = 15’. The Reynolds number of the tests was 

1.4 x d p er inch and there were two models, one with a sweep of 50' and length 
4..V and the other with a sweep of 70' and length 9.9". 

For these models the results are:- 

% - 
c 3O 5o” 0.82 

3O 7o" 0.54 

c 15O 15O 503 7o” 0.18 0.12 

It will be seen that the maximum value of x,, is exceeded for both sweep 

angles for the weak shock case, that is when $ = 3 0 , particularly for the model 

with the least sweep. The experiments do in fact show some divergence fran 
design for this incidence, an3 it is larger for the lower sweep angle. On the 
other hand, for $ = -l5’, x,, is below the criterion given here, and indeed 

design conditions were well fulfilled for this case. It may be possible that 
the value 0.22 in equation (8) could be raised a little without prejudicing the 
design too much. 

We may note that for the caret wing tested by SquireT(his model 2) the 
value of x,, was only 0,Ol. 
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Leading edge thickness has sane effect on the results; we have taken a 
fairly large value for this in our numerical examples, If it were thinner the 
effect would be reduced although the value of x,, is not changed. Hence for a 

thinner leading edge it may be possible to use a larger value of x,, than the 

one suggested. It will be noticed, however, that the thickness effect does not 
depend on Reynolds number. Consequently for the lower Reynolds numbers, as in 
case 2, the thickness eff*ot is almost entirely masked by the larger displacement 
effect as can be seen from equation (7) and Table 2, and quite large changes in 
thickness may be made without affecting the overall picture very much. 

8 CONCLUSIONS 

Thelanalysis of this paper shows that if the interaction parameter 

x ac = MpRtc is large enough the flow aimed at in the design of caret wings may 

not be achieve& If eaoh side is calculated independently the shapes of the 
shocks may be found approximately in places not too near to the leading edges. 
The two shocks thus obtained may meet at an angle and cannot join up, so that 
there must be some interaction between the two sides. What happens in such a 
case cannot be determined by the simple methods adopted here, and the whole 
flow must be considered afresh. 

However, for smaller values of x, the two sides may well be considered to 
be independent of one another, nrd the two shocks merge properly, except for a 
small region near to the apex. In this case the design is probably achieved 
except near to the leading edges. 

An attempt has beon made to estimate the conditions for which the design 
flow may occur0 If Mcr is the caret design Maoh number after the shock is 

passed and Rat the corresponding Reynolds number based on the maximum chord, a 

tentative value for achieving design flow is 

163 
x = a0 (x z 0.22 

R Y 
ao 

and design flow may not be achieved if this value is exceeded0 

In most of the tests so far made x,, has been well below the maximum value 

suggested. In order to estimate the value of such a criterion it will be 
necessary for tests to be made at higher values of x,,~ This may be difficult, 

but it seems essential if one is considering flight at very high altitudes such 
as tnat suggested in case 2 of this paper, which fits into the suggested 
corridor 5 for flight at great heights and large biaoh numbers. 

The value of x may well be an important consideration in deoiding the 
characteristics of a$ future wind tunnel which may be built to investigate 
flight at large altitudes and hypersonic speeds. 
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SYMBOLS 

constants in (7) 

given by (2) 

(1/2)2/j 

c,(%) 
*" in equations (3) and (4 

maximum chord 

constant in relation dp, = C(T/T, ) 

constant (0.112 for air, 0.169 for helium) 

drag coefficient of the nose 

diameter or width of the nose 

a’,b’,c’ 

h 
a 

B 

C 

C 

C 

OY 
CD 
d 

M 

P 

Rx 

T 

X 

X 

Y 

2 

Y 

Maoh number 

pressure 

Reynolds number based on distance x 

temperature 

streamwise distance along the surface 

streamwise distance along the base plane 

distance from base plane 

distance normal to the XY plane 

specific heat ratio 

tan 7% - tan ;j 

turning angle through shock 

angle between tangent plane to shock &and incident direction of flow 

coefficient of viscosity 

angle between planes of caret and vertical plane 

angle of sweep 

M3,,& 
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SYMBOLS (CONTD) 

Subsoripts 

a 

D 

0 

W 

No. 

1 

2 

refers to conditions at infinity upstream 

refers to conditions in invisoid flow after passing through the shook 

refers to caret design condition 
I 

refers to quantities based on the centre-line chord o 

refers to conditions on the wall 

Author 
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S-SE SLOE; OFTHE SOCK 

Assume for convenience of description that the incident flow is horizontal 
and in the direction of the X axis, that OY is vertically downwards, and 02 is 
normal to OX, where 0 is the point where the incident ray under consideration 
would reach the design shock of the caret. (See Fig.6.) 

Then the equation of the design shock is Y = X tan 5. This shcck 

contains the leading edge, which makes an angle 90' - $ with OX. Hence the 
equation of the leading edge (expressed with the denominators as actual 
direction cosines) are 

X-a Y -b z WC 

ZiTy sin$ tans = (1 - sin2 # - sin2 $ tan2 bD)' 

where (a, b, c) are the co-ordinates of some point on the leading edge. 

New let 

cos a = tan $ tanCD 

and the leading edge beccmes 

X -a Y -b z -c 
q= co9 a cos $ = sin a cos $ l 

We now suppose that in fact the incident flow hits an oblique shock, the 
equation of whose tangent plane at the point of impact is 

&X+mY+nZ = D , 

where b2 + m2 + n 2 = 1, so that 4, m and n are the actual direction ccsines of 
its normal. Now the incident flow makes an angle ;3 with its projection on the 
plane of the shock, that is, 90° - 1: with the normal to the shock. Hence we 
have 4 = sinz. 

Again, in this infinite swept model, the leading edge must be p=arallel 
to the tangent plane to the shock, that is, perpendicular to the normal to the 
shock. Hence 

4 sin $ + m co8 a co9 Q, + n sin a cos $ = 0 o (9) 
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N OIV 2 2 

Hence 
m+n ~1-4 2 = cos2 c . 

m = - cos t; cos P, n = - co9 5 sin P , 

where p is angle to be determined. Equation (9) beccxnes 

sin S sin $ - ~0s a cos p cos $ co9 G -'sin a sin P cos # cos Is = 0 9 

that is 

and so D can be found. 

The section of the tangent plane to the shock by the plane Z = 0 is 

k?X+mY = D , 

and so the streamwise slope of the shock is equal to 

e sin r; tan z -- = 
m cos 0 cos i: = cos[a - a - P 

tan 6 = 
cos ices-‘(tan s tan $6) - cos-‘(tan rJ tan #)I 

l m 

This result can also be obtained by spherical trigonometry, and to some 
this may be a preferable way of finding it, since by projecting the figure on 
a sphere it is possible to see some of the directions of flow involved, 
particularly that of the emergent ray. 

We consider some point 0 on the shock, and take it as the centre of a 
sphere (See Fig, 7). Through 0 we draw (1) a line OA parallel to the leading 
edge, (2) a plane OIZ parallel to the "base pl,ane", and (3) a plane ONAZ 
parallcl to the design shock of the caret. These are projected on to the sphere. 
The tangent plane to the actual shock, which passes through the line OA (for an 
infinite swept plate) is also drawn. This produces the great circle AN'* The 
incident direction of flow is 01, and IOA = 90' - $ from the definition of sweep. 
Now the plane containing the incoming and outgoing directions of flow is 
perpendicular to the shock and so is represented by the lint IN', of "length" c, 
the angle bctwcen the incident ray and the shock. The ray will emerge in the 
direction OS', where IS' = 6, the turning angle, which may be calculated from 
the shock relations, if 2: is known. From the figure we see that the streamwise 
slope of the shock must be tan IQ. If the design flow were aohieved the 
incident ray 01 would emerge along OS, with IN = s and IS = $,, OS being 

parallel to the ridge line. The actual emergent ray, being along OS', is no 
longer parallel to the ridge line, so that the direction of flow is changed by 
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the change in the shock Its direction is more "~utwards~~ than before, but one 
might expect the outwards-inwards direction of the pressure gradient to help to 
bring it inwards. However we are mainly considering a region where the shock 
deflection (the angle NAN') is small, so that S and St are not f,a.r from one 
another. 

From spherical trigonometry we have 

tan IN 00s u = tan IA = tan 5 tm # 

tan IN* 
cos(a-0) = tmu = tani: tan $ 

tan IN' 
'OS P = tan IQ 

tan C 
= tan IQ . 

Hence we have 

tan G tan IQ = ~0s = tan < 
cos[a - a - P 

tan Z = 
co9 [cos-'(tans ta #) - cos-'(tant: tan $)] ' 

('1) 

which agrees with the value (10). 

Since tan $, is approximately equal to tan C the denominator in (11) is 

close to unity and we have 

tan IQ 2 tan C . 

It is not necessary for Z, itself' to be small; it must not differ very 
much from s, which implies that the angle NAN' is small0 

If in fact we write tan C = tan _ % + E and ignore E 3 and higher powers 

we find that the denominator in equation (9) may be written 

‘-1 
.a2 tan2 9 

- tank 5 tad $ .a 

We note also from Fig.7 that the maximum possible value for Z is equal to 
IA, that is 90' - $. This was the value we used in extrapolnting the pressure 
Curves in Fig.4 to the maximum possible pressure rise across the shock. 
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FIG.4 (b) PRESSURE RATIO. CASE 2. 
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FIGS. SHOCK POSITION AND PRESSURE DISTRIBUTION AT THE TRAILING EDGE. 
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FIG.7 PROJECTION ON A SPHERE CENTRE THE POINT 0 

WHERE THE INCIDENT RAY MEETS THE SHOCK. 
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IX&DING EDGE EFFECTS ON CARET WINGS 

The two planes of the laker surface of a caret wing are treated as The two planes of the larrer surface of a caret wing are treated as 
tha;lgh they were Infinite and swept, and the leading edge shock baundary though they were Infinite and swept, and the leading edge shock bW 
layer Interactian for each Is Investigated. It Is Iad that the shock layer InteractIan for each Is Investigated. It Is famd that the shock 
ahapes are curved near to the leading edge and the pressure there Is higher shapes are curved near to the leading edge and the pressure there Is hlgber 
than the deslm pressure. However, In certain circumstances each shock may than the design pressure. Harrever, ln certain circumstances each shock may 
soar becaue parallel to the design shock and the pressure near to Its design soon becme parallel to the design shock and the presses near to Its design 
value. In extreme conditions this may never happen and for these cases It value. In extreme cordltlms this may never happen and for these cases It 
1s cancluded that the design Is not achieved. A tentative condltlcn for Is cmcluded that the design Is not achieved. A tentative condltlan for 
the achievement of design candltlons Is given. the achievement of design conditions Is given. 

A.R.C. ‘22. No.978 

January 1964 

533.6.011.72 : 

s3.@z6 
J.C. Cooke 

I 
LEADING EDGE EFlXCTS ON CARET WINGS 

I A.R.C. C.f'. No.98 
~ January 1964 

S3.6.oll.P : 
533.&~6 

J.C. Cooke 

LEADING EDGE EFFECTS ON CARET WINGS 

The two planes or the lower surrace 0r a caret wing are treated as 
though they were InfInIte and swept, and the leading edge shock bamdaxy 
layer Interaction for each Is Investiated. It Is fclmd that the shock 
shapes are curved near to the leading edge and the pressure there Is higher 
than the design pressure. However, In certain circumstances each shock may 
som becane parallel to the design shock and the pressure near to Its design 
value. In extreme conditions this may never happen and Ior these cases It 
Is concluded that the design Is not achieved. A tentative condition for 
the achievement of design conditions Is given. 
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