MINISTRY OF TECHNOLOGY

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

Experiments on Methods for the Numerical Solution of a Certain Non-Linear Biharmonic Equation

 byM. R. Abbott
 BEDFORD.

EXPERDAENTS ON METHODS FOR THE NUMERICAL SOLUTION OF

 A CERTAIN NON-LINEAR BTHARMONIC EQUATIONby
M. R. Abbott

SUMMARY

An account is given of two methods of numerical solution which have been tried on a non-linear biharmonic partial differential equation of a type which arises in various fluid flow problems. Neither method is wholly suocessful on a rather demanding test oase, and in fact it is not olear how a fully satisfaotory automatic method could be devised. However, at least one method should work in other applioations where the non-linear terms are of lesser importance.
*Replaces R. A. E. Tech. Note No. Math 112 - A. R.C. 27074

CONTENTS

Page
1 INTRODUCTION 3
2 METHOD OF SOLUTION AND NUMERICAL DEIAILS 6
3 APPLICATION TO AN EXAMPLE 40
4 A POSSIBLE ALTERNATIVE METHOD 12
SYMBOLS 93
REFERENCES 14
APPENDIX 16
ILLUSTRATIONS - Figs.1-2
DETACHABLE ABSTRACT CARDS
ILLUSTRATIONS
Fig.
Conditions at $Z=0$ and $Z=\ell$ 1
Results of calculations with large ΔZ 2

Steady axially symmetric incompressible viscous flows are described by linked equations of the form ${ }^{1}$

$$
\begin{equation*}
v \nabla_{* \psi}^{4} \psi=\frac{1}{r} \frac{\partial\left(\psi, \nabla_{*}^{2} \psi\right)}{\partial(r, Z)}+\frac{2}{r^{2}} \frac{\partial \psi}{\partial Z} \nabla_{*}^{2} \psi+\frac{2 \Omega}{r^{2}} \frac{\partial \Omega}{\partial Z} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu \nabla_{*}^{2} \Omega=\frac{1}{r} \frac{\partial(\psi, \Omega)}{\partial(r, Z)}, \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
\nabla_{i ;}^{2} \equiv \frac{\partial^{2}}{\partial r^{2}}-\frac{1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial Z^{2}} ; \tag{3}
\end{equation*}
$$

in terms of cylindrical polar coordinates (Z, r, λ) with the Z-axis taken along the axis of symmetry and the r-axis at right-angles to it. Conditions are independent of λ due to the symmetry. ψ is a stream funotion such that, if V_{Z} is the axial velooity and V_{r} the radial velocity,

$$
\begin{equation*}
V_{Z}=\frac{1}{r} \frac{\partial \psi}{\partial r}, \quad V_{r}=-\frac{1}{r} \frac{\partial \psi}{\partial Z} ; \tag{4}
\end{equation*}
$$

and the oiroumferential velooity is given by

$$
\begin{equation*}
V_{\lambda}=\frac{1}{r} \Omega \tag{5}
\end{equation*}
$$

v is the kinematio coefficient of viscosity. Similar equations apply if spherical polar coordinates are used instead.

Similar equations also cocur in steady two-dimensional natural convection problems. For example, for the problem of natural convection between two concertric circular cylinders with a horizontal axis, we have equations in plane polar coordinates of the form ${ }^{2}, 3$

$$
\begin{equation*}
\nabla^{4} \psi=\frac{1}{2} \frac{\partial\left(\nabla^{2} \psi, \psi\right)}{\partial(r, \theta)}+\frac{1}{4} G\left(\cos \theta \frac{\partial \Omega}{\partial r}-\frac{\sin \theta}{r} \frac{\partial \Omega}{\partial \theta}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla^{2} \Omega=\frac{1}{2 r} P \frac{\partial(\Omega, t)}{\partial(r, \theta)}, \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
\nabla^{2} \equiv \frac{\partial^{2}}{\partial \mathbf{r}^{2}}+\frac{1}{r} \frac{\partial}{\partial \mathbf{r}}+\frac{1}{\mathbf{r}^{2}} \frac{\partial^{2}}{\partial \theta^{2}} . \tag{8}
\end{equation*}
$$

These equations are in non-dimensional form. G is the Grashof number and P the Prandtl number. $\Omega(r, \theta)$ now represents the temperature of the fluid, and the stream funotion ψ is such that

$$
\begin{equation*}
v_{r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \quad v_{\theta}=-\frac{\partial v}{\partial r} \tag{9}
\end{equation*}
$$

In fact, Crawford and Lemlioh ${ }^{2}$ obtain the solution of these equations by a Gauss-Seidel iterative method for general G. The same method could in theory be applied to all the problems given here, but due to the difficulties of obtaining satisfactory values for the over- or under-relaxation faotors, and the amount of experiment needed to do this, it appeared to be worth exploring the alternative methods given in this Note.

Further, for natural oonveotion in vertical two-dimensional closed rectangular cavities we have equations of the form

$$
\begin{equation*}
\nabla^{4} \psi=\frac{\partial\left(\nabla^{2} \psi, \psi\right)}{\partial(x, y)}+G \frac{\partial \Omega}{\partial x} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla^{2} \Omega=P \frac{\partial(\Omega, y)}{\partial(x, y)} \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{x}=\frac{\partial \psi}{\partial y}, \quad v_{y}=-\frac{\partial \psi}{\partial x} \tag{13}
\end{equation*}
$$

Batchelor ${ }^{4}$ investigated the heat loss aoross double glazing and similar insulation oavities, and the optimum thiokness thereof, from equations equivalent to these (with the Rayleigh number in place of the Grashof number and employing a slightly different soaling to make the equations non-dimensional). The method employed was based on boundary-layer type arguments and analogies rather than on a direot solution of (10) and (11), though an expansion method, useful only for very small G, was tried and will be mentioned further below.

In the above problems ψ, its normal derivative, and one oondition on Ω are known round a olosed boundary in the $(Z, r),(r, \theta)$ or (x, y) plane respectively.

Further, the above sets of equations are each of the form

$$
\nabla_{*}^{4} \psi \quad \text { or } \quad \nabla^{4} \psi=f(\psi, \Omega)
$$

and

$$
\nabla_{*}^{2} \Omega \quad \text { or } \quad \nabla^{2} \Omega=g(\psi, \Omega)
$$

where f and g contain up to quadratio terms in ψ and Ω, and their derivatives. f contains third order derivatives of ψ and first order derivatives of Ω, while g contains first order derivatives of ψ and Ω.

In this Note we examine methods for the solution of the case $\Omega \equiv 0$. This gives a non-trivial problem only in the first case, of steady axially symmetric incompressible viscous flows, and corresponds to having no circumferential velocity (swirl). In the natural conveotion problems $\psi \equiv 0$ if $\Omega \equiv 0$.

Further, as a specific example, we consider a flow in a pipe of constant radius $(r=a)$. The velocity distribution at entry $(Z=0)$ is taken as arbitrary, for instance $V_{r}=0$ with V_{Z} constant across the pipe except for a small boundary layer round the perimeter through which we must have $V_{Z} \rightarrow 0$. For large Z the flow is asymptotic to the Hagen-Poiseuille flow with V_{Z} parabolio and V_{r} zero. We can find from the calculation the length in the axial direction (inlet length) which the flow takes to become indistinguishable from the HagenPoiseuille flow.

Equation (1) with $\Omega=0$ is thus the equation we wish to solve. We first introduce dimensionless variables as follows:

$$
r^{\prime}=r / a, \quad Z^{\prime}=Z / a, \quad \psi^{\prime}=\psi / \frac{1}{2} a^{2} \nabla_{Z}, \quad B=2 a \vec{V}_{Z} / v
$$

where \bar{V}_{Z} is the mean axial velocity over a oross-section of the pipe and R is the Reynolds number. This normalises the ψ boundary oondition along $r=a$ as follows:

$$
\text { rate of volume flow along pipe }=\pi a^{2} \bar{v}_{z}, \quad \text { also }=2 \pi \Delta \psi \text {, }
$$

where $\Delta \psi=\psi$ on the boundary $-\psi$ on the axis. Thus

$$
\pi a^{2} \overline{\mathrm{~V}}_{z}=2 \pi\left(\frac{1}{2} a^{2} \overline{\mathrm{~V}}_{z}\right) \Delta \psi^{\prime}, \quad \text { or } \quad \Delta \psi^{\prime}=1 ;
$$

we can therefore take $\psi^{\prime}=1$ on the boundary $r^{\prime}=1$ and $\psi^{\prime}=0$ on the axis $r^{\prime}=0$. Making the above substitutions in (1) and then dropping the dashes gives as our equation

$$
\begin{equation*}
\nabla_{* \psi}^{4} \psi=\frac{R}{4 r} \frac{\partial\left(\psi, \nabla_{\psi \psi}^{2}\right)}{\partial(r, Z)}+\frac{R}{2 r^{2}} \frac{\partial \psi}{\partial Z} \nabla_{* \psi}^{2}, \tag{14}
\end{equation*}
$$

with the boundary oonditions ψ and $\partial \psi / \partial Z$ given on $Z=0$ and on some downstream seotion ($z=\ell$ say); and $\psi=1, \partial \psi / \partial r=0$ on $r=1, \psi=0, \partial \psi / \partial r=0$ on $r=0$. These oonditions ensure specified values of V_{Z} and V_{r} at $Z=0$ and $Z=\ell$, zero values of V_{Z} and V_{r} on the boundary and a. zero value of V_{r} together with a finite value of V_{Z} on the axis.

If a satisfaotory method of solution oan be found for the case of $\Omega=0$ then the more general case with a non-zero swirl (or temperature) should not present further difficulty, since the decay of swirl in a pipe has been shown 5 to be well desoribed by linearised equations, and so likely to be amenable to an extension of the method used below.

2 METHOD OF SOLUTION AND NUMERICAL DETAIIS
We attempt an iterative solution of (14) from the following linearised form

$$
\begin{align*}
\nabla_{*}^{4} \Psi_{K+1}= & \frac{R}{8 r}\left\{\frac{\partial\left(\Psi_{K+1}, \nabla_{*}^{2} \Psi_{K}\right)}{\partial(r, Z)}+\frac{\partial\left(\psi_{K}, \nabla_{*}^{2} \psi_{K+1}\right)}{\partial(r, Z)}\right\} \\
& +\frac{R}{4 r^{2}}\left\{\frac{\partial \psi_{K+1}}{\partial Z} \nabla_{*}^{2} \psi_{K}+\frac{\partial \psi_{K}}{\partial Z} \nabla_{*}^{2} \psi_{K+1}\right\} \quad . \tag{15}
\end{align*}
$$

We take the starting value ψ_{0} to be some guess satisfying boundary and physical conditions as well as possible. ψ_{1} is then determined from the linear biharmonic equation (15), and so on until (if the process oonverges) $\psi_{K+1}=\Psi_{K}$ to a given accuracy and we then have a solution of the original equation.

Previously ${ }^{3}$, on the analogous natural conveotion problem, we used an iterative soheme corresponding to

$$
\begin{equation*}
\nabla_{\#}^{4} \psi_{K+1}=\frac{R}{4 r} \frac{\partial\left(\psi_{K}, \nabla_{*}^{2} \psi_{K}\right)}{\partial(r, z)}+\frac{R}{2 r^{2}} \frac{\partial \psi_{K}}{\partial Z} \nabla_{*}^{2} \psi_{K}, \tag{16}
\end{equation*}
$$

but this only converged if the non-linear terms were of limited importance (G relatively small). However, if it worked, the method had the advantage that the algebraic operator approximating to $\nabla_{\#}^{4}$ had only to be inverted once in the oourse of a oaloulation, since any Ψ_{K+1} is formed by pre-multiplying the new right-hand side (depending only on the known ψ_{K}) by this inverse matrix. (15) does not have this advantage since the ψ_{K+1} have ooeffioients depending on ψ_{K}. Batchelor ${ }^{4}$ uses an expansion method for small Ra (equivalent to small G), which leads to equations of the form (16). However, as he relied on obtaining analytical solutions the method is only of use if the sequence ψ_{K} converges so rapidly that a very few terms will suffice. Employing a computer enables any number of iterates to be obtained quickly by matrix multiplication, so we oan make use of a more slowly converging sequence ψ_{K}. However, there is still a
limit to the use of the method as convergence is not obtained if the non-linear terms are too large. An iterative soheme such as (15) should improve the chance of convergenoe in these cases.

For example, Arnason ${ }^{6}$ employed a similar iterative method with success on an elliptio equation of the form

$$
2\left\{\frac{\partial^{2} \psi}{\partial x^{2}} \frac{\partial^{2} \psi}{\partial y^{2}}-\left(\frac{\partial^{2} \dot{\psi}}{\partial x} \partial y\right)^{2}\right\}+f \nabla^{2} \dot{\psi}+\nabla f \cdot \nabla \psi=F,
$$

by linearising it as

$$
\frac{\partial^{2} \psi_{K+1}}{\partial x^{2}} \frac{\partial^{2} \Psi_{K}}{\partial y^{2}}+\frac{\partial^{2} \psi_{K}}{\partial x^{2}} \frac{\partial^{2} \Psi_{K+1}}{\partial y^{2}}-2 \frac{\partial^{2} \Psi_{K+1}}{\partial x \partial y} \frac{\partial^{2} \Psi_{K}}{\partial x \partial y}+f \nabla^{2} \psi_{K+1}+\nabla f_{\cdot} \nabla_{K+1}^{\psi_{K+1}}=F ;
$$

whereas

$$
\nabla^{2} \Psi_{K+1}=\frac{1}{f}\left[F-\nabla f_{\cdot} \nabla \Psi_{K}-2\left\{\frac{\partial^{2} \Psi_{K}}{\partial x^{2}} \frac{\partial^{2} \Psi_{K}}{\partial y^{2}}-\left(\frac{\partial^{2} \Psi_{K}}{\partial x \partial y}\right)^{2}\right\}\right]
$$

was not always convergent.

A simple example of the method applied to a boundary value problem for a non-linear ordinary differential equation is the following:

To solve

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=y \frac{d y}{d x} \tag{17}
\end{equation*}
$$

with $y=0$ at $x=0$ and $y=2$ at $x=\pi / 4$, we write (17) as

$$
\begin{equation*}
\frac{d^{2} y_{K+1}}{d x^{2}}-\frac{1}{2} y_{K} \frac{d y_{K+1}}{d x}-\frac{1}{2} \frac{d y_{K}}{d x} y_{K+1}=0 \tag{18}
\end{equation*}
$$

Then, given $y_{K}(x)$, we replace the derivatives of y_{K+1} by the simplest central difference approximations and obtain a system of linear algebraic equations, with a tri-diagonal matrix, which are easily solved in the usual way to give $\mathrm{Y}_{\mathrm{K}+1}$. It is found that, even with the funotion y_{0} chosen 50% in error at the mid point of the range (though smooth and satisfying $\left.y_{0}(0)=1, y_{0}(\pi / 4)=2\right)$, convergence is obtained in not more than 5 iterations. The answers have a maximum error of one unit in the fifth place, using 20 internal pivotal points. The exact solution of the equation is of course $y=2$ tan x.

Returning now to the solution of (15), we have to specify the remaining bound ary conditions at $Z=0, Z=\ell$. At $Z=0$ we take V_{Z} proportional to $1-e^{-\alpha(1-r)}$, hence

$$
\begin{equation*}
\psi=\frac{a^{2} r^{2}-2(a r-1) e^{-a(1-r)}-2 e^{-a}}{a^{2}-2 a+2-2 e^{-a}} \tag{19}
\end{equation*}
$$

for some constant value of a; so that $\psi=1$ on $r=1, \psi=0$ on $r=0$ and $\partial \psi / \partial Z=0$. At $Z=\ell$ we assume the flow is the Hagen-Poiseuille flow; this can easily be shown to be

$$
\begin{equation*}
\psi=2 r^{2}-r^{4} \quad \text { with } \quad \frac{\partial \psi}{\partial Z}=0 \tag{20}
\end{equation*}
$$

in the present non-dimensional variables. The other boundary conditions are given above.

Equation (15) is very lengthy if written out in full, so we give here only the values of the following expressions
$\nabla_{* *}^{4} \Psi_{K+1}=\frac{\partial^{4} \Psi_{K+1}}{\partial r^{4}}-\frac{2}{r} \frac{\partial^{3} \Psi_{K+1}}{\partial r^{3}}+\frac{3}{r^{2}} \frac{\partial^{2} \Psi_{K+1}}{\partial r^{2}}-\frac{3}{r^{3}} \frac{\partial \Psi_{K+1}}{\partial r}-\frac{2}{r} \frac{\partial^{3} \Psi_{K+1}}{\partial r \partial Z^{2}}$
and, for example,
$\frac{\partial\left(\Psi_{K+1}, \nabla_{*}^{2} \Psi_{K}\right)}{\partial(r, Z)}=\left(\frac{\partial^{3} \Psi_{K}}{\partial r^{3}}+\frac{1}{r^{2}} \frac{\partial \Psi_{K}}{\partial r}-\frac{1}{r} \frac{\partial^{2} \Psi_{K}}{\partial r^{2}}+\frac{\partial^{3} \Psi_{K}}{\partial r \partial Z^{2}}\right) \frac{\partial \Psi_{K+1}}{\partial Z}$

$$
\begin{equation*}
-\left(\frac{\partial^{3} \Psi_{K}}{\partial Z} \partial r^{2}-\frac{1}{r} \frac{\partial^{2} \Psi_{K}}{\partial r \partial Z}+\frac{\partial^{3} \Psi_{K}}{\partial Z^{3}}\right) \frac{\partial \Psi_{K+1}}{\partial r} . \tag{22}
\end{equation*}
$$

When these substitutions are made in (15), and the various derivatives are approximated by the usual finite difference formulae referred to a uniform reotangular mesh in the r, Z plane (with mesh spacings Δr and ΔZ respectively), we obtain a system of linear algebraic equations for the values of $\Psi_{\mathrm{K}+1}$ at the internal pivotal points; with coefficients functions of $r, 2$ and pivotal values of $\|_{K}$. In substituting for the higher derivatives near the boundaries, values at "fiotitious" points just outside the boundaries are brought in, these are eliminated through using the normal derivative boundary condition in finite difference form. In general eaoh algebraic equation connects 13 adjacent mesh points and the system is of the form

$$
\begin{equation*}
A \Psi_{K+1}=b \tag{23}
\end{equation*}
$$

say, where ψ_{K+1} is the column veotor of the solution at the internal pivotal points. The column vector b contains those terms independent of ψ_{K+1}, but
depending on ψ_{K} and the non-homogeneous boundary oonditions. The matrix A when partitioned is of the form
where n is the number of internal pivotal points in the r-direction, and each submatrix element of A is of order $m \times m$, where m is the number of internal points in the z-direotion. The numbering of the points is first in the direction of inoreasing Z and then of inoreasing r. The submatrices A_{i} and Y_{i} are diagonal, B_{i} and X_{i} are tri-diagonal and M_{i} is quin-diagonal. For brevity, the aotual elements of these submatrices are not given here, as the expressions for them are very lengthy. Contributions from homogeneous boundary conditions are included in A.

A direct method is used for solving (23) which depends on factorising A into a lower triangular and an upper triangular matrix, each with submatrix elements. The store of the Mercury computer imposes a limit of about 160 mesh points. This is not sufficient for high accuracy but should be sufficient to examine the feasibility of any method. An outline of the solution of (23), with A given by (24), is given for reference in an Appendix. It is of interest to note that, using the factorisation method and thus taking advantage of the sparseness of the matrix, rather than using the general Gaussian elimination method, reduces the time required to solve (23) by a factor of about 10 or more for the larger matrices.

3 APPLICATION TO AN EXAMPLE

The oalculation described above has been carried out on the Meroury oomputer for an entry flow given by $a=10$ in (19). The velocity profile corresponding to this, together with that of the eventual Hagen-Poiseuille flow, is shown Fig. $1(\mathrm{a})$; while the behaviour of the stream funotion is shown in Fig. 1 (b).

A guide to the range of Z over which it is necessary to perform the oalculations is given by an approximate formula for the inlet length 1 :
so that the inlet length, in terms of our non-dimensional variables, is 0.0575 R . This formula strictly applies to the oase of constant velocity all over the inlet seotion, apart from a very thin boundary layer. Our example (Fig.1(a)) is less extreme (ohosen thus in order to avoid difficulties with our rather coarse mesh), but the formula can be taken as giving an approximation to the minimum range of Z that it is neoessary to use in the oalculation. In fact, it is desirable to oalculate over a length of pipe equal to at least two or three times the inlet length, since the trend towards Hagen-Poiseuille flow is asymptotic and the formula above refers merely to the distance after which changes in the flow are not experimentally obvious.

The Reynolds number $R=200$ was used in the test calculations presented here, and for this value it was necessary to calculate ψ in the range $0<Z<40$ approximately, with $0<r<1$ as usual.

In these caloulations difficulty was experienced with the convergence if ΔZ was too small, irrespective of the starting function $\psi_{0}{ }^{\circ}$. The answers rapidly became oscillatory, and began to diverge. However, for larger values of ΔZ convergence was obtained after a few iterations, and the method produced results which were physically reasonable, as those in Fig. 2.

It is believed that the difficulty arises in this example from the fact that the effect of viscosity diffuses from the boundary towards the axis, and for any Z there is a region about the axis in which the flow is as yet unaffected by viscosity. In particular, for small Z, very little of the cross-section is being influenced by viscosity, so that in this region the non-linear terms are the dominant ones, rather than $\nu \nabla_{*}^{4} ;$; and it appears that the linearisation chosen does not represent these terms adequately. Using a larger ΔZ gets over this, at a oost of accuraoy, due to the first line of mesh points $Z=\Delta Z$ being situated in a region where viscoaity is of more importanoe, and consequently the $\nu \nabla^{4}{ }^{4}$ term is more dominant.

The value of ΔZ necessary for convergence is too large to give results for the inlet length of high accuracy; but as can be seen from the case shown in Fig.2, where ψ is plotted against Z for fixed values of r, the answers are compatible with the approximate formula for the inlet length given above. In fact, Prandtl and Tietjens 7 record that the formule

$$
\text { inlet length }=0.13 \mathrm{aR} \text {, }
$$

due to Boussinesq, is in good agreement with experiment. This differs appreciably from the formula above and agrees more olosely with the present numerical calculations.

The applioation of the method to the natural convection problems given in the Introduction may lead to similar difficulties as the fluid in the centre of the oavity away from the olosed boundary is now relatively unaffected by viscosity. Also, the function ψ_{0} may be difficult to guess realistically.

In conolusion, though the above method may work adequately on some restrioted non-linear problems it seems at the moment that the best approach in the general (i.e. R or G not neoessarily small) fluid meohanios appications disoussed here is the Gauss-Seidel iterative method, with over- or underrelaxation as necessary, as used by Crawford and Lemiloh ${ }^{2}$. This method, however, is far from automatic, needing experiment in each case to determine by trial and error acceptable relaxation factors which will lead to convergence at an adequate rate.

4 A POSSIBIE ALTERNATIVE METHOD
If we put

$$
\begin{equation*}
\xi=\nabla_{\psi}^{2} \tag{25}
\end{equation*}
$$

(this new dependent variable is in faot the vortioity multiplied by (-r)), (14) beoomes

$$
\begin{equation*}
\nabla_{*}^{2} \xi=\frac{R}{4 r} \frac{\partial(\psi, \xi)}{\partial(r, Z)}+\frac{R}{2 r^{2}} \frac{\partial \psi}{\partial Z} \xi \tag{26}
\end{equation*}
$$

An iterative method with lower order operators than before is therefore

$$
\begin{equation*}
\nabla_{i}^{2} \xi_{K+1}=\frac{R}{4 r} \frac{\partial\left(\psi_{K}, \varepsilon_{K+1}\right)}{\partial(r, z)}+\frac{R}{2 r^{2}} \frac{\partial \psi_{K}}{\partial Z}, \varepsilon_{K+1} \quad, \tag{27}
\end{equation*}
$$

along with

$$
\begin{equation*}
\nabla_{*}^{2} \Psi_{K+1}=\varepsilon_{K+1} \tag{28}
\end{equation*}
$$

For the solution of (27) we require the values of ξ_{K+1} round the closed boundary in the r, z plane, and to caloulate this from (25) we use the values of ψ_{K} at internal points, the known value of ψ along the boundary and eliminate the values of ψ at fiotitious points just outside the boundary by using the $\partial \psi / \partial n$ boundary condition. The boundary condition therefore depends on the previous solution, for example in caloulating ξ_{1} the boundary condition depends on the initial guess W0. The boundary oondition for (28) is of course known in advance.

From preliminary trials of the simpler scheme

$$
\begin{equation*}
\nabla_{*}^{2} E_{K+1}=\frac{R}{4 x} \frac{\partial\left(\psi_{K}, E_{K}\right)}{\partial(r, Z)}+\frac{R}{2 r^{2}} \frac{\partial \Psi_{K}}{\partial Z} E_{K}, \tag{29}
\end{equation*}
$$

together with (28), it is apparent that difficulties arise in practice, which will be oommon to more exact representations such as (27) and (28) above. When a solution is obtained for (28) satisfying the boundary oondition on ψ, it does not necessarily satisfy the required condition on $\partial \psi / \partial \mathrm{n}$. This tends to introduce a 'kink' or ousp in the behaviour of $\$$ aoross the boundary when we later incorporate the $\partial \psi / \partial n$ oondition into the calculation of ξ along the boundary ready for the next iteration. The iterations may then diverge. Changing the boundary conditions around so that the $\partial \psi / \partial n$ condition goes with (28) and the ψ oondition with (29) will not get over this; the trouble may be partly similar to that of the previous seotion. The method did work for the very simple aase of Hagen-Poiseuille flow at both entry and exit, but was of no use for the present example of a disturbed inlet flow. It again might be of use in applications where the non-linear terms are of lesser importance.

The algebraic equations in this section are only tri-diagonal in terms of submatrices, and can be solved very quickly by a simplified version of the method given in the Appendix.

SYMBOLS

a	radius of pipe
A	matrix given by (24)
$A_{i}, B_{i}, M_{i}, X_{i}, Y_{i}$	submatrices of A
$b_{i} b_{i}$	column vectors
G	Grashof number
ℓ	range of Z used in calculation
L	lower triangular matrix
$L_{i j}$	submatrices of L
P	Prandtl number
r	ooordinate in radial direction
R	Reynolds number
U	upper triangular matrix
$U_{i j}$	submatrices of U
$V_{Z}, V_{r}, V_{\lambda}, V_{\theta}, V_{x}, V_{y}$	various components of velooity

SYMBOLS (Contd)

x, y	plane ooordinates
x_{i}, y_{i}	column veotors
Z	axial ooordinate
a	constant in (19)
Δr	step length in r-direotion
ΔZ	step length in Z-direotion
θ	angle in plane polar coordinates
λ	angle in cylindrioal polar coordinates
ν	kinematio viscosity
ξ	defined by (25)
ψ	stream funotion
Ω	defined by (5), or represents temperature
∇_{*}^{2}	defined by (3)

REFERENCES

No. Author
Title, eto
1 Goldstein, S. Modern developments in fluid dynamios. Vol.1, Oxford, (Editor) 1938.

2 Crawford, L.W. Natural convection in horizontal conoentric cylindrical Lemlioh, R. annuli. Industrial \& Engineering Chemistry, Fundamentals, Vol.1, No.4, pp.260-4, 1962.

3 Abbott, M.R. A numerioal method for solving the equations of natural oonvection in a narrow concentric oylindrical annulus with a horizontal axis. R.A.E. Technical Note No. Math 102, August 1963. A. R.C. 25,355

4 Batchelor, G.K. Heat transfer by free convection across a olosed cavity between vertical boundaries at different temperatures. Quart. of Applied Maths, Vol.12, No.3, pp.209-233, 1954.

REFERENCES (Contd)

No. Author

5 Talbot, L. Laminar swirling pipe flow. J.Applied Mech, Vol.21, pp.1-7, 1954.

6 Arnason, G. A convergent method for solving the balance equation. Report of Joint Numerical Weather Prediction Unit, Weather Bureau, U.S.A. 1957.

7 Prandtl, L. Applied hydro- and aeromechanics. Tietjens, O.G. MoGraw-Hill, New York, 1934.

APPENDIX

To solve $A x=b$ (x is written for ψ_{K+1}) we express A, given by (24), as the product of a lower triangular matrix
with an upper triangular matrix

$$
U=\left[\begin{array}{cccccc}
U_{11} & U_{12} & Y_{1} & & & \\
& U_{22} & U_{23} & Y_{2} & & \\
& & U_{33} & U_{34} & Y_{3} & \\
\ldots \ldots
\end{array}\right] ;
$$

in which we have, from the start, taken advantage of the easily seen results that $U_{i, i+2}=Y_{i}$ for all relevant i, and that it is only necessary to employ fridiagonal L and U. We obtain by multiplying out and comparing terms that:

$$
\begin{aligned}
& U_{11}=M_{1}, \quad U_{12}=X_{1}, \\
& L_{21}=B_{2} U_{11}^{-1}, \\
& U_{22}=M_{2}-L_{21} U_{12}, \quad U_{23}=X_{2}-L_{21} Y_{1}, \\
& L_{31}=A_{3} U_{11}^{-1}, \quad L_{32}=\left(B_{3}-L_{31} U_{12}\right) U_{22}^{-1}, \\
& U_{33}=M_{3}-L_{31} Y_{1}-L_{32} U_{23}, \quad U_{34}=X_{3}-L_{32} Y_{2},
\end{aligned}
$$

and so on until we reach

$$
\begin{aligned}
I_{n, n-2} & =A_{n} U_{n-2, n-2}^{-1} ; \quad I_{n, n-1}=\left(B_{n}-I_{n, n-2} U_{n-2, n-1}\right) U_{n-1, n-1}^{-1} ; \\
U_{n, n} & =M_{n}-I_{n, n-2} Y_{n-2}-I_{n, n-1} U_{n-1, n}
\end{aligned}
$$

We have now obtained the submatrix elements of L and U. It is necessary to work out each $U_{i, i}^{-1}$ in the process above, and these inverses are stored as they are needed again below.

The equation $A x=b$ is now $L U x=b$, so we can solve Ly $=b$ and then $U x=y$ to yield x. Note that b, x and y are oolumn veotors ($1 \times n$) with veotor elements $(1 \times m)$. To solve $\mathrm{Ly}=\mathrm{b}$: we have at onoe that

$$
\begin{aligned}
& y_{1}=b_{1} \\
& y_{2}=b_{2}-L_{21} y_{1} \\
& y_{3}=b_{3}-L_{31} y_{1}-L_{32} y_{2}
\end{aligned}
$$

and so on until

$$
y_{n}=b_{n}-L_{n, n-2} y_{n-2}-L_{n, n-1} y_{n-1}
$$

The final step is to solve $U x=y$, this is easily achieved:

$$
\begin{aligned}
x_{n} & =U_{n, n}^{-1} y_{n} \\
x_{n-1} & =U_{n-1, n-1}^{-1}\left(y_{n-1}-U_{n-1, n} x_{n}\right) \\
x_{n-2} & =U_{n-2, n-2}^{-1}\left(y_{n-2}-U_{n-2, n-1} x_{n-1}-Y_{n-2} x_{n}\right)
\end{aligned}
$$

until we reaoh

$$
x_{1}=U_{11}^{-1}\left(y_{1}-U_{12} x_{2}-Y_{1} x_{3}\right)
$$

The solution of $A x=b$ has now been obtained.

(a) axial velocity

(b) STREAM FUNCTION

FIG. I. CONDITIONS AT $Z=0 \& Z=\ell$

FIG. 2. RESULTS OF CALCULATIONS WITH LARGE ΔZ

$$
(x: \Delta z=6, \odot: \Delta z=10)
$$

Printed in England for Her Majesty's Stationery Office by
the Royal Alrcraft Establishment, Farnborough. Dd.129588. X.3.

A.R.C. C.P. N0. 979 June 1964 M.R. Abbott EXPER DIENTS ON YIETHODS FOR THE NUMERICAL SOLIJTION OF a CERTAIN NON-LINEAR BIHARTONIC EQLUTION. An account is given of two methods of numerical solution wich have been tried on a non-linear bibarmonic partial differential equation of a type wiah ariss in various fluid rlow problems. Neither method is wholly seiscessful on a rather demanding test case, and in fact it is not clear how a fully atiafaotory automatic method could be devised. However, at least ane minod should mork in othor applications where the non-linoar torms are of lesser theportance.	A.R.C. C.P. No. 979 June 1964 M_R. Abbott EXPERIMENTS ON METHODS FOR THE NUMERICAL SOLUTION OF A CERTAIN NON-LINEAR BIHARMONIC EQUATION. An account is given of two methods of numerial solution which have been tried on a non-linear biharmonic partial differential equation of a type which arises in various fluid flow problems. Neither method is wholly suocessful on a rather demanding test case, and in fact it is not clear how a fully satisfactory autonatic method could be devised. However, at least one method should work in other applications where the nan-linear terms are of lesser importance.
A.R.C. S.F. No. 979 June 1964 M.R. Abbott EXPERMIRNTS ON METHODS POR THE NTMERICAL SOLUTION OF a CERTAIN NON-LINEAR BIHARMONIC EQTATION. An aocount is given of two methods of numerical solution which have been tried on a non-linear bibarmonic partial differential equation of a type rhich arises in varlous fluid flow problems. Noither method is wholly suocessful on a rather demanding test case, and in fact it is not clear how a fully saciaractory automatic method oould be devised. However, at least one thod thould mork in other applioations where the nan-linear terms are of lesser fiportance.	A.R.C. C.P. No. 979 June 1964 M.R. Abbott Experiments on methods for the numerical solution of a certa in non-linear biharmonic equation. Ar account is given of two methons of numerical solution which have been tried on a non-linear blharmonic partial differential equation of a type which arises in various fluid flow problems, Nelther method is wholly successful on a rather demending test case, and in fact it is not clear how a rully satisfactory autamatic method could be devisud. However, at least one method should work in other applications where the non-linear terms are of lesser importance.

```
A.R.C.C.P. No.979
June 1964
M.R. Abbott
EIPERITENTS ON METHODS POR THE NHIERICAL SOLNTION OF
A certa in non-linear bihamonic equation.
```

An account is given of two methods of numerical solution mich have been triad on a non-linear biharmonic partial differential equation of a type thah arises in rarious fluid flow problems. Neither method is wholly sixcessful on a rather demanding test case, and in fact it is not cloar how a fully satisfactory automatic method oould be devised. However, at least ane mothod should mork in other applioations where the non-1inear terms are of lesser inportance.
A.R.C. C.P. No. 979
517.93

June 1964
M.R. Abbott

EXPERMENTS ON METHODS FOR THE NMMERICAL SOLUTION OF a certain non-hinear biharmontc equation.

An account is given of two methods of mamerical solution mitich have been tried on a non-linear bibarmonic partial differential equation of a type wich arises in various fluid flow problems. Neither method is wholly suacessful on a rather demanding test case, and in fact it is not clear how a fully sat1sfactory autonatic method could be devised. However, at loast one method should work in other applications where the non-linear terms are or lessor importance.
© Crown Copruight 1968

Published by
IEr Malsory's Stationery Oftice
To be purchased from
49 High Holborn, London w.c. 1
423 Oxford Street, Lundon w. 1
13 A Castle Street, Edinburgh 2
109 St. Mary Strcet, Cardiff
Brazennose Strect, Manchester 2
50 Fairfax Street, Bristol 1
258-259 Broad Street, Birmingham 1
7-11 Linenhal! Street, Belfast 2
or through any bookseller

