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SUMMARY

An account is given of two methods of numerical solution which have been
tried on a non~linear biharmonic partial differential equation of a type which
arises in various fluid flow problems. Neither method is wholly successful on
a rather demanding test case, and in faot it 1s not oclear how a fully satis-
faotory automatic method could be devised, However, at least one method should

work in other applications where the non-linear terms are of lesser importance.

*Replaces R.A.E. Tech, Note No. Math 112 - A.R.C. 27074
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1 INTRODUCTION

Steady axially symmetric incompressible viscous flows are described by
linked equations of the form

oA y AT 3 2, . 20 20
PR S Y Rrm T2 w2 a2 (1)
and
2 1 3(u.0
vV o= r or,2) ? (2)
with
b N O R (5)
or° T ez

in terms of cylindrical polar coordinates (Z,r,\) with the Z~axis taken along
the axis of symmetry and the r-axis at right-angles to it. Conditions are
independent of A due to the symmetry. ¢ is a stream funotion such that, if VZ

is the axial velooity and Vr the radial velocity,

- 1 oy - 21 v
vy, = r or'’ Vr - r 902 °’ (4)

vV =%Q ‘o (5)

v is the kinematio coefficient of viscosity. Similar equations apply if spherical
polar coordinates are used instead.

Similar equations alsoc occcur in steady two-dimensional natural convection
problems, For example, for the problem of natural convection between two
ooncentric circular cylinders with a horizontal axis, we have equations in plane
polar coordinates of the form?»3

2 .
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and
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These equations are in non-dimensional form. G is the Grashof number and P .
the Prandtl number. Q(r,®) now represents the temperature of the fluid, and
the stream funotion ¥ is such that

= 1 & = -

Vp =% 3 ° Vo = ~or y &)

In fact, Crawford and Lemlioh? cbtain the solution of these equations by
a Gauss-Seidel iterative method for general G. The same method could in
theory be applied to all the problems given here, but due to the difficulties
of obtaining satisfactory values for the over- or under-relaxation faotors, and
the amount of experiment needed to do this, it appeered to be worth exploring
the alternative methods given in this Note.

Further, for natural convection in vertical two-dimensional closed rect-
angular cavities we have equations of the form

2
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Ba.tohelorh' investigated the heat loss aoross double glazing and similar insula-
tion cavities, and the optimum thiokness thereof, from equations equivalent to
these (with the Rayleligh number in place of the Grashof number and employing a
slightly different soaling to make the equations non-dimensional). The method
employed was based on boundary-layer type arguments and analogies rather than
on a direot solution of (10) and (11), though an expansion method, useful only
for very small G, was tried and will be mentioned further below.

In the above problems V¥, its normal derivative, and one condition on Q are
known round a olosed boundary in the (Z,r), (r,08) or (x,y) plane respectively.

Further, the above sets of equations are each of the form

L

Vet or v“w = £(y,0)
and
vﬁn or o = glv,n) ,

where f and g contain up to quadratic terms in ¢ and Q, and their derivatives.
f contains third order derivatives of ¥ and first order derivatives of Q, while
g oontains first order derivatives of ¢ and Q.

In this Note we examine methods for the solution of the case 1 2 O,
This gives a non-trivial problem only in the first case, of steady axially
symmetric incompressible viscous flows, and corresponds to having no circum-
ferential velocity (swirl). In the natural convection problems ¥ = O if
Q= 0.

Further, as a specific example, we consider a flow in a pipe of constant
radius (r = aS. The velocity distribution at entry (Z = O) is taken as
arbitrary, for instance Vr = 0 with VZ constant across the pipe except for a

small boundary layer round the perimeter through which we must have V, + O.

Z
For large Z the flow is asymptotic to the Hagen-Poiseuille flow with VZ
and Vr zero, We oan find from the caloulation the length in the axial direction

(inlet length) which the flow takes to become indistinguishable from the Hagen-
Poiseuille flow.

parebolic

Equation (1) with Q = 0 is thus the equation we wish to solve, We first
introduce dimensionless variables as follows:

r' = r/fa, Z' = Z/a, ¥' = y/}a ﬁz, R = 2a§%@ ;



where \'rz is the mean axial velocity over a oross-seotion of the pipe and R is

the Reynolds number. This normalises the ¥ boundary condition along r = a as
follows: : .

rate of volume flow along pipe = xa’ Vo s also = 2x4y ,

where Ay = ¥ on the boundary -~ ¢ on the axis. Thus

xa2 {;Z = 21((%9.'2 \';Z) ay' 4, or Ayt = 1

we can therefore take ¥' = 1 on the boundary r' = 1 and ¥' = O on the axis
r' = O, Making the above substitutions in (1) and then dropping the dashes
gives as our equation

2
L ICAMY
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with the boundary conditions ¥ and 3y/dZ given on 2 = O and on some downstream
seotion (Z = & say); and ¥ =1, dyfor =Oonr =1, ¥y =0, dy/or=0onr =0,
These oconditions ensure specified values of Vz and Vr at 2 =0 and Z = &, zero
values of VZ ard Vr on the boundary and a. zero value of Vr together with a

finite value of VZ on the axis,

If a satisfaotory method of solution oan be found for the case of Q = 0
then the more general case with a non-zero swirl (or temperature) should not
present further difficulty, since the decay of swirl in a pipe has been shown5
to be well desoribed by linearised equations, and so likely to be amenable to
an e xtension of the method used below,.

2 METHOD OF SOLUTION AND NUMERICAL DETAILS

We attempt an iterative solution of (14) from the following linearised form

2 2
e, . o= & (g2 Ta) . 3 ¥s T Vigay)
#Vke1 T 8r a(r,2) a(r,2)

Ven 5 O
& (ko2 O 2
" {,aaz Valg * 32 VwVe ’ (15)



We take the starting value ¢° to be some guess satisfying boundary and physical
conditions as well as possible, ¢1 is then determined from the linear biharmonic
equation (15), and so on until (if the prooess converges) Vg,q = ¥g to & glven
acouracy and we then have a solution of the original equation.

Previouslyj, on the analogous natural conveotion problem, we used an
iterative scheme corresponding to

2
(¥ s Vo te,) LYV
" _ R goVel¥e) g 0% o
Vet T br Ta(r,2) T 2 % Yk (16)

but this only converged if the non-linear terms were of limited importance (G
relatively small), However, if it worked,the method had the advantage that the
algebraioc operator approximating to V& had only to be inverted once in the

ocourse of a oaloulation, since any Vet is formed by pre-multiplying the new
right-hand side (depending only on the known vK) by this inverse matrix., (15)
does not have this advantage since the ¢K+1 have coeffiocients depending on ¢K.

BatohelorA uses an expansion method for small Ra (equivalent to small G), which
leads to equations of the form (16), However, as he relied on obtaining
analytical solutions the method is only of use if the sequence vK converges so

rapldly that a very few terms will suffice. Employing a computer enables any
number of iterates to be obtained quickly by matrix multiplication, so we can
make use of a more slowly converging sequence *K' However, there is still a

1limit to the use of the method as convergence is not obtained if the non-linear
terms are too large. An iterative scheme such as (15) should improve the
chance of convergence in these cases.

6
For example, Arnason employed a similar iterative method with success on
an elliptic equation of the form

2 2 2 2
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by linearising it as
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whereas
2 2 2
. J LY d Yy \2
2 1 V¢ ¢ ¥ X
V¥ = —‘:F-Vf.V\!I -2{6 -
K+1 £ K ax2 a1,'2 ox oy

was not always oconvergent.

A simple example of the method applied to a boundary value problem for a
non~linear ordinary differential equation is the following:

To solve
oy . y & (17)
] - s
dx2 dx

withy=0eatx=0 and y=2atx=nk, we write (17) as

= 0 . (18)

Then, given yK(x), we replace the derivatives of Y1 by the simplest central

difference approximations and obtain a system of linear algebraic equations,
with a tri-diagonal matrix, which are easily solved in the usual way to give
Yieq® It is found that, even with the funotion ¥, chosen 507 in error at the

mid point of the range (though smooth and satisfylng yo(O) =1, yo('n/l..) = 2),

convergence is obtained in not more than 5 iterations. The answers have a
maximum error of one unit in the fifth place, using 20 internal pivotal points.
The exact solution of the equation is of course y = 2 tan x.

Returning now to the solution of (15), we have to specify the remaining
bourdary oonditions at Z = 0, Z = &, At Z = O we take VZ proportional to

1- e-a,(1—r)’ henoce

0op? - 2(ar-1) 3-0(1-1') - 2¢ %

¢ = (19)
0.2-20.+2-2e—°'

for some oconstant value of a; so 'that ¥=1onr=1, y=0onr =0 and
dy/d2 = O. At Z = & we assume the flow is the Hagen-Poiseuille flow; this can
easily be shown to be



¢ = 22 - with & = o0 (20)

in the present non-dimensional variables. The other boundary conditions are
given above,

Equation (15) is very lengthy if written out in full, so we give here
only the values of the followlng expressions

L 3 2 3,
P = Sk 2 TV, 3 2 *g+1 3 Mg 2 8 et
K+t it T et er P % T araz
L L
¥ge1 8 Vi
t2T St T
or dZ 0Z
ees (21)
and, for example,
2 2 3
3ty q 2 V) dh g o Cw Pk M
a(r,Z) = 3 "2 % T * 2) oz
4 ar r or ar 92

eee (22)

When these substitutions are made in (15), and the various derivatives are
approximated by the usual finite difference formulae referred to a uniform
rectangular mesh in the r,Z plane (with mesh spacings Ar and AZ respeotively),
we obtain a system of linear algebraic equations for the values of ¢K+1 at the

internal pivotal points; with coefficients functions of r,Z and pivotal values
of ﬁk' In substituting for the higher derivatives near the boundaries, values

at "fiotitious" points just outside the boundaries are brought in, these are
eliminated through using the normal derivative boundary condition in finite
difference form. In general each algebraic equation connects 13 adjacent mesh
points and the system is of the form

A4 =P (23)

say, where ¢K+1 is the column veotor of the splution at the internal pivotal

points, The ocolumn veotor b contains those terms independent of ¢K+1’ but

-9 -



depending on wK and the non-homogeneous boundary oonditions. The matrix A when
partitioned is of the form

T
B, M, X, ¥,
Ay By My X3 Yy
A = ’ (2&-)

& B M X Y

An-1 Bn—1 Mn--1 xn-1

A B M
n n n

where n is the number of internal pivotal points in the r-direction, and each
submatrix element of A is of order mx m, where m is the number of internal

points in the Z-direotion, The numbering of the points is first in the direc-
tion of inoreasing 2 and then of inoreasing r., The submatrices Ai and Yi are

diagonal, Bi and Xi are tri-diagonal and Mi is quin-diagonal. For brevity, the

actual elements of these submatrices are not given here, as the expressions for

them are very lengthy. Contributions from homogeneous boundary corditions are
included in A,

A direot method is used for solving (23) which depends on factorising A
into a lower triangular and an upper triangular matrix, each with submatrix
elements, The store of the Mercury computer imposes a limit of about 160 mesh
points. This is not sufficient for high accuracy but should be sufficient to
examine the feasibility of any method. An outline of the solution of (23),
with A given by (24), is given for reference in an Appendix. It is of interest
to note that, using the factorisation method and thus taking advantage of the
sparseness of the matrix, rather than using the general Gaussian elimination

method, reduces the time required to solve (23) by a factor of about 10 or more
for the larger matrices.

3 APPLICATION TO AN EXAMPIE

The calculation described above has been carried out on the Meroury
computer for an entry flow given by a = 10 in (19). The velocity profile
corresponding to this, together with that of the eventual Hagen-Poiseuille flow,
is sh?w§ Fig.1(a); while the behaviour of the stream function is shown in
Fig.1(b).

A guide to the range of Z over which it 1s necessary to perform the
calculations is given by an approximate formula for the inlet lengthl:

- 10 -



inlet length = 0.0575aR ,

s0 that the inlet length, in terms of our non-dimensional variables, is 0.0575R.
This formula strictly applies to the case of constant velocity all over the
inlet seotion, apart from a very thin boundary layer. Our example (Fig.1(a)) is
less extrenme fohosen thus in order to avold difficulties with our rather coarse
mesh), but the formula can be taken as giving an approximation to the minimum
range of 2 that it is neocessary to use in the ocalculation. In fact, it is
desirable to caloulate over a length of pipe equal to at least two or three
times the inlet length, since the trend towards Hagen-Poiseuille flow is asymp-
totic and the formula above refers merely to the distance after which changes in
the flow are not experimentally obvious.

The Reynolds number R = 200 was used in the test calculations presented
here, and for this value it was neoessary to calculate ¥ in the range 0 < Z < 4O
approximately, with O < r < 1 as usual.

In these caloulations difficulty was experienced with the convergence if
AZ was too small, irrespective of the starting function wo. The answers rapidly

became oscillatory, and began to diverge. However, for larger values of AZ
oonvergence was obtained after a few iterations, and the method produced results
which were physically reasonable, as those in Fig.2.

It is believed that the difficulty arises in this example from the fact
that the effect of viscosity diffuses from the boundary towards the axis, and
for any Z there is a region about the axis in which the flow is as yet unaffected
by viscosity. In particular, for small Z, very little of the cross-section is
being influenced by visocosity, so that in this region the non-linear terms are
the dominant ones, rather than v V}y; and it appears that the linearisation chosen

does not represent these terms adequately. Using a larger AZ gets over this, at
a oost of accuraocy, due to the first line of mesh points Z = AZ being situated
in a region where viscosity is of more importance, and consequently the v V%ﬁ

term is more dominant.

The value of AZ necessary for convergenoe is too large to give results
for the inlet length of high accuracy; but as can be seen from the case shown in
Fig.2, where ¥ is plotted against Z for fixed values of r, the answers are compat-
ible with the approximate formula for the inlet length given above. In fact,
Prandtl and Tietjens’! record that the formula

inlet length = 0O.13aR s

due to Boussinesq, is in good agreement with experiment. This differs
anpreciably from the formula sbove and agrees more olosely with the present
numeriocal ocalculations.

The appliocation of the method to the natural convection problems given in
the Introduction may lead to similar difficulties as the fluid in the centre
of the oavity away from the oclosed boundary is now relatively unaffected by
viscosity. Also, the function wo may be difficult to guess realistically.



In oonclusion, though the above method may work adequately on some
restrioted non-linear problems it seems at the moment that the best approach in
the general (i.e. R or G not necessarily smell) fluid mechanios applications
disoussed here is the Gauss-Seidel iterative method, with over- or under-
relaxation as necessary, as used by Crawford and Lemlioh?, This method, how-
ever, is far from automatic, needing experiment in each case to determine by
trial and error acceptable relaxation factors whioch will lead to convergence at
' an adequate rate. ‘

L A POSSIBLE ALTERNATIVE METHOD

If we put
£ = Vay (25)

(this new dependent variable is in faot the vortioity multiplied by (-r)), (14)

beoomes
2 R o )4
WE = ir aEr,z; «Bs e . (26)

2r

An iterative method with lower order operators than before is therefore

3y sExaq) e
2 B Mvofg)  p %
Vel T Ta(r2) 2 % SRe1 2 (27)

along with

Velg = Ega o (28)

For the solution of (27) we require the values of g , round the closed boundary
in the r,2 plane, and to caloulate this from (25) we use the values of g at

internal points, the known value of ¥ a.lbng the boundary and eliminate the values

of ¥ at fiotitious points just outside the boundary by using the dy/on boundary
oondition. The boundary condition therefore depends on the previous solution,
for example in caloulating 51 the boundary condition depends on the initial guess

¥, The boundary oondition for (28) is of course known in advance.

From preliminary trials of the simpler scheme

n Aveg) 5

2 - B X
W % b T3(rz) T ,27 5 » (29)




together with (28), it is apparent that difficulties arise in practice, which
will be oommon to more exact representations such as (27) and (28) above. Ihen
a solution is obtained for (28) satisfying the boundary oondition on ¥, it does
not necessarily satiafy the required condition on 8¢/dn. This tends to introduce
a 'kink! or ousp in the behaviour of ¥ aoross the boundary when we later
inocorporate the dy/dn condition into the caloulation of E along the boundary
ready for the next iteration. The iterations may then diverge. Changing the
boundary conditions around so that the 3y/an condition goes with (28) and the

¥ condition with (29) will not get dver this; the trouble may be partly similar
to that of the previous seotion, The method did work for the very simple ocase
of Hagen-Poiseuille flow 4t both entry and exit, but was of no use for the
present example of & disturbed inlet flow. It again might be of use in applica-
tions where the non-linear terms are of lesser importance.

The algebraic equations in this section are only tri-diagonal in terms of
submatrices, and can be solved very quickly by a simplified version of the
method given in the Appendix.

YMBOLS
a radius of pipe
A matrix given by (24)
Ai’Bi’Mi’xi’Yi submatrices of A
b,bi column veotors
G Grashof number
¢ range of Z used in calculation
L lower triangular matrix
Lij submatrices of L
P Prandtl number
r ocoordinate in radial direotion
R Reynolds number
|§) upper triangular matrix
U. . submatrices of U
1J
Vz,Vr,vi,Vé,Vk,Vy various components of velocity
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SYMBOLS (Contd)
plane coordinates

ocolumn veotors

axial coordinate
constant in (19)
step length in r-direotion
step length in Z-direotion

angle in plane polar ooordﬁnates

, |
angle in cylindrical polar coordinates

kinematio viscosity
defined by (25)

stream funotion

defined by (5), or represehts temperature

defined by (3)
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APPEND TX

To solve Ax = b (x is written for ¢K+1) we express A, given by (24), as
the product of a lower triangular matrix

1 -
L21 I
L L I
L = 51 32 ' s
l I
Ly Iy3
Ln,n—2 Ln,n—1 I
— —
with an upper triangular matrix :
Uy U 4y
Upy Upz Ty
U = .
U U Y ’
33 34 3
l.'..‘.....!.'.‘.......OQ.‘.....'...'.
| —

in which we have, from the start, taken advantage of the easily seen results that

Ui i+2 = Yi for all relevant i, and that it is only necessary to employ tri-
3

diagonal L and U, We obtain by multiplying out and comparing terms that:

U = M

11 10 Uy 17
Ly = B U;:’
Upp = My = Ly, U12" Ups = X5 =Ly ¥y
Ly = Ay L L32j = (By - Ly Uyyp) Ugg’
U3 = M5 =Ly Ty =Ly Upgo Uy, = X5 = 15y T

and so on until we reach
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-1 -1

Ln,n—2 = An Un-2,n92; Ln,n—1 = (Bn - Ln,n—2 Uﬁ-2,n—1) Un-1,n-1;
Un,n = Mn - I'n,n-.'z Y21-2 - I"n,n—1 Un-1 ,n’

We have now obtained the submatrix elements of L and U, It is necessary to work

out eaoh U;1 i in the process asbove, and these inverses are stored as they are
3
needed again below,

The equation Ax = b is now LUx = b, so we can solve Ly = b and then
Ux = y to yield xo Note that b, x and y are column vectors (1xn) with vector
elements (4 xm). To solve Ly = b: we have at once that

¥y = B
Yo = Py =Ly Yy
Y3 % Pyl ¥yt s Y
end so on until
In = Pp” I"n,n-2 Yn=2 = Yn,n-1 Yn-1
The final step is tp solve Ux = y, this is easily achieved:

-1
*n Un,n In

(¥ x_)

~1
x n-1 Un—1,n n

n-i = Un-1 sn=-1

-1

n-2 = Upe2,m2 oo = Uno ng Xpq = ¥

X

x_)

n~2 ‘n’ ?

until we reach

-1
X = Uy Gy = Uy -y x)

The solution of Ax = b has now been obtained.,
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