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An aooount is given of two methods of numerioal solution which hsve been 

tried on a non-linear biharmonio partial differential equation of-a type which 

arises in various fluid flow problems. Neither method is wholly suooessful on 

8 rather demanding test oase, and in faot it is not olear how a fully satis- 

faotory automatio method oould be devised. However, at least one method should 

work in other applioations where the non-linear terms are of lesser importanoe. 
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1 INTRODUCTION 

Steady axially symmetric incompressible viscous flows are described by 
linked equations of the form' 

. 

and 

with 

$ 3 a2 i a a2 
* --m-+- 

ar2 r ar aZZ ; 

0) 

(2) 

in terms of cylindrical polar coordinates (Z,r,A) with the Z-axis taken along 
the axis of symmetry and the r-axis at right-angles to it. Conditions are 
independent of h due to the symmetry. $ is a stream f'unotion such that, if' Vz 

is the axial velooity and Vr the radial velocity, 

vz = -?,a 
r ar' vr = -L&i! 

r 62 ; 

and the oiroumferential velooity is given by 

(5) 

v is the kinematia ooefficient of viscosity. Similar equations apply if spherical 
polar coordinates are used instead. 

Similar equations also obcur in steady two-dimensional natural conveotion 
problems. For example, for the problem of natural conveotion between two 
ooncerztric circular cylinders with a horizontal axis, we have equations in plane 
polar coordinates of the form233 

and 
. 

-3- 



v*sl f &pL* ’ -Pi 8 (7) 

with 

(8) 

These equations are in non-dimensional form. G is the Grashof number and P I 
the Prandtl number. n(r,9) now represents the temperature of the fluid, and 
the stream fun&ion $ is suoh that 

vr = ld!i AA 
r a0 ' '0= ar ' (9) 

In fact, Crawf'ord and Lemlioh* obtain the solution of these equations by 
a Gauss-Seidel iterative method for general G. The same method could in 
theory be applied to all the problems given here, but due to the diffioulties 
of obtaining satisfaotory values for the over- or under-relaxation faotors, and 
the amount of experiment needed to do this, it appeared to be worth exploring 
the alternative methods given in this Note. 

Further, for natural oonveotion in vertioal two-dimensional olosed reot- 
angular oavities we have equations of the form 

and 

with 

V2fl ant 
=! p a X,Y ? H 

V2 E a2 5 
I ax2+ay2 

8 

and 

(10) 

(12) 

(13) 



Batohelor' investigated the heat loss aoross double glazing ard similar insula- 
tion oavities, and the optimum thiokneas thereof, from equations equivalent to 
these (with the Rsyleigh number in plaoe of the Grashof number and employing a 
slightly different soaling to make the equations non-dimensional). The method 
employed was based on boundary-layer type arguments and analogies rather than 
on a direot solution of (10) and (ii), though an expansion method, useful only 
for very small G, was tried and will be mentioned further below. 

In the above problems $r, its normal derivative, and one oondition on R are 
known round a olosed boundary in the (Z,r), (r,e) or (x,y) plane respeotively. 

Further, the above sets of equations are 

Vt$ or V4q = 

V$-J or v*n = 

where f and Q oontain up to quadratio terms in 

eaoh of the form 

f(wJ> 

$ and R, and their derivatives. 
f oontains third order derivatives of Ifr and first order derivatives of R, while 
g oontsins first order derivatives of 0 and n. 

In this Note we examine methods for the solution of the oase n m 0. 
This gives a non-trivial problem only in the first oase, of steady axially 
symmetric inoompressible visoous flows, 
ferential velocity (swirl). 

and oorresponds to having no oircum- 
In the natural conveotion problems I$ w 0 if 

n s 0. 

Further 
radius (r = a I 

as a speoifio example, we consider a flow in a pipe of oonstant 
. The velocity distribution at entry (Z = 0) is taken as 

arbitrary, for instanae Vr = 0 with VZ constant aoross the pipe exoept for a 
small boundary layer round the perimeter through which we must have VZ + 0. 
For large 2 the flow is asymptotio to the Hagen-Poiseuille flow with VZ parabolio 
and Vr zero. We oan find from the caloulation the length in the axisl direction 
(inlet length) which the flow takes to become indistinguishable from the Hagen- 
Poiseuille flow. 

Equation (1) with R = 0 is thus the equation we wish to solve, We first 
introduce dimensionless variables as follows: 

rf = r/a , Z’ = Z/a , 
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where VZ is the mean axial velooity over a oross-seotion of the pipe and R is 
the Reynolds number. This normalises the $ boundary oondition along r = a as 
follows: 

rate of volume flow along Ripe = %a2 VZ , also = 271A9 , 

where A$ = Ifi on the boundary - $ on the de. Thus 

xa 2 vz = 2 ,&$a2 tz) A$# , or A** = 1 ; 

we oan therefore take 9' = 1 on the boundary r* = 1 and I)' = 0 on the axis 
rf = 0, Msking the above substitutions in (1) and then dropping the dashes 
gives 'as our equation 

+I) = (N) 

with the boundary oonditions 9 and &j/aZ given.on Z = 0 and on some downstream 
seotion (Z = 4 say); and $ = 1, a$/& = 0 on r = 1, @ = 0, aq/ar = 0 on r = 0. 
These oonditions ensure speoified,values of Vz and Vr at Z = 0 and Z = 4, zero 
values of Vz and Vr on the boundary and a.. zero value of Vr together with a 

finite value of Vz on the axis. 

If a satisfaotory method of solution oan be found for the oase of R = 0 
then the more general case with a non-zero swirl (or temperature) should not 
present further difficulty, sinue the deoay of swirl in a pipe has been shown5 
to be well desoribed by linearised equations, and ao likely to be amenable to 
anextension of the method used below. 

2 b4lUHOD OF SOLUTION AND NUMERICAL DETAILS 

We attempt an iterative solution of (14) from the following linearised form 

+= P 'K+l '2 '$ 2 
b2. az 

b$ + r  ‘cl,tf~+l 

3 

l (15) 



We take the starting value $o to be some guess satisfying boundary and physioal 
- oonditions as well as possible. $, is then determined from the linear biharmonic 

equation (15), and so on until (if the prooess oonverges) $K+, = I$K to a given 
. acouraoy and we then have a solution of the original equation. 

Previous lsr3 on the analogous natural oonveotion problem, we used an 
iterative soheme iorresponding to 

(16) 

but this only converged if the non-linear terms were of limited importance(G 
relatively small). However, if' it worked,the method had the advantage that the 
algebraio operator apprcximating to Vt had only to be inverted once in the 
oou1'8e of 8 odouh.tionJ 8inoe w  $K+, is formed by pre-multiplying the new 
right-hand side (depending only on the known $> by this inverse matrix. (15) 
does not have this advantage sinoe the eK+, have ooeffioients depending on \zr,. 
Batohelor' uses an expansion method for small Ra (equivalent to small G), which 
leads to equations of the form (I 6). However, as he relied on obtaining 
analytioal solutions the method is only of use if the sequenoe eK converges so 
rapidly that a very few terms will suffioe. Employing a oomputer enables any 
number of iterates to be obtained quickly by matrix multiplication, so we oan 
make use of a more slowly oonverging sequenoe QK. However, there is still a 
limit to the use of the method as oonvergenoe is not obtained if the non-linear 
terms are too large. An iterative soheme such as (15) should improve the 
ohance of oonvergenoe in these cases. 

For example, Amason employed a similar iterative method with success on 
an elliptio equation of the form 

2 + f v21j + Vf.V$ =F, 

by linearising it as 

2 
a $K+l 

2 2 2 2 2 
2 a %+l a *K a *K + a *K a %+l 

ax2 ay2 ax2 ay2 ax ay ax ay + f V2QK+, + Vf.VljK+, = F; 



whereas 

2 
v b4 =I 

4 F-vf.V$K 
C 

was not always donvergent. 

A simple example of the method applied to a boundary value problem for a 
non-linear ordinary differential &p&ion is the following: 

To solve 

ZY LIY 
ix2 = Ydx I 

with y = 0 at x = 0 and y = 2, at x = 7F/G, we write (17) as 

dk 
2 dx yK+l =o . 

(17) 

(18) 

Then, given yK(x), we replaoe the derivativea of yK+, by the simplest oentral 
differenoe approximations and obtain a system of linear algebraio equations, 
with a tri-diagonal matrix, whioh are easily solved in the usual wsy to give 
yK+l' It is found that, evenwith the f'unotion y, chosen 5C$ in error at the 
mid point of the range (though smooth and satisfying y,(O) = 1, yo(x,/4) = 2), 

oonvergenoe is obtained in not more than 5 iterations. The answers have a 
maximum error of one unit in the fifth plaoe, using 20 internal pivotal points. 
The exact solution of the equation is of course y = 2 tan x0 

Returning,now to the solution of (15), we haveto speoifythe remaining 
At 2 = 0 we take VZ proportional to 

q = a2r2 - 2(ar- 1) e-Q(i-r)- 2eq 
I a2 -2at2-2e* 

(19) 

for some oonstant value of a; so that $ = 1 on r = 1, I$ = 0 on r = 0 and 
aq/az = 0. At 2 = 4 we assume the flow is the Hagen-Poiseuille flow; this oan 
easily be shown to be 



. 

c 
in the present 
given above. 

Equation 

4 \zr = 2r2-r i!!i with az = 0 (20) 

non-dimensional variablea. The other boundary conditions are 

Cl?) is 
only the vslws of the 

a4%+, 2 
v&+, = - - - 

ark r 

very lengthy if written out in full, so we give here 
following expressions 

2 
a3$c+, + J- & _ i a& _ 2 a3%+l 

ar3 r2 ar2 r3 ar rar 

+2 
a4*K+i + a4*I<+, 
ar2 az2 az4 

# 

. . . (21) 

and, for example, 

a( eK+, ,v$Q = 
e 

3$ 1 a*Ic 1 a2$ + a3ffK 

d(r,z) ar3 
+7 r-- r ar2 ar az2 > 

">l 

. . . (22) 

When these substitutions are made in (15), and the various derivatives are 
approz&nated by the usual finite differenoe formulae referred to a uniform 
reotangular mesh in the r,Z plane (with mesh spaoings Ar and AZ respeotively), 
we obtain a system of linear algebraic equations for the values of $K+, at the 
internal pivotal points; with coefficients functions of r,Z and pivotal values 
of b. In substituting for the higher derivatives near the boundaries, values 
at "fiotitious" points just outside the boundaries are brought in, these are 
eliminated through using the normal derivative boundary condition in finite 
differenoe form. In generaleaoh algebraic equation oonneots 13 adjacent mesh 
points and the system is of the form 

A$(+, = b (23) 

say, where I)~+, is the oolumn veotor of the s,olution at the internal pivotal 

points, The oolumn veotor b oontains those terms independent of tK+,, but 
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depending on qK and the non-homogeneoue boundary oonditions. The matrix A when 
partitioned is of the form 

A= 
4 *3 M3 x3 y3 

A4 *4 M4 x4 y4 

. . . ..*.....m................................. 

A n-l B n-l M n-l X n-l 

An Bn 'n - 

(24) 

where n is tk Le ?iknber of internal pivotal points in the r-dirkotion, and each 
submatrix element of A is of order mxm, where m is the number of internal 
points in the Z-direotion. The numbering of the points is first in the direo- 
tion of inoreasing 2 and then of inoreasing r. The submatrices Ai and Yi are 

- 
6 x1 yq 

diagonal, B i and Xi are tri-diagonal and Mi is quin-diagonal. For brevity, the 
aotual elements of these submatrioes are not given here, as the expressions for 
them are very lengthy. Contributions from homogeneous boundary oonditions are 
inoluded in A. 

A direot method is used for solving (23) which depends on faatorising A 
into a lower triangular and an upper triangular matrix, eaoh with submatrix 
elements. The store of the Meroury oomputer imposes a limit of about 160 mesh 
points. This is not suffioient for high aocuracy but should be sufficient to 
examine the feasibility of any method. An outline of the solution of (23), 
with A given by (24), is given for referenoe in an Appendix. It is of interest 
to note that, using the factorisation method and thus taking advantage of the 
sparseness of the matrix, rather than using the general Gaussian elimination 
method, reduces the time required to solve (23) by a factor of about IO or more 
for the larger matrices. 

3 APPLICATION TO AN EXAMPLE 

The oalculation described above has been carried out on the Meroury 
oomputer for an entry flow given by a = 10 in (19). The velocity profile 
corresponding to this, together vkith that of the eventual Hagen-Poiseuille flow, 
is shown Fig.l(a); while the behaviour of the stream funotion is shown in 
Fig.l(b). 

A guide to the range of Z over which it is neoessary to perform the 
oalculations is given by an approximate formula for the inlet lengthl: 
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inlet length = 0.0575aR , 

so that the inlet length, in terms of our non-dimensional variables, is 0.0575R 
This formula strictly applies to the ease of oonstant velooity all over the 
inlet aeotion apart from a very thin boundary layer. Our example (Fig.i(a)) is 
less extreme ohosen thus in order to avoid difficulties with our rather coarse f 
mesh), but the formula oan be taken as giving an approximation to the minimum 
range of Z that it is neoessary to use in the oalculation. In fact, it ia 
desirable to oaloulate over a length of pipe equal to at least two or three 
times the inlet length, sinoe the trend towards Hagen-Poiseuille flow is asymp- 
totio and the formula above refers merely to the distanoe after which ohanges in 
the flow are not experimentally obvious. 

The Reynolds number R = 200 was used in the test calculations presented 
here, and for this value it waa neoessaxy to oaloulate $ in the range 0 < Z < 40 
approximately, with 0 < r < 1 as usual. 

In these oaloulations difficulty was experienoed with the oonvergenoe if 
AZ was too small, irrespeotive of the starting function 6,. The answers rapidly 
beoame osoillatory, and began to diverge. However, for larger values of AZ 
oonvergenoe was obtained after a few iterations, and the method produced results 
whioh were physioally reasonable, as those in Fig.2. 

It is believed that the difficulty arises in this example from the fact 
that the effeot of viscosity diffuses from the boundary towards the axis, and 
for any Z there is a region about the axis in which the flow is as yet unaffected 
by viscosity. In particular, for small Z, very little of the cross-section is 
being influenced by visoosity,so t 

% 
at in this region the non-linear terms are 

the dominant ones, rather than v V,$; and it appears that the linearisation ohosen 
does not represent these terms adequately. Using a larger AZ gets over this, at 
a oost of accuraoy, due to the first line of mesh points Z = AZ being situated 
in a region where visoosity is of more importance, and consequently the Y Vb 
term is more dominant. 

The value of AZ neoessary for convergenoe is too large to give results 
for the inlet length of high accuracy; but as oan be seen from the case shown in 
Fig.2, where $ is plotted against Z for fixed values of r, the answers are compat- 
ible with the approximate formula for the inlet length given above. In fact, 
Prandtl and Tiet jens7 record that the formula 

inlet length = 0.13aR , 

due to Boussinesq, is in good agreement with experiment. This differs 
appreciably from the formula above and agrees more olosely with the present 
numerioal oaloulations. 

The applioation of the method to the natural convection problems given in 
the Introduotion may lead to similar diffioulties as the fluid in the centre 
of the oavity away from the olosed boundary is now relatively unaffeoted by 
viscosity. Also, the function e. ma,y be diffioult to guess realistically. 



In oonolusion, though the above method III&~ work adequately on some 
restrioted non-linear problems it seems at the moment that the best approach in 
the generel (i.e. R or G not neoessarily 8m8ll) fluid meOh8niO8 8pplio8tions 
disousaed here is the Gauss-Seide+ iterative method, with over- or under- 
relaxation aa neoesaary, aa used by Crawford and Lemlioh2. This method, how- 
ever, is far from automstio, needing experiment in eaoh 0888 to determine by 
trial 8nd error 8ooeptable relaxstion fsotors whioh will lead to oonvergenoe at 

' 8n adequate r8te. 

4 A POSSIBLB ALTERNATIVE ?BTHbR 

If we put 

& = 0029 (25) 

(this ,new dependent variable is in faot the vortioity multiplied by (-r)), (14) 
beoomes 

An iterative method with lower order operators than before is therefore 

along with 

(26) 

(27) 

For the solution of (27)' we reqyire the values of k+, round the olosed boundary 
in the r,Z plane, and to oaloulate this from (25) we use the values of % at 
intern81 points, the known value 6f q aL&g the boundary snd eliminate the values 
of $ 8t fiotitious points just outaide;the bolindary .by usYng the be/an boundary 
oondition. The botiary oondition therefore depends on the previous solution, 
for example in o8loulating $ the bouxxIary oondition depends on the initial guess 

$0' The boundary oondition for (28) is of oourse known in edvanoe. 

From preliminary trials of the simpler soheme 

v:5fC*i =& (29) 
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together with (28), it is apparant that diffioulties arise in praotioe, whioh 
will be oommon to more exaot representations auoh as (27) and (28) above. When 
a solution is obtained for (28) satisfyink the boundary oondition on $, it does 
not neoessarily satisfy the required condition on de/an. This tends to introduce 
a 'kink' or ousp in the behaviour of 9 aoross the boundary when we later 
inoorporate the &$/an oondition into the oaloulation of 6 along the boundary 
ready for the next iteration. The iteration3 may then diverge. Changing the 
botiary oonditions around 30 that the &$/an condition goes with (28) and the 
$ oondition with (29) will not get dver this; the trouble may be partly similar 
to that of the previous aeotion, The method did work for the very simple ease 
of Hagen-Poiseuille flow at both entry and exit, but was of no use for the 
present example of a disturbed inlet flow; It again might be of use in applioa- 
tions where the non-linear terms are of lesser importanoe. 

The algebraio equations in this seotion are only tri-diagonal in terms of 
submatrices, and oan be solved very quickly by a simplified version of the 
method given in the Appendix. 

a radius of pipe 

A matrix given by (24) 

Apy$‘xpy~ submatrioes of A 
. 

column veotors 

G Grashof number 

c range of 2 used in oaloulation 

L lower triangular matrix 

Lij submatrioes of L 

P Prandtl number . 
r ooordinate in radial direotion 

R Reynolds number 

U upper triangular matrix 

U ij submatrices of U 

v ,v ,v ,v ,v ,v ZrXBxy various oomponents of velooity 

- 13 - 



XSY 

xi’yi 
z 
a 

Ar 

AZ 

8 

1 

V 

F 

$ 

R 

phm0Ls (Contd) 

plane ooo&Lnatea 

oolumn veotors 

I 
axial ooo&inate I , 

oonstant in (19) 

step length in r-direotion 

step length in Z-direotion 

angle in plane polar ooodnates I I 
angle in oylindrioal polar ooordinates 

kinematio visooslty 

defined by (25) 

stream funotion 

defha by (5), 

defined by (3) 

or represe+s temperature 

&. 

1 

2 

3 

4 

Author 

Goldstein, Se 
(Editor) 

Crawford, L.W. 
Lemlioh, R. 

Abbott, M.R. 

Batohelor, G.K. 

/ REFERENCES 

Title, eto 

Modern developments in fluid apd03. Vol.1, 03tha, 
1938. 

Natural oonvection in horisontal conoentrio cylindrical. 
annuli. 
Industrial & Engineering Chemistry, Fundamentsls, Vol.1, 
No.4, pp.,264, 1962. 

A numeri&l method for solving the equations of natural 
oonveotion in a narrow oonoentrio oylindriosl annulus 
with a horizontal axis. 
R.A.E. Technioal Note No. Math 102, August 1963. 
A.B.C. 25,355 
Heat trarisfer by free conveotion across a olosed cavity 
between vertioal boundaries at different temperatures. 
Quart. of Applied Maths, Vol.12, No.3, pp.209-233, 
19%. ' 

- 14 - 



REFJZRENCES (Contd) 

No. Author Title. eto 
. 

5 Talbot, L. Laminar swirling pipe flow. 
J.Applied Meoh, Vol.21, pp.1 -7, 19%. 

6 Arnason, G. A convergent method for solving the balance equation. 
Report of Joint Numerical Weather Prediction Unit, 
Weather Bureau, U.S.A. 1957. 

7 Prandt1, L. Applied hydro- and aeromechanics. 
Tietjens, O.G. MoGraw-Hill, New York, 1934. 

- 15 - 



To solve Ax = b (x is written for $rK+,) we express A, given by (24), as 
the product of a lower triangular:matrix 

I 

-7 
- 

L = L31 ‘32 I 

. . . . . . . . . . . . . . . . . . . . ..**............. 

L n,n-2 L n,n-1 I 
- 

with an upper triangular matrix I 

u22 ‘23 '2 

: u33 u34 y3 
I  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . . * . . . . . . . . . . . . . . . .  

U n,n 
L- --J 

in which we have, from the start, taken advantage of the easily seen results that 
ui,i+2 = Yi for all relevant i, and that it is only necessary to employ tri- 
diagonal L and U. We obtain by multiplying out and oomparing terms that: 

ull = M,, u12 = X,' 

L21 
-1 

= B2 U,,, 

u22 = M2 - L2, Ui2,, ‘23 
= x2 - L21 yl' 

41 = A3 51, 
I 

L32, 
= (B3 - L3, U,2) $1 

u33 
= M 

3 - L31 5 - L32 ‘23’ '34. = '3 - L32 Y2# 

and so on until we reaoh 
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L n,n-2 3 An";llp,,Pi Lnneq = (B*-Lnn2 'n2 nl)'i'1 n-1; 9 9 - - # - - 8 

U 
n,n = Mn - Ln n-2 'n-2 - Ln n 1 # # - 'n 1 - J n* 

. 

We have now obtained the submatrix elements of L and U. It is necessary to work 
-1 out eaoh Ui,i in the prooesa above, and these Inverses are stored as they are 

needed again below. 

The equation Ax = b is now LUx = b, so we oan solve Ly = b and then 
ux = y to yield XI Note that b, x and y are oolumn veotors (lx n) with veotor 
elements (lx m). To solve Ly s b: we have at onoe that 

and so on until 

yi 
= b, 

Y2 
= b2 - L21 Yl 

Y3 =b 3 - L31 yi - L32 y2 ' 

yn = bn-L n,n-2 yn-2 - Ln n-l ‘n-1 l ¶ 

The final step is t-9 solve Ux = y, this is easily achieved: 

X n = u;', Y, $ 

X n-l = 'it.4 ,n-1 (ynwj - 'n-1 n 'n) 3 

xn-2 = ';;12,p2 (Yn-2 - 'n-2 n-1 xn-l - 'n-2 xn) ' 9 

until we reaoh 

x1 .= u;: (Y 1 -"12x2-y15 )  l 

The solution of AJC w b has now been obtained. 
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suucessrul on a rather demanding test case, and in fact it is not clear how 
a rully satisfaotory autoaatic method could be devised. Hoover, at least 
one method should mrk in other applications where the non-linear te!ms are 
0r lesser importance. 
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