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Introduction

Like solids, gases can emit, absorb and tramsmit radiation according
to the elementary laws of radiation. The emission or absorption spectrum of
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a gas is not continuous but 1s distributed into bands containing many single
spectral lines caused by well-defined quantum number chanres within the
ras molecule,

Cxcept 1n the presence of external electric or mapgnetic fields
there are three types of quantised transitions to be considered. These
are:

1. rotational transitions
2. vibrational transitions, and
3, electronic transitions,

For a typical molecule the chanpe of internal enerpy AE, for the individual
transition increases down this list, That is,

AE., << AL, << AL

1 2 3

Thus one particular type of transition dominates the energy change 1in a
reneral transition in which several gquantum number chanpes are involved,
and the bands are named accordingly:

1. 5at10nal bands, typically in the wavelength range
to 104 microns,

2, wvibrational bands, typically in the wavelength range
1 to 30 microns, and

3. electronic bands, typically in the wavelength range
10“2 to 1 micron.

It should be noted that electronic bands contain an electronic transition,
which defines the spectral position of the band, and also vibrational and
rotational transitions which cause a larpe number of different spectral lines
to be formed close to the positions defined by the electronic transition,
Similarly for a vibrational band, a change in vibrational quantum number
defines the spectral position whereas the actual lines of the band are
caused by sirmultaneous vibrational and rotational transitions. For this
reason vibrational bands are often referred to as "vibration~rotation" bands.

The actual position of a band of course depends entirely on the size,
shape and internal forces of the molecule concerned.

Here we are concerned entirely with vibration-rotation bands under
low spectroscopic resolution., For any given polyatomic rolecule there are
many vibration~rotation bands, each one accompanied by a particular chanre
in vibrational quantum number(s). Under low resolution the rotational lines
of the band are not distinpuished and the overall effect of these lines is
to broaden the band,

The spectral properties of the carbon dioxide molecule are reviewed
together with the calculation of the inteprated band intensity of absorption
and the spectral emissivity. Radiation laws and some useful parameters are
defined and a survey of spectral band models is riven. The 4.3 micron band of
carbon dioxide is the band of greatest interest here, but the arguments can be
extended to apply to other bands of the carbon dioxide molecule and to bands
of other molecules.
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1(a) Einstein Coefficients in a System of Two-Level Particles

The basis of the method involves the solution of the time-
dependent Schrodinger equation in the presence of a perturbation potential.

To understand the physics of the problem let us consider a simple
system of molecules each of which can be in either of two states, with
energies Eu and E;, where Eu>E2'

The respective populations of these states, Nu and Ng, at a
temperature T are related by the Boltzmann distribution function so that

g, -_%* g __u
m- e kT = ¥ e kT , (1.1)
u

where g and g are the degeneracies of the states and 'k' is Boltzmann's
constan®. This can be rewritten

Ng Ba e hvuz
N, g, kT (1.2)

where Eu- E, = hvu2 defines vy These equations describe the equilibrium

£ L’
population of the system, but if for some reason the equilibrium is disturbed
(for example by a sudden decrease in surrounding temperature), the above
equations no longer apply and there will be a redistribution of population,
restoring equilibrium, (In the particular example quoted, molecules with
energy E will decay by radiation of a photon into state E_ until the

above eqﬂations hold again at the new temperature, Molecufar collisions

are not considered, internal dynamic equilibrium being re-established

by radiative transfer only).

We now consider the above system to be anclosed in unit volume
and subject to a spectral radiation field of density p_until the whole
system has reached equilibrium, There will be three main processes going
on, each one characterized by an Einstein Coefficient(l).

Spontaneous Emission

The higher energy molecules decay so that the number of transitions
is given by

3
Nu Aul per cm”~ per sec,

where Auz is the Einstein Coefficient for spontaneous emission.

Induced Emission and Absorption

The molecules are also subject to interactions with the radiation
field and a collision with a photon of energy (E - E;) can induce a
change of state in either direction, such that the number of upward
transitions is given by
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N B p - N B p per c:m3 per sec
2 tu “vut u uf vul !

where B, is the Einstein Coefficient for absorption, and B e is the
Einstein Coefficient for induced emission. Usually we have N£>>Nu

and absorption dominates induced emission, but if Nu>>N£ the situation

p iz not too large.

can be used for light amplification (LASER) provided Au

Since the system is in equilibrium

Nu Aui = NE Blupvul B Nu Bulpvum (1.3)
and it follows that
N A Bt
Ny Boul e
(1.4)
LY
g kT
u
For black body radiation systems in equilibrium at the temperature T,
5 Bﬂhvui hvuE -1
vul -—*:5—-" (e 4 -~ 1 (1.5)

and it can be seen, by solving the second part of (1.4) for Pout

and comparing with (1.5) that the Einstein Coefficients are inter-related.
In fact

By BEu gu uf ,
8nhv3
A ut_ g
uf C3 uf .
(b) Radiation Density, Emissivity and Integrated Absorption

Radiation density pu(T) is defined as the radiant energy per
unit frequency interval at frequency v. The velocity of propagation is
the velocity of light 'c' and by using the arguments of kinetic theory
we can show that the igotropic radiant energy, incident in time dt, on

area of wall dA, in frequency interval v to v + dv is

l ¢ p“(T) dvda dt,

BN
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1t follows from Kirchhoff's Law that the radiant energy emitted
from area dA of a non-black body at a specified temperature in time dt
into a solid angle of 27 and in frequency range v to v + dv is

ev(T)Rvo(T) dAdtdv = } ¢ o (T) dAdtdv, (1.6)

where R °(T) is the Planck blackbody function (15) and Ev(T) is defined
as the ﬁemiSpherical spectral emissivity.

The effect of absorption by a sample of gas on which radiation
is incident can be described for a collimated beam by the spectral absorption

coefficient per unit length in the gas, K which is defined by the relation
L I

- dpvdv = P, KL,vdL dv, (1.7

which states that the net decrease in radiation density is proportional

to the incident radiation density and the path length 'L' of the radiation
in the gas, The constant of proportionality is the spectral absorption
coefficient. The path length dL is traversed in time (dL/c), therefore
for an incident radiation density of p (T) the radiation energy lost per

unit time is - c dov v ? and so the number of induced transitions

dL
from energy level E, to level E, » due to radiation in the range v to

v + dv, is .

c . .
-—— g .
9P, dv per unit time

Therefore the total number of transitions per unit time is given by

c L
Ntr = f Py l\Llu dv ,

Av hv (1.8)
uf

where Av
u

N indicates integration over the line width at frequency Vug

If the spectral line is very narrow and ey does not change much across
it then

cp

o vulk S‘
e "W Kl 1.9)

ul Avuz

Induced emission is coherent with the incident radiation, and this
expression can be equated to the difference in numbers of induced transitions
uto £ and £ to u, In terms of Einstein Coefficients this gives

N = (N B

tr L fu Ny Buﬁ)pvlu' (1.10)



-7 -

Absorption coefficients of pases under normal circumstances are proportional
to particle densitv and so we define the inteprated line absorntion (1)
as the integral of the spectral absorption divided by pressure 'p' and

wave velocitv 'c!

fu pc Ky ydv (1.11)
Av '
ul

We see from (1.9) and (1.10) and (1.2) and(1.5)

g . 1 hvuﬂ, N
Lu pc vaul tr
_ hvug
2 (NQ Blu - Nu Buﬂ)
pc
hv N B
= ul . u ul
7 NPy A =ww )
pc L %u
= hvul _ hvul
5 NEBEU (1 -e kT ),
pc
hvuﬁ - huul
i.e. Siw =3~ Ny By (1-e” TXT ), (1.12)
pc
N e hvul
or S = G—E)A . (1-e kT ).
tu grv 2 P fut By
uf
S is usually measured in units of (atmospheres)-l X (centimetres)*z.

Lu

The value of the integrated line absorption gives us a measure
of the brightness of a spectral line, and is a function of temperature.

The statement that absorption coefficients are proportional to
pressure is not quite true since they are really proportional to density
and only proportional to pressure at a fixed temperature. This method of
standardization is common in gas dynamics, and it would be better to use
the standard density unit, the amagat, except that we normally measure
pressures rather than densities, In what follows, the units for optical
path length will be taken as pressure times geometric path len%th, and -2
the units for integrated line intensity will be (atmospheres)” " (centimetres)
as stated above., This step is taken only to fall in line with previous
work, which makes data correlation easier, although it would be physically
more correct to say



Lu pc I\L,\: dv (amagat)-l cm.-2

Avui

The picture so far enables us to calculate the line intensity
for a transition provided that we can calculate the Einstein Coefficients,
The quantity Sy is independent of the line shape which is given by

. We shall find that when applied to carbon dioxide the suffices
1”4nd u embrace several quantum numbers, since the upper and lower
states have degeneracies, We shall then sum Sgu OVer appropriate

quantum numbers to give us the integrated band absorption.

We now give: an abbreviated account of the quantum mechanical
method of determining the Einstein Coefficients.

1 (e) Quantum Mechanical Method for Determining the Einstein Coefficients

This is 2 perturbation method (23), the validity of which is
based upon the assumption that the radiation Hamiltomian has only a
small effect on the unperturbed state of the system.

The Schrodinger equation may be written

W = iR g% , (1.13)

where H is the total Hamiltonian operator. We can represent H by H

= +n , where H® is the equilibrium Hamiltonian operator and '

the perturbed Hamiltonian operator. If E' is zero the solutions of the
equation

o] .
Wy = ih 3¢ (1.14)

o ) . .
are y = wn , and wn represents a complete set of wave functions which

can be expressed as

o o - iEnt
lfJn (C[, t) = wn (ﬂ) e 1‘ ]

where E_ is the energy of the state wno. For H' non-zero the equation
becomes

(H° + H)y = i —g% » (1.15)

and to obtain a solution we write § = E cn(t)wno(q,t) and substitute



into the equation above npiving:

Lo (Bv (g,6) + E H'c (0) v °(g, t)

dc o 3y °
= ih % i wn (a, t) + inm E c, (t) "

(1.16)

But (1.14) tells us that the first and last terms here are equal, so that

L oBeal®) 4%, ) =i g5y 0 (g, ).

(1.17)

|cn(t)| 2 is the fractiomal concentration of wno(g, t) in the state ¥(q, t).

To obtain the rate of change of concentration of each state we

- * *
multiply (1.17) by wm° and integrate over all space,

*x *
ie. /oy z de 4 ©4r asy®

' 0
n dc n m E R cn(t) lpn dr

0

*
Since wno represents a complete set S wmo wn dt = émn.
have left
dc 1 o . O
E?m % Th Cn 4 wm H wn dr

Therefore we

(1.18)

(1.19)

This last ecguation has no physical application as it stands, but the intepral
on the right is related to the probability of a change from state m to
state n due to the presence of the perturbation Hamiltonian.

It can be shown that for a radiation field the Eamiltonian H'

has the form (1)

where e. is the charge of the jth particle, with mass mj and A is the

vector ﬁagnetic potential of the radiation,

First consider a light wave polarised in the x-direction and

(1.20)
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travelling in the z-direction; for this wave A2 = A3 = 0 and

Al = Alo cos 2mv (t - 36).

o .
where A 15 a constant.

1

Substituting the expression for Hl' into the integral of equation (1.,19)
we get

* \
oy o I igh A 4 v ° 4t
m ] mjc 1,3 dx] n

For visible and infrared radiation the wavelength is very much greater

than the molecular dimensions, so that A, . will be a constant in the
region of the molecule, i.e. Al 3 = Al *J and then
¥
i(E - E )t
o* ’ o iHA - n n
i) \f)m Hl lbn dt c]. e —F
N I I (1.21)
i nﬁ m dx:.I n *

If we consider the time-independent wave equations for the two states

wno and wmo we can show that

o* d o, _ _ Ei _ a* o
Iy ax. by dt = 22 (B -EDX b X, W, dr (1.22)

so that {(1.21) reduces to

o* ' 0 - _ j; " ~{: )X (1.23)
f wm Hl wn dt e Al (Em En) e + ™
where
ok I o
an = f wm 3 ejxj v dt (1.24)

That is, through the transformation (1.22) the integral in (1.19) becomes a
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function of Xm » the square of which represents the x-component of the
molecular dipoTe moment matrix element (4) for a transition between the
two states m and n., (1.19) reduces to

de A1 £ - :EEE_:_Eﬂli
T ;;2 n Cn(Em - En) e T X s (1.25)

for the physical system in which we have a fractional concentration of
the mth state at t = 0 of cm(D) = dmn., For perturbations from the
initial state it follows that
i(E -E )t

m n
dc Al, X (E ~E) e T (1.26)
F‘-:m - _-'i. mn m n
c¢H

of

Also for light{frequency v at z = 0, A, becomes

o 2rivt =2nivt
A1 A1 [e + e ]
whence,
de - - Alo
dt 2 xmn (Em - En)
2ch
. . Al(Em - En + hv)t . . 1(Em - En - hu)t (127
A= “ ﬁ -
Integrate from (t=0rote=t
(. . -
m 0 to e, cm(t), then
i o
cm T A1 an(Em - En)

i(E - E + hu)t i(E -k - h)t
m n m n
x| e + =1 .2 ™) -1 (1.28)
E = E +hv E - E = hy
™ n m n

. . + . s
which is larpe only for Em - En = _hv, in all other cases the expression in praclhets
is of order unity. If we take E2E_» then we can have only E -~ E = +hy

and the first term is never large.

The probability that the system will be in a state m after a time t
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is therefore

* = *
f c* C ll) w drt CRe
i
4 z.h,ll 1 mn m n

w [ E -E -h )t]
2 (m n
sin > dv

X
€ -E_ - h) 2t 2/ i
° (1.29)
This leads to 2 9
2 ™ Ymn o 2 2
|cm(t)| = = |A1(vm) | |an | ¢ (1.30)
c™h

So far we have considered light fully polarized in the x~direction. For
randomly polarized light, the cross terms vanish and we have left

112\)1
2 mn 2 2 oy 2 2 o) 2 2
lep®1? = B [ w2k 12w 18217 12+ (4017 12,07 ]

c

(1.31)

where |Ynm|2 and Izmn|2 are the y, z components of the electric dipole
matrix elements and Azo, A3° the respective constant amplitudes of the

incident radiation. For isotropic radiation | A o| 2. | A 0|2 = |A °|2 =-l|§12,
so that 1 2 3 3=

2.2
W
e (0122 —=5 [8°12 [r |? ¢,
m ) mn (1,32)
where |[R_ |2 = |X |2+ (Y |2+ |z_ |2 is the square
mn mn mn mn
of the modulus of the total electric dipole matrix element
2
?2 o o [o]
|Rmnl lSq;m* § e.j_gj tbn dt (1.33)

We can relate |AP(“mn)}2 to the radiation density, since
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A = A° sin (2mv t)
- - mn

and

|em

0

'
ol—
oJI::u
rtl i

. wherelﬁ is the electric field,

21V

A° cos (2nv t).
- mn ‘3

therefore |E|2 = mn 'é

2
™™ |é0| ,

therefore r
vmn

2%
2 C\’mn |Rmn
3

2 2
so that | c, (t) | |“t.
Now lcm(t)|2 /t is the probability per unit time that a molecule of the

system will undergo a transition to state m from state n under the influence
of the radiation density Pumn * where Em>hn. It follows from (1,3) that the

number of upward transitions per unit time is

. cm(t)iz )

n t Nn Bnm “Vnm .
Therefore 2
c (t
B =I.E£_1L_
nm o eyt
3h2 mn
4 3
64m v g
and Amn = gn = lR |2 .
3h e &m mn

Hence we have succeeded in relating the Einstein Coefficients to the sum
of the squares of the matrix elements of the dipole moment components
which can be evaluated for any physical system if ALL the wave functionms
are known. This last condition is the overriding one.

S0 far we have shown that the integrated line absorption due to a
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trangsition from a state with quantum number n to a state with quantum
number m is given by

8113\Jm Nn ) _:\_’_n_ﬂ_l
s = = ) IR 12 (1-e” ¥ ). (1.35)

The wave functions and selection rules for diatomic molecules
will now be briefly discussed, and developed later to apply to the
carbon dioxide molecule.

2(a) Matrix Elements and Selection Rules for Diatomic Molecules

For a diatomic molecule the Schrodinger time-independent equation
can be solved in the harmonic approximation (1,5). The resulting wave
functions govern the transitions that can take place when a molecule is
subjected to a perturbing radiation field. This leads to selection rules.
We consider now the one-dimensional harmonic oscillator.

The complete time-independent wave functions for the one-dimensional
harmonic oscillator are the orthonormal Hermite polynomials h

ol 1 } - 252
wn(x) = [ G;) ] Hn(/E‘x)e 2 (2.1)

n_y

2 n.

where x = r - r, is the displacement from the equilibrium internuclear
distance and a =~ is related to the potential energy 'V' through

a2x2h2
T T

where m_  is the reduced mass of the molecule, The enerpy levels are
given by

En = (n+§)hvo_

In the dipole approximation we can represent the electric moment u by
Ha= U - o
b+ E(r re) - b Ex,

where g is the permanent dipole moment of the molecule, and g is induced

by the departure from equilibrium. If we now calculate the matrix element
xmn for a change of state due to a perturbing radiation field, we find that
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e = P (2.2a)

u
hn,n+1 1

(2.2b)

, _u @l:
kn,n—l T 1 2

For all other values of m # n, n + 1 we find Xnm = 0, leadine us to the

selection rule in the harmonic approximation of 4n = + 1, It is the
value of 2 which we have difficulty in findins and the point at which we
need further empirical information. Later (Section 3) it w1ll be seen
that we can solve the problem fairly satisfactorily.

The method now adopted is to proceed to find the matrix elements
and the line intensities, which we expect to contain constant factors
of proportionality related to the maenitudes of the dipole moments. UWe
consider the vibrational levels to be degenerate due to the total rotational
increrents of angular momentum and also due to the orientation of this
angular momentum in space. The former give rise to the rotational quantum
number K which can have non-negative integral values and the latter give
rise to the magnetic quantum number M, which can have (2K + 1)} values
extending from -K to +K.

We consider the integrated line absorption (defined in (1.12)
and also called the 'line intensity' or 'line strength')due to a chanee
of state from (n K M) to (n' K' M') (see page 8) where the changes in
quantum numbers are governed by the selection rules of the harmonic
oscillator and rigid rotator.

Thus |an|2 becomes |RnKM R n'K'M'|2 .

The selection rules limiting K and M are, for

X,y polarized light M = +1, AK =+ 1,

z polarized light, AM = O, 6K = + 1.

Using this inforwation we can sum over all possible transitions for a

vibration quantum number chanpse of n to n', and hence calculate an+n'|2

and oLt s the vibrational band intensity, This method, due to Herman (6,7)

is now described briefly.
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Let the jth component of the matrix element given in (1.33) be

nml j = |RnKM*n'K'M'Ij

=l Sy 5 00 dgpdt]

vhere ?(r, 8, £) is the jth component of the electric dipole moment

vector Eﬂr, 8, ). v is the complete time-independent wave function

nkM
of the diatomic molecule, which we can separate into the form

Yo = Snr(T) S8 D

and we can also write ? (r, 8, §) = u(x) Fj(e, z). We can now sum

anKM»n'K'M'Iz

obeyed, For the summation over M M' and components j we have

over all transitions in which the selection rules are

E
Ron'x' 12 = uut Rogwsnreone

= | £ s% () S 4padel?

z z
Xagr 5 | T By 5500, Dggnedr|? (2.3)

and it can be shown (1l1) that the swmation on the right is given by

(K + (K+1) §

8g-1, X' K+1,K')

whereamn is the Kronecker §-function.

Corresponding to the matrix element anKM+n'K'M'|2 we have an

integrated line absorption

8« ) NnKM

Jhc p | (nkM, n'K'M")
_ o, ntxtun)
x [ l-e kT

2
]anKM+n'K'M'|
(2.4)
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In the absence of maesnetic fields the levels are degenerate
due to the inability of the mapnetic quantum number to split the levels,
and this depeneracy 1s gnK(= (2K+1) for the state n, K) and so

N - NnK
nkM onk .
Therefore
g - 8n3 NnK N 1
R XT3 | . T [ e}
nk-n'K e p (nK,n'K )jE'I_1

BV (aK, n'k')
x (1 -e T

Yyx | f s* . u(r) Sn.K,dtlz

(2.5)

X [Kél(-l,k( + (K+1)6K+1,K,] .

The values of the intepral can be calculated in the harmonic
approximation but contain the unknown factor due to the magnitude of the
dipole moment vector; of this experimental knowledge is indeed very
limited .

By a similar summation over KK' we can estimate the total
vibrational band intensityw), However, this is more difficult than the
summation over M since there is a variation in frequency over the band
width, The result is

z S
%on' KK' “nk-n'K'
hv
3 N n,n'
g n 2 - —154
;;:2 *  n,n’ iRn-’n'l (A-e )y (2.6)

where v. , 1is a complicated function of the average frequency in the band,
Owing "0 to the approximation of complete harmonicitv the values of

n, n' are limited to being small and so the formulae can only be expected

to hold at low temperatures and even then we can only find the relative

band strength, Thus even if we know the band strength at room temperature,
it is difficult to get a reasonable value for the band stremgth at much
higher temperatures, since the harmonic approximation is no longer valid.

Before applying the above method to the carbon dioxide molecule
it is necessary to know more about this molecule and its modes of vibfation.
The method (given in Section5) will be that formulated by Malkmus, which
assumes a band intensity at room temperature and an average line width,
with a given temperature variation.
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2 (b) The Carbon Dioxide Molecule and its Infrared Spectrum (5,9)

The molecule has three atoms and therefore nine degrees of
freedom. We can divide these into internal motion and external motion
of the molecule as a whole.

(1) The external motion consists of translation of the molecule
as a whole in the three orthogonal directions and, since the molecule is
linear, the rotation of the molecule about the two axes perpendicular to
the axis of the molecule,

{(2) The Internal motion consists of three modes of vibration and
one of rotation which only becomes effective when one of the vibrational
modes is excited.

By a linear transformation we can reduce the internal motion of
the molecule to its normal co-ordinates, {x, y, z, q).

=4
yt M m
i ——

/5

4
The kinetic energy is then given by

T 4o+ e 8D

vhere q = (22 - zl) —a , X=Xxy- !(x1 + x2), (2.7)

Y =yy - by +y), oz =zy - iz 4 2),

2 2 2 .
r'=x +y ,xXx=rcos ¢, y*=r sin ¢,

2Mm

and S v

This reduction to normal co-ordinates depends on the assumption that

the vibrational amplitude is very much smaller than the inter-atomic
separation.

To the harmonic approximation the potential energy is
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v = y° -'nzmvlzqz + 2ﬂ2V22 u(x2 + yz) + 2u2v32uzz. {(2.8)

The solution of Schrodinger's equation for this potential leads
us to the vibrational wave function

nln2n32 ny n

3 n.f + iy
¥ =y (a)y (&) R

2(p) e (2.9)

where the non-dimensional quantities o, £, p &« q, z, r respectively,
n

1 n n,2
¥ "(o) and ¥ 3(E) are orthogonal Hermitian functions and R 2 {p) =
_ n =%
ple =P /2 72 K
) aKp o
K=0

Also, the total internal energy of the molecule (to the harmonic approximation)
is

n1n2n3
W - (nl. + i) hul + (nz + 1) h\’z + (n3 + i)h“3) (2010)

so there afe thfee fundamental vibration bands in which each of (n), N,y n3)

changes by one unit.

The fundamental modes of vibration and the significance of the
quantum numbers are demonstrated below (Table 1). The vibrational tem
peratures, frequencies and wave lengths are also given (10).

It can be seen that in the symmetric stretching mode there will be
no change in dipole moment of the molecule, sc that the matrix elements
are all zero, This band is not observed in the infrared spectrum of carbon
dioxide but only in the Raman spectrum, It does however combine with the
other two modes giving rise to combination bands in the spectrum.

Iable 1.
wave- wave- h Type of ’ Quantum
‘length number Qv - Ex mode. number:
(w) t:m--1 ' °k
! + +
15 667 1 1959 bendinp 1 ° } * n,
. ‘ symmetric
. agymmetric
43 2349 { 3350 stretching .- e . n,
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The quantun number ‘¢', associated with the bending mode, is a
measure of the angular momentum about an axis parallel to the ground state
axis of the molecule, Thus '¢' must be zero whenever the bending mode
is unexcited, and it is found that the values that '€' can take are
n?,(n2 - 2), (n2 - 4) .c.ac 1 or 0. This mode of vibration introduces an

asymmetry into the molecule about the ground state axis of the molecule,

so that the dipole moment matrix element is non-zero and furthermore the
chanege of dipole moment is perpendicular to the axis of the molecule, This
characterises the type of band spectra emitted by chanpes of quantum

number n,. Only such bands are observed for which (9)

~

an, is ODD, A2 = + 1 and An3 is EVEN.

The asymmetric stretching mode has asymmetry parallel to the

axis of the molecule so that a change of aquantum number n3 causes a

dipole moment change parallel to the molecular axis, which produces a
characteristic "parallel band” spectrum, Only such bands are found
for which

bn, is EVEN, A% = 0, Ang is ODD,

- f 4
To avoid confusion as to the values that An, and An, can have,
it is as well to note that in the harmonic approximation the selection

rules demand that Anz =+1, An3 = 0 for a perpendicular band aund

An2 = 0, An3 = + 1 for a parallel band., All other quantal jumps are

forbidden, but ONLY in the harmonic approximation. In practice ‘the
potential energy wells of the molecule contain much anharmonicity and

this increases the nrossibility of quantal steps exéeedingy the harrmonic
restriction ofAn = + 1, especially for large values of n. However, it

should be pointed out that the probability of a change 'in quantum numbers
rapidly decreases with increasing magnitudes of the change. Thus we

can readily accept a violation of the selection rule An = + 1, thoush

the band spectra produced by changes of An> 1 are of a much weaker intensity.
Therefore in the above restrictions on An,, and An3, for the most probable
transitions read zero for even and one fof odd.

The selection rules esovernin~ changes in 'f' are much more rigorous
since the ri¢id rotator model is a better approximation to rotational motion
than the harmonic approximation is to vibrational motion.

The above discussion can be verified by applying a small pertur-
bation to the harmonic potential and calculating the transition
probabilities from the resulting perturbed wave functions. The two
statements on An,, A# and aAn, are the result of this work (9) and the
value of Any is shown to be” of no significance here.

To realize what these results mean consider the spectral bands
that appear at the frequencies

Il

w

An1 vy o+ An. v, + An, v, (An's are of course integral).

2 2 3 3
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Only such bands are found for which (4n

+ An3) is an 0DD number, as
we have seen,

2

(i) For An, odd dipole moment chansze is perpendicular to the
molecu{ar axis |,

(i) Tor An, odd dipole roment chance is parallel to the
molecular axis.

These restrictions have an important effect on the spectrum
of the carbon dioxide molecule, in particular in the formation of combination
bands, Consider the transitions leading to the two observed bands:

| - ' 1 '

1. v Anlv1 + Anz v2 + An3v3 (2.11)
LU " . " 1"

2. v Anlvl * An?v2 + An3u3 (2.12)

A combination band would be

] "y - ] n 1 " ) "
3. (v' + v'") (An! + Anl)v1 + (An2 + Anz)uz + (An! + An )v3

1 3 3
(2.13)
Since bands 1 and 2 are observed both (Ané + Ané) and (An; + Ang) ’
must be odd; therefore (Ané + Ang) + (Ana + An; ) must be even, so that

a combination band of two observed bands cannot be observed. lowever,
the symmetric mode often interacts with the other two modes producing
observed bands, since Anl is unlimited; for example,

v =y, o+ 00% «— 1110

voEu, 4y 00% « 10°1

We have seen that we can predict the positions of the various
bands knowing the three fundamental frequencies, and we shall now
investigate the structure of the bands which will be feound to be of
two main types (5). In order to do this we shall need to consider the
rotational motion more closely.

By choosing axes (£, n,Z ) to be along the principal axes of the
molecule we can ensure that the Hamiltonian will depend only upon the
principal moments of inertia (A, B, C ). Let A,D be the two equal moments
of inertia and let the linear molecular axis lie along { with moment of
inertia C. (The followins analysis applies to any triatomic molecule).
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[ ]

¢ by
x
!
n
x ! 4]

Intersection of {;i} planes

The orientation may be described by the three Eulerian angles (6, ¢, ).
After forming the Hamiltonian and Schrodinger's equation for V = O,
we can separate variables and solve for the wave functions

y= (@) (o) e KO X

where K and M are integers, in order that ¥ be single-valued.
From the resulting equation for (:) (8) we can show that the
energy levels are defined by

K J(J + 1) 1 1 K
WE e B v g -

2
A (2.14)

where J is a positive integer. The relatiomships, given by the equation,
between J, M and K suggest their physical significance. These relations
are

>

Iz Ak, i (x| DM,

Ta i, i M o» J¥|
i.e. J. 18 greater than or equal to the larger of the magnitudes of the
two quantum numbers K and M. On the other hand we may say that for fixed
values of J, there is a limit on the values of M and K, such that

|K| &« 3 and Ml ¢ J .
This suggests that J, K, M can be interpreted as representing angular

momentum quantum numbers, and it can be shown that angular momentum
is given as follows:
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the total angular momentum L is miven by L = J(J + 1)&2 ’

the component along the ; axis by LC = K,

the component along the z axis by L o=Mn .

From the formulae restrictine certain values of M,K it can be
shown that the degeneracies of the states of angular momentum (J,K)
are given by

gk = 27 + 1 K = 0,

= 2(27 + 1) K > 0, ete,

Selection rules can be found by determining the matrix elements
representing the direction cosines pii' The results are the rules

J=+1,0; K=0; M=+1,0, for which P Pry and Pys

have matrix elements differing from zero, and AJ = + 1,0 ; 4K = + 1;
&M =+ 1,0 for whichp__, o s D and p. , © , P, have finite
values of matrix elements. "7 nz tx’ TEy tz

Assuming the above expressions for the depeneracy and that the
total intensity of radiation from a state is proportional to the depeneracy
of that state, we can find the relative intensity of the rotational lines
in the vibrational band.

The above two sets of selection rules lead to two types of band,
called parallél and perpendicular according to the direction in which
the change of dipole moment occurs with respect to the melecular axis.
This corresponds to the change in quantum number K, which can be 0 or + 1,

(i) Selection rules 4J = + 1, 0 and AK = O,

Reference to the energy constant WJK for this molecule shows that
the lines of an absorption band will be given by the expressions in the
following table, where v_ is the normal frequency of vibration. The
intensities of the lines®in the three branches corresponding to
A = -1, 0, +1, are also given (5)

- ve branch: JgK = - E IJ o= ‘AJ;]' Q Jz_Kz 'U(J2+J)-BUK2
eorERENt V-1 T Yo TmmA P a1 T AL T
(2.15)
J 2 2
JK @ 2 2J+] - g (J"+J)go K
0] branch: v = v 3 I= 4 I I K e
. JK 0 Jel K=0 27(3+1)
' {2.16)
J-1 2 .2 2 2
. J-1,K A S J°-K* «0(I°=1)-BoK
+ ve branch: v = Vo *3x 3 I3n A L Q 77 © (2.17)

1,K © K=0
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where A is a constant depending on the molecular dipole moment matrix
elements; 0 = 1,2 where K = 0 or # 0, 2

A
C—m and B 'E"la

So far this discussion of the parallel band has been for a general
triatomic molecule, but for a linear molecule, such as carbon dioxide,
vibrating in the asymmetric stretching mode, the rotational motion is
like that of a symmetric rotator. The moment of inertia C tends to zero, so
that B becomes infinite. However, since C is so near to zero the quantum
number K cannot have any meaning, except when it is zero. The immediate
consequences of this is that the zero branch vanishes and the intensities
are represented by the much simplified expressions:

2

I LAT e (2.18)
2

7N = 1A RCICIR) (2.19)

which are seen to be very similar to the intensgity variations of the
vibration-rotation band of a diatomic molecule. The intensity variation

is a direct function of ¢ but the form of the band depends little on its
value. Since, when £ is non-zero, the molecule loses some of its symmetry,
we have twice as many lines in a band for £>0, as well as a weak central
branch. In fact in the band for £ = 0, these lines are superposed in pairs,
the lines with odd values of J being absent. The moment of inertia C becomes
finite as in a general triatomic molecule,if 2>0. Fig. 1 should help to
clarify this point,

(ii) Selection rules AJ = 4+ 1,0 and AK = 0.

Again reference to the energy level constant Wk will give us the
line structure of a general triatomie perpendicular band, which is more
complicated than the parallel band. The general appearance depends greatly
on the ratio (A/C), which is infinite for CO, in a state with £ = O,
but it is useful to look at the case for which £>0, i.e. (A/C) finite,

This band can be described by a series of superimposed single bands, two
sets of which are given for values of AK = + 1, and each single band has
positive, zero and negative branches. The frequencies of the lines of
the Kth single band on the negative side of v, are given by:

J,K
- branch: ’ "
V51,1 = Vo " WA [" * B(K'“] b T =K, Kel (2.20)

J,K sV -l B(R-1) (2.21)

0 branch: UJ,Krl o LT
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J-1 K +H -
+ branch: UJ’ k=1 =% ~ T [ J + (K-Q)],J = K+l, K+2, ... (2.22)

Note that the allowed values of J start with F and K + 1, not zero, fol-
lowing the structure rule J3K. The intensities are piven by expressions
similar to those for a parallel band.

The overall picture of the band for a value of (AfC) = 5 and
¢ = 0.018 for the vibrational transition 00°0 to 0110 can then be built
up as shown in Fig. 1 (d). Single bands are shown for values of K up
to three.

In the special case of the moment of inertia C approaching zero
the central zero bands of all the single bands move to the freauency Vo

and so the resulting picture is as in Fip. 1(e)., with a very strone central
part of the band,

For a perfectly harmonically designed rolecule the actual band
would consist of several of these bands (shown in Fig. 1(e).) exactly
superimposed, there beinn more bands at higher temperatures. At the

same frequency wg would 2bserve for example a sunerposition of the bands
0110 «+ 0000, 05°0 < 04”0 , 3331 + 3221, ...,

However, since in the real molecule the potential wells are of the
Morse type the energy levels come closer together as the molecule moves
towards dissociation, so that the frecuency of the band emitted for the
transition 0590 + 0450, sav, 1s smaller than that emitted for 0170 -+ 00°0.
Thus in observing the cmission of radiation with increasing temperature
the vibration bands are seen to spread into regions of longer waveleneth,
To complicate the harmonic spectra still further the line spacing of the
positive branch decreases and that of the nepative branch increases as
the quantum number increases, due to centrifueal stretching, (21), and
Doppler broadening causes the spectral lines to spread into a continuous
spectrum.

It igs worthwhile to note that for CO, the frequency of the n,

(bending) mode is very nearly half the frequency of the nl(symmetric

stretchineg) mode. This leads to resonance and a pood approximation can
be made in calculating the intensities (see the method of Section 3(b)
for intensity calculations in the 4.3u region).

The effect of the shape of the blackbody radiation spectrum
on the relative brightness of the vibration bands is shown diagrammatically
in Fig. 2. Fip. 3 shows some absorption bands at room temperature, all
of which are listed in Table 2 topether with other important bands.
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3(a) The Result of the Application of the Line Summation Method to the

Calculation of the Total Relative Band Intensity of the Carbon

Dioxide 4.3y Band

Referring back to the expression for the line intensity for a
diatomic molecule, we can calculate the equivalent expressions for the
parallel band of carbon dioxide,

. . \ . - 24 .

The line intensity given by the transition (nl ng n3J+ni né né I is

81r3N v

e 2! —L @'“' : ¢!
[ trry [, 1712
S(nyngng, I+ nyny” ngdh) kePoioy  Ba'erLAne |Rn;nynad » njnh’ n3d|

T ]
i Wv + “R by
X e KT (1-e kT), (3.1)

where V = the frequency associated with the indicated change in gquantum
numbers,

]
‘R“1“§“3J -+ niné£ n:'iJ'l2 = the corresponding matrix element,
NT = the total number of molecules per unit volume
per unit pressure,
Byrgt = the depeneracy of the upper state, with
rotational quantum number J)
Q& = the complete rotational partition function,
with energy levels Wi
’
QG = the complete vibrational partition function,
with energy levels WG,
J'e!
Cl = the amplitude (5) factors corresponding to
Je the rotational change of state J £+3'¢';

typically

T G n@TF L
Ji+l for ¢ # 0.
4J(T + 1)

1+
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To complete the calculation of the total band absorption we -
sum the above expression over all values of JJ' roverned by the selection

rules AJ = 0, + 1, (11).' Physically this renresents addine all the
intensities of the lines in the band. The result is

- ~ il [l

I AU Lo
a(nn,‘ny > njns 'nd) = 0 S(aynngdeninindr?)
snN, Wy N
"= — 2 -—(1-e XD, (3.2)
3hc2Q v gzs e kT
v
where ¢, = 1 for L =
Lo
2 for £ # 0,
vV = the frequency of the absorption band centre,
2 AP
B |Rn 3, n1 2 n3| . and
QV and wv are given by
) _
W! (nln?nB) + WR L, I = Vv (n1 9 32) + W (J)

Qé(nlnan) Qﬁ(l, J) = Q (n1 2 32) oR( I¥,

so that the summation over JJ' becomes easier. The expressions for W',

Q&, etc,, will be piven in the discussion of Malkmus's paper.

If A% = 0, the above expression for the band absorption is
correct, but if 4%.= + 1, there are two possible final states to which
the molecule can po and so the intensity of each band in this case will
be half that for &% = 0, but there will be twice as many lines since
there are two separate transitions possible.

1.3 (b) A Special Method of Calculating the Partition Function of

Carbon Dioxide in Application to the 4,3y Infrared Band (13)

It will now be shown that the band absorptions for the various
bands in the 4.3y region can be related, using the harmonic approximation
and an assumption concerning the frequencies of the fundamentals. The
final formulae will be of use in predicting the total band strength of
the 4.3y band and will also give us information as to which transitioms
are most important.
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(1) Calculation of the Partition Function

The asymmetric stretchins mode in carbon dioxide has its levels
of excitation classified by a change in the quantum number flye hen

the other two guantum numbers remain unchanged and n, changes by unity,

emitting or absorbing a photon of radiation, the transition of states gives
rise to the 4.,3u band.

The vsual expression (10) for the vibrational energy levels of
a linear triatomic molecule, taking into account the anharmonicity
present, is

= 1
h(nln2n32) he l ml(n1 + ) + mz(n? + 1) + m3(n3 + 1)

7 2 ? 2
*xpng + DT+ xp,(ny + 1)7 # xga(ng + DT+ gt

(n, + Hln, + 1 + x,, (n

MESTAL

, * Dilog + 1)+ x5(n) 4+ Doy + 1) + }

2 23 2

(3.3)

where Wys Wy 3

are anharmonic correction terms given by

w are the wavenumbers of the fundamentals and the xij

= = - B -1
X1 = 0.3, Xy 1.3, Xq4 12.5, (em. )

1

X1y = 5.7, Xyq = -11.0, X3 = -21.9, (em, )

and Byg = 1.31 cm.nl.

The fundamental wavenumbers for this empirical formula are
wy = 1351.2, w, = 672.2, wy = 2396,4 em.”l It follows that for a

transition in which bngy = 1, the wavenumber involved is

= ¢ - I ) 1
w(nln2n31—>n1 n, (n3 + 1) = (I:(nlnz(n3 + 1)1) L(n1n2n3l)) ~
= wgy + £x13 * Xy * 2x33 + Xyqf o+ X0, + 2x33n3 + vaen (3.4)

Now the fundamental wavenumber Wy ig alrost twice the fundamental wave-

aunber wys and so the states which have the same values of (2n1 +n,)

and n, have very nearly the same energy (13). The states with the same
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value of £ still perturb one another, and each pair of states would
have to be studieu separately, leadinp to a mammoth task. The
alternative is to srour the two cuantum numbers ny and n, into a new
anuantum nurber e

ne=2n +n, |,

and to define a wavenurber w such that

el

= i(iwl + w?).

We also note that 2x,., = x,., to a rood approximration, so that if

we define 23 13

X = £(£x13 + x23)
we have Xn = x13nl + x23n2
and wn =w +w

n ™ Tty

The transition wavenumber then becomes

wnn3 = (nn3 - nn, +1)

+ %¥n + 2x..n (3.5)

* 2x4q 33%3

=w3+£x + X

13 Y Rzt Xy,

Also the energy of any level relative to the ground state is in the harmonic
approximation:

E(nl,nZ,HB,E) Swny +own,  +owana.

This becomes LE(n, n3) = Wn + Wy,

The vibrational partition function is given by _

3 7

n
oy oD o ' 2
T i R - E(nynyng )
QV(T) = o B¢ T
n1=0 n2=0 n3=0 E={1 . {(3.6)

where the degeneracy Bp» dependent on £, has the values
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Be

We can separate out the partition function due to asyvmmetric stretching,
this is

o - T . _ latle P 2%25)—1 (3.7)
3 ny=0 kT e

The remaining partition function is

22 _ (m1n1+m2n2)hc

£ e
=0 0,0 zu{g L kT i (3.8)

Q (1) =

We can now change the order of summation, so that after summing over £,
we sum over all values of n, and n, such that an + 1, =1, and then sur

over all values of n.

Fat
Let I f(nlnzz) denote the summation over £ (even or odd)

followed by the summation over all values of n, and n

1 2 such that 2n1+n = n

2
(n even or odd), i.e.

n* n 0, Y n even
I f{n.,n. t) =1 I f {4(n-n,), n,,%
172 2 2
even n2=0 even =0 :
(3-9)
n n L
= i L f [L(n -n,), n,t
0dd n,=1 odd £=1 172" 2
n odd
Then, since Wiy + w,n, = wn, the partition function is given by
- n* - wnhe
QO(T) = nEO I Bpe kT
? - ﬁ;hc n*
= =0 [ e kT (I gg)] . (3.10)
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The two surmations are auite straightformward and are accomplished
by treating £ and n odd and even separately. The result is (13)

whe 3 ‘whe

QM = (- K s

2whe ‘whe

- vt a-e"wy "2 (3.1D)

which can be seen to be the harmonic oscillator approximation partition
function obtained by replacing wy by 2w and W, by W. Obviously we could

have put jw, = w, * w straight into the harmonic approximation to derive
this result, but” since the bands for which n is constant fall verv close
to each other in the spectrum, we can predict these individual band
intensities much more easily using the above formulation.

In the 4.3y band An, = An_ = 0, and so AL = 0 also. So the
integrated absorption coefficient “is given by (3.2), that is:

3 E(n,n.n.%)
8n 2 - 1273

m'n'n! = '

a(n1n2n32 1“2“3,?"l Jhe NTB wige kT

X 1 _w'he
ﬂv [1 -e kT ] ’

wherew' is the wavenumber of the band centre. For a transition which
i&volves only the quantum nurber change lAn l = 1, we can show that
B cc(n3 +1) in the harmonic approximation (as in the case of a diatomic

molecule in Section 2 (a)).

We can now sum the integrated absorption coefficient over

all values of €, n1 and n,, such that 2n1 + n2 = n, and we shall derive

the inteprated absorption coefficient for the group of bands for which n
is a constant and n, chanpes by unity, that is

n¥*

anHB(T) = I u(n1n2n3k * nn,n, + 12). (3.12)

In order to determine the relative intensities of these bands we
need also the fractional population NMM3(T) of the level for which

2n1 +n2 = n and n3 are fixed. This 1is

Qy(T) (3.13)
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where gm is the degeneracy of the state for which n=constant, and g"
. n*g L 1(n+2) n even,
Lot Ul (ne1) (me3) n odd. i (3.14)
Thus,
nn - nwhe _ n3w3hc
N3(T) = gn e kT e kT

_ Bhe _ Bhe _ bahe (3.15)
X [1 - e kT ]3 [ 1 +e kT } [1 - e kT ] . 0
The fractional population of some of the lower vibrational states defined

by the 4 internal quantur numbers nl,nz,n3,£, is shown in Fie. 4. (14)

It follows that we can estimate the relative intensities of the
band groups:

o (T) nwhe _ nwhe no

no n * - —_ n N (T
RGO ( g.)e kT =ge kT = —-2
%0 T L ’ NOD(T) ,
and
o n,w, he
nn3(T) _ .33 N3 (1)
W = (n3+ l)e kT = (n3+1) W ,
unn3(T) N3 0y oo (nw + n3m3)hc
so that W = (n3 + 1) W = (1'13 + g e KT {3.16)
For a perfect gas at ordinary pressures; NTcllT and
w,he
o (T « &+ ¥ (1 - - < )
no T € *
Therefore,
m3hc
‘an(m _ T NT3(D) 1-e ¥,
fon,(Te) T NTU3(To) _ bghe (3.17)
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%y (T
for a given reference temperature T . Thus, we can find <
nn3(T,)
for all n, n3 and hence the overall absolute band strenrth if we

know aoo(To). At To the intensity we observe is

-] - w Q
T Eooan (To) = e (1) X T nn3 (To)
n=0  ny=0 ne0  ny=0 u_ (1)
R n=-— B-_lab—c-:o w0 — _1.1.9-013—]‘":
= aoo(To) (I ge KTg)( & (n3 + l)e kTo )
n=0 n,=0
3
. w he
] 373
aoo(To) Qo(To) z (n, +1) e LT .
n,=0 "3 s}
3
The summation over ny can be shown to be given by
) ) n3w3hc ) 93hc ) m3hc ) mshc }
n EO (n3+1)e kTo = QS(TO) [ 1=-(1l~-¢e PTo)e kTo In(l-e kTo) .

3

which can be calculated. The integrated band intensity of absorptioh
at temperature T will be given by

m3hC thC
2 2 ann3(To) = aoo(To)QV(To)[ 1 -(1-ce kTo)e kTO
n =0 n3=0
_ w3hc .
In(l] - e kTo ) (3.18)

Thus one measurement of absorption at room temperature enables us to
calculate aoo(To), from which we can find the integrated band intensity

at all temperatures, using the formulae of this section.
The work of Pemner (1), after derivation of (3.2) consists
of comparing the ratios of B2 and of a(n1n22n3 > nini2 né)

for the ﬁz-fundamental and the combination transition
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L L+l
(nl, n,, T4 - (nl + 1), (n2 + 1) + . n3).

1l.4{a) Radiation Laws and Definitions

In (1.6) the relationship between hemispherical spectral
emissivity, radiation densitv and the spectral radiancy for the surface
of an opaque solid was given. We mav define the hemispherical spectral
emigssivity of an opaque solid surface as the ratio of the spectral
radiance which it emits into solid anele 27 to the spectral radiancy
of a blackbodv at the same temperature,

i.e,

R (T)

o (4.1)
Rw(T)

where RO(T) is the Planck blackbody radiation function (15) based on wave
nurber.” It can be shown that the absorbed spectral radiant energy ner
unit area 1s equal to the emitted spectral radiant enerey per unit area if
the surface is in thermal equilibrium with the radiation. This amounts to
saying

aw(T) = em(T) {(Kirchhof{'s Law (16)), (4.2)

where am(T) is the spectral absorptivity.,
Kirchhoff's Law in this form applies also tc non-opaque substances (1),
except that both a and €, must be evaluated for the same thickness. It

follows that if P, is the spectral attenuation per unit area in the radiation
per unit opical path lenoth, the emissivitv of optical path length dX
is esiven by

sm(T) = Pw(T)dX, vhere X=pl (atm.cr.)

or R = ROP dX. (4.3)
w W W

i.e. The spectral radiancy of any substance ecuals the product of the
spectral absorptivity and the spectral radiancy of a blackbody.

Consider now the optical system of a "slab" of ras with optical
thickness Xo = pl, as in Fis. 5. The chanpge in transmitted radiation

occurring in a depth dX is due to:
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(1) the emitted spectral radiency in di, Pm(Tp)dkR;(TP);
(ii) the attenuation duc to absorbers in dX, Pw(Tﬂ)dXRm(x).
[od

The net increase in radiant power moving from left to riebt in Fier. 5 1s
therefore

1]

de(X) Rw(X + dX) - Rm(x)

) _ . .
[Rm(Ta) Rw(k)] . Pw(Tﬂ) dx,
Leadineg to the result that
- - P
Rw(xo) = RE(TQ) (1 - Pw(Ta)Xo) + Rm(O)e m(Tq)xo (4.4)

where R,(0) is the incident radiation from a lisht source, sav.

It follows directly from this equation that if there is no chance
in spectral radiancy throuph the pas i.e, Rw(Xo) = nw(o) we have

R (0) = R (X5} =RO(T).

Since RS(T) is a sinnle-valued function it follows that the (monochromatic)
temperature of the radiation is eaual to the temperature of the fas.

This situation is used to determine temperature in line-reversal technicue,
about which more will be said later,

If there is no incident radiation, i.e, Rw(O) = 0, The resulting
expression defines the spectral emissivitvy of a volume of ras

€ =1—e—PNXO
w

The total enerpy radiated by the pas at a temperature T is riven by

7 RO [1 -e wao] d, =¢o T (4.5)
o

where ¢ is Stefan's constant and ¢ is the total hemispherical emissivitv,

The spectral radiancy of a black body is a sinsle-valued function
of temperature, Since in practice there are no black bodies it is useful
to define the brightness temperature of a body, which is a function of the
wave number and of the geometric position with respect to the source and
surrounding media. Between a source and a point of observation there is
usually a region of absorbing medium which causes spectral attenuation wa'
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If the source has a hermispherical spectral emissivity E,(T) and temperature

Ty, the observed spectral radiancy is

- Pm(T?)X ' df

o —
Rw(TO), Ew(To)e T

dw ,

where T, is the temperature of the absorbing material and df is the solid
angle subtended at the source by a detector at the point of observation;
dy is the wavenumber interval observed at wave number w. If the source

was a perfect black-body and there was no absorption of radiation between
the source and detector, the same spectral radiancy would be observed at
the point of interest, for a body temperature T,, where

- Pw(Tg)X gQ

0 = RO 4aa
R (T)e (Toe 55 do = RUT,) 5= dw (4.6)

Tb is called the brightness temperature of the body. Since €, and

"wa

e are less than one it follows that To)Tb' The parameter Pm(T) is

called the spectral absorption and is related to the integrated absorption
S(T) by

7 P,y =D,

The abhsorption and emissivity of an isolated spectral line will now be
studied and the usefulness of the various terms will become apparent.
The procedure will be generalized to the case of many spectral lines in
order that the properties of bands may be understood.

Spectral lines and line broadening (11).

Congsider an atom or molecule in an excited state in translational
equilibrium in a region containing similar particles. This individual
particle can change its state, and internal energy, by several mechanisms.

(i} Absorption or emission of a photon without being
simultaneously in contact with another particle

(ii) Absorption or emission of a photon during a collision
with another particle

(1ii) An upward change of state the energy for which is
derived from the large kinetic energy of a collision with
another molecule (inelastic collision).

(iv) A downward change of state during a collision accompanied
by a corresponding increase in the kinetic energy of two particles
(super—~elastic collision).
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(i) and (ii} are basically radiative transfer mechanisms while
(iii)/and (iv) are upaccompanied by any radiative features.

Uhich of the above mechanisms dominates denends on the state of
the gas and the particular way the total enerpv is distributed between
the various degrees of freedom. For example, (iii) dominates in the
relaxation repion of a shock wave while (ii), in the enission case,
dominates when equilibrium has been reached behind a shock wave at a
moderately high pressure,

- Since we are interested in radiation properties of gases, (i)
and (i1) will be of most importance here, but (iii) and (iv) can be
investipated since the redistribution of states they cause influences
the gtate of the gas and the mechanisms (i) and (ii).

Mechanisms (i) and (ii) are accompanied bv observable radiation
and for a given transition the photon of energy hv_ involved can be
detected. If we have a very large number of excited and de-excited
particles in translational equilibrium with each other and with an enerny
source, a larre number of transitions will take place. If only one
transition is involved the energies of all the photons emitted and
observed will be similar but not all exactly equal to hv, since there
are in the main, three irportant phenomena which cause an energy spread
among the quanta, These are

i
(a) Natural line broadening
(b} Collision, or pressure broadenins, and
(c) Doppler line broadening.
(a) Matural line broadening is closely related to Heisenberp's
uncertainty principle (2,11) which states that the product of the

uncertainty of an energy state and the uncertainty in the time a
particle is in that state has a minimum value given by

AL At > *h
u
If we consider a molecule in an upper energy state E with a constant

probablllty per unit time of decaying (as inferred by (1.30),
uncertalnty in the time that a molecule is in state Ly is the mean lifetime
1, of that state. Thus the energy spread of the state is

AEy > N /Ty,

Since we consider particles in equilibrium with radiation, narticles
in the lower state will be excited after a mean lifetime 1, in the lower

state (on the average). The net effect is a spreadinp of the spectral line
into a curve of well-known intensity distribution.



- 38 -

(v Collision broadenins. As the pressure of a gas increases so does
the molecular collision rate which is accompanied by a corresponding
increase 1n the number of collision~induced radiative transitions. This
causes a reduction in the wmean lifetime of all states causine further
uncertainty in the enerey of each level, broadenins the spectral line
st1ll further.

(c) Dopnler broadening. Consider a particle moving with a velocity v,
emitting a photon in the direction of its motion. The observed frecuency
of the photon (v) will be greater than that observed (vo) if the particle

v . .
were at rest by an amount v = v, = v, r where 'c' is the speed of lipht,

Since in a gas there is a Maxwellian velocity distribution we shall observe
a2 Maxwellian frequency distribution about a central mean,

These are the cormonest phenomena which cause spectral line
broadenine in molecular spectra. The shape of the spectral lines in
each case, being identical for tvpes (a) and (b) is well-known. In
seneral we can consider that (b) is nressure dependent and (c) is
temperature dependent.

For a sinrle spectral line with one type of broadening dominating,
the function P,(T) has a definite form though its magnitudes vary

according to the total strength of each spectral line. It follows that P

w
is not the most useful form for expressing the spectral absorntion.

Since the line shapes are well-known, we define the normalized
line shape parareter b(w) whicl gives a reasure of the relative
intensity of each part of anv line broadened by one of the usual
phenorena so that

2 b(w) dw =1,

The spectral absorption of a siven line (under siven broadenine concitions)
1s then piven by

P =5 b(w) ,
and the emissivity 1is

-e SXgob (w)

(1) For natural and collision broadeninpg {also known as Lorentz or
contour broadenine)

4]
blw) = §& [ (w - w0)2 + aL2 ] -1 . (4.7)



- 39 -

vhere w is the wavenumber of the line centre and = aL(n, T) is
the Lorentz half-width ot half-heipht of the line.
) For Doprler Broadeninr:
(w = o) In2
b{w) = -1;-—2 -(l? e uDQ (4.8)

D

where ay = aD(T) is thie Doppler half-width at half-hei-ht.

The shane of the two lines is drawn in Fie, 6 for the same
intensity and half-wicth and it can be seen that (b) tends to zero
rore rapidly that (a), and has a preater ratio of (heigsht/wiath),
Soretimes (b) can be approxirated bv the square line shane.

Consider now the total erission due to a sincle spectral line,
This will be eiven bv

- SXbfw)
e

7 RS dw = TROQ- ) du (4.9)
0

o)

If the emissivity were unity the total radiation would be
/ RO dy = oT (Stefan's Law),

so that the total herispherical emissivity of a line would be eiven by

- SXblw)y 4, (4.10)

= 1 b )
€1ine = & g Ry (1 -
oT

Since Rm0 is a slowly varvine function it is practically constant across
the spectral line at W,y BO that

RO

o wlilg -
€line 4 7 {1 - ¢ SXb(m))dm
aoT 0

(4.11)

The integrand is close to zero except for a very small region Auo close
to the wavenumber w0 and the limits of the integral can be chansred

without appreciable error so that

0
R
Eline ~—2 5 (1 - e - X0y, (4.12)
4
aT Aw

0



- 40 -

For a single line we define (17)

, - SXb(w)
ksn = £wo(1 - e ) dw (4.13)

as the equivalent line width. This concept 1s a very useful one and it
can be shown that band emissivities are functions of wqg and spectral
line separation. )

In a similar wav we can show that for a band, the total (engineering)
emissivity 1is given by (1)

0

o
=ﬁ'g; s (1-e Po%44
oT

£
band Hw band

The values of Uqg’ etc. are well-known for the tvpes of lime

given by (4.,7) and (4.8) and also for a mixture of the two. However,
the calculation of the spectral band emissivity is a mammoth task and
the varied assumptions that can be made manifest themselves in the
results.

Provided there are a large number of lines in the band we do
not concern ourselves with the high resolution calculation of spectral
emissivity. The individual line shape of each spectral line is
expected to be the same.

¥rom the work of Plass (17) the two basic (and combination)

models of a spectral band, and their associated approximations, will
be nresented briefly,

4 (b) The Equivalent Widths of Spectral Lines for Various Line

Shape Parameters (17)

Directly from the definition of equivalent width we can
substitute the normalized line shape parameters b(w) and evaluate the
intepral. Mathematically we extend the limits of integration to infinity.

i. For a Lorentz broadened line we find

USL = ZﬂaL f(x) (4.14)

where x = gia , f(x) = x e-x[ Io(x) + Il(x) ] is the Ladenburg-Reiche

L

function, (18,26) and Io(x), Il(x) are Bessel functions of imaginary
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1 . .

arsument. Slnce:«:?r-for fixed SX, x 1s a measure of the spread of the
L

line, There are two well-Fnown aprroximations,

(a) For small x the above expression becomes

NSQ = ZNGLX = SX (4.15)

where x¢0.02q for the approximation to be valid to q per cent.
This is called the weak line (or linear) approximation (W.L.A.).
(L) For larse %, we find

‘JSQ- = 20 L(2'ﬂ'x)% (4-16)

where x»12.5/q to q per cent,

This is the strong line (or square root) approximation (S.L.A.), in which
the spectralsline is concentrated very close to the transition wavenumber u .

The Ladenburg-Reiche (3) plot and the two amproximations are
shown in Fig. 7.

2. For the Doppler line shape, the integral can only be evaluated
by first making the approximations. The results are then

(a) Weak line approximation
o0 - n n
v, = $x * -
st n=0 (mDyT(n+1)? (4.17)

where Xn =JE§z SX , and o is the Donpler half-width.
m op D

This series 1s convergent for x_<1 and also valid to q ver cent when only

D
the first term is used if xD<0.030, in which case
WSR, = SX.
(b) Strong line approximation
W = 2a E“xD [ 1 +-E£nx ]
St D in3 2 Dese (4.18)

which varies very slowly with Xy € being a constant of order §.

3. Since the square line-shape is often used as an approximation to
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simplify the analvsis, it is interestine to calculate its eeuivalent
width,

In this case

1/6
for (w, = 46)< w <(u_ + §9),
b(w) =
0 for (mo - 18)>w; m>(u:0 + 18),
Then 1
w0+5£ _}_'\:g
USQ = f | (1 ~-¢ § )dw
w "26
0 2
- A8
=§(l-e §)

XS
8X, for small xs(—-g—

It can be seen that the weak-line approximation is independent
of line shape. For large values of x and mixtures of Lorentz and
Doppler broadeninr we find that a good approximation is (19)

-
2
1

2x, | 3 1
—ZIT{XL(?T-—')E {1-(1-;2')5 + vuus }
s}
EE(Rn 2)%.
D

where a

From this 1t is seen that even if apy is considerably larger than

s the square root approximation is still valid provided x is larre

enouch, The physical reason for this is that at large x the emissivity
at the line centre becomes unity, so that the variations in absorption
come mainly from the wings of the line, which are much more effective
in the case of a Lorentz broadened line, (See Fig. 6).

The physical meanine of equivalent width is given by

Wep = [ gy dw, (4.19)
bw

which is the width of a line of unit spectral emissivity with the same
total emissivity as the original line.
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4 () Models of Band Spectra and Caleculation of Spectral

tmissivity in terms of Fouivalent Widths of Sinele Lines

We have seen that the total emissivity of a lire is
related to the equivalent width of the line. That is

0
ESQ(T) = —-;—T—a—— W (T)

We can also calculate w%z(T) for any line egiven S(T) and b(w,T).

Y

A ratural extension of these areuments includes emission and

absorption of larre numbers of lines in a band., For a band made un of
sunerrosed lines we can calculate the total fractional absorntion A(T)

which is the tetal hemispherical emissivity of the band, under the
conditions of Xirchhoff's Law, Cband(T) = A(TY.

There are two basic models of an absorption band:

{1) The Llsasser Model, and
(2) The Statistical Model.
(1) The Flsasser Model (20, 19)

1

The Llsasser band contains an infinite number of eaually spaced lines

with equal intensity and identical line shape parameters.

The fractional absorption of the band is found to bhe
represented in the form of an integral which cannot be evaluated
in terms of elementary functions, but can be approximated by:

(a) A= erf(iBzx); Valid if x>1.25, 8<0.3 (to 10 per cent),

-B
(b) A=1-c¢e x; valid if Bf>3, for all x, (to 10 per cent),

sxX SX
where B =-312, X = Fro =-§E,

3 d beine the line sepatation,

(4.70)

If we consider the physical internretation of Ve riven in (4.19)

it is very easv to see that the fractional absorption for a Lorentz-line

band is given by
A=-a- = B f(x). "

. =2
This expression is correct to 10 percent if x<0.,068 ~ and

B<0.3 or x<0.28° and £>0.3.
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Note that (4.20) no longer arplies since we assumed that R wo vas constant
over a spectral line. lere we have many equally spaced lines and Rw
is certainly not constant across them all,

(2) The Statistical Model (17)

WVhereas the Elsasser Model is one of a perfectly repular
frequency spectrum, the spectral distribution of lines in the
statistical model is random, as is the intensity of each line, In
fact position and intensity are poverned by probabilitv distribution
functions, No correlation between lines is assumed, and it can be shown
that the absorption is a function only of the ecuivalent width of a
sinple line of the band.

Define N(wl, cenese mn)dwl senas dwn as the probability that the
first line will be in the wavenumber range dw1 at w, while the second
line is in the range dmz at ©,, and so on up to line n. Take the

wavenurmber oriein at the centre of a band of width D. Define also P(§)dS,
P . . . . . . 1
as the probability that the intensity of the ith line is in the range dSj

at S;. The spectral en1551v1ty of the ith line with a shape b (w, ) is

~$iX b

therefore (1 - e iX ( ) which is also the fractional spectral absorption
for an coptical path length X. The total absorption A for a statistical

band is then

ip ip . .
oo ! N(@gooww Yo, oo, dw ... 71 P(S.)e_xsib(wi)
w1 n 177 ds,
A=1-~ -iD -iD o 0 i
+D 4D ]
[ ! N(wyeoow ddwy wes dw_ f vua S 0 P(5;)dS;
_}D “gD 1 n 1 n o o 1 1 1

(4.21)

Since no correlation between the frequencies Wps sees U is assumed, N

must be a constant, and if we normalize P(Si) s0 that

£ P(S,)ds; = 1,

then since the intensities are unrelated the integral over each line is
equal to the integral over any other line, and A reduces to

p 0 2
1 - {-ﬁ f dw f P(S)e
~-iD o

~SXb (u) 4 n
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By further mathematical rearrangerent we find that

p #D
A=1- {1 -3 ! duy
-%D

=1 - {1-% T P(5)dS
[o]

=1 - {1 -1 % p) w

D ’ St

(5,a)

where WSE,D ¢

in the bandwidth D. S is some standard intensity within P(S).

Now D = nd, where d is the average line spacine in the band,

so that

v —
(S,a)
A:l—{l-—s_g'—'_y__—-

nd

0

n

I .

n
? p(s) (1 - e 0)y4g }

4D _ n
;- SR, dof
-%D
n
’D(S,a)dSi
n

is the mean value of ¥

$¢,D

(4.22)

(S,0) over the distribution P(S)

If the nurmber of lines n, approaches infinity while d remains constant,

that is D=, then

”SR' (-S-,(l)

A=1-¢ d ,
where

NSE(S,Q) =

L
and JSE

These results demonstrate that for any value of n, the fractional

¥

o

0

1=~

e SXb(m))dm,

G,0) = T pr(s) W, (8,0)dS.

(4.23)

(4.24)
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absorption of a band, includine all overlappinc effects, can be
represented as a function of the equivalent width of the spectral line.

It can be shown that provided the number of lines in the band
exceeds ten, the predicted absorption curves {(a nlot of A vs. x for fixedB,
where X and B refer to a sinple line in the band) are almost identical

(see Fig, 8) for all values of absorption of practical interest,
(0.01<A<l),

It can also be shown that the fractional absorption is nearly
independent of the function P(S).

For a square line,

(i) For P(S) 8(s - 8) , i.e. ecually intense lines.

__ - Xs
”sz = 8(1 - e 8)
. 1 -sfs . o e
(ii) For P(S) == e , 1. e. an exnonential intemsity distribution.
5
wSE =———-X§
X8
1 +-§—
. _— . : .. XS
These two expressions for ”Si are verv similar, especially if 5 << 1,

which is the W.L.A.. In fact, providing we correlate all the values of §
for the various intensity probability functions, we can get nearly complete
apreement for any reasonable intensity probability function P(S,S). (17)

Note that in the W.L.,A.:=

wsa(g’“) = [ SX P(S)dS = XS ,
(o]

A comparison between models (1) and (2) 1is shown in the plot of
fractional absorption curves 1in Fig, 9.

Since, on the whole, molecular spectra are neither a completely
random nor perfectly repular set of lines, the obvious peneralization of
the above two models is the Random Elsasser Model (17)., This is a random
superposition of pure Elsasser bands of varying total intensity and line
spacing, The result of an argument similar to that given for pure
statistical model leads us to
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N -1 %Al by, w © N
Awl -[ I (Ai) J f ! A6 eveee do, [ uuu £ 1 P (S_)e-51Xbi(m1)
1=] "%A -iA 1 l\ .=1 E 3
1 N Q o 1
(4.29)

wvhere Ay denotes the line separation of the ith LClsasser hand of which
there are N; bi(wi) being the line shape factor summed over all the lines
of the ith band ; PF(Si)d Si is the probability that the ith Llsasser

band has total intensitv in the range dSi at §,,
i

The expression reduces to

X WE i
A=1- o (-2t (4.25)
ial i
Fere, Wov = [ . .(x., 8.) P(5.)dS with 8. = 279
' L, E,i*"i* 7§ PR B i 7
i
and ¥, Slx

B evem—
1 2nui 3

i T T 8 A g (gaBp) PSS,

where AE i(xi,ﬁi) is the absorption due to the ith band.
]

This formulation of the Random Elsasser band allows us to find
an infinite set of absorntion curves (i.e, A vs x for fixed 8), between
those given by the statistical rodel and the Elsasscr tfodel, denending
on the number and intensitv of Elsasser bands we consider, (see Fig. 10).

Further, as ¥ + ® and the average line spacine d, eiven by

—
-

1.
A

™

1.
d

e
-

i=1

is held constant, the absorption curve annroaches that of the statistical
model, TFor examnle if Ri , O and Ai are independent of i,

dS;

1
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wﬁ,i (., Bi) = s %, B
o that A=1- (1 H-I-T’-)N
so H = Wd
_EE ag N - = .
=1 - e d

whieh is a statistical rmodel result,
In most molecular bands at high temperatures this nurber of

superposed bands is so larece that the statistical model has been used
in emissivity calculations, {(particularlv for carbon dioxide}.

5. Application of the Statistical Model to the Vibration-Rotation

Bands of Diatomic and Linear Triatomic Molecules, taking the

4.3 micron Carbon Dioxide Band as an Lxample in Calculating

the Spectral Emissivity,

We have sgeen in Section 2 that the relative intensity of single
spectral lines in a vibration-rotation band can be calculated as a function
of the rotational quantum number. In Section 3 (b) we saw that the
integrated band intensity can be found at any temperature if its value
at one temperature is known.

This information allows us to calculate the spectral emissivity of
a vibration-rotation band but would involve consideration of each individual
line of the band and there may be well over 100,000 of these at high
temperatures. There is however a 'reverse' method formulated by Malkmus
and Thomson (21) for diatomic molecules and adapted by Malkmus (13} for
the 4.3 micron band of carbon dioxide,

This method assumes a diatomic molecular model consisting of an
anharmonic vibrator and rotator with the first order vibration-rotation
interaction.

The energy states of this model can be expressed in terms of
vibrational and rotational gquantum numbers. The transition wavenumber
from state (n,j) to state ((n+l), j') is given by

w = w(n) + Be[ JU(iTeY) - j(j+1)] - o [(n + 3/2)(j'+1)j' - (n+§)j(j+1)},

(5.1)
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where w(n) is the central wavenumber of the band and depends only on
vibrational quantum number n, and potential well constants, Re is the

rigid rotator spectroscopic constant and < is the first order vibration-

rotation interaction constant.

The rotational selection rule informs us that
i'=3+1 (with j, j'20),

leadin~ us to two expressions for w, one for each branch of the band.
There is no Q-branch for a diatomic molecule, and for a parallel band
of a linear triatomic mnlecule the O-branch is verv weak, The P- and
R=branches have lines at the following spectral positions:

2y g 3G - zci+1><n+3’2)i

w=w(n) + 3
et PGty = 2i(ne>12) (5.2)

-2j

The upper expression corresponds to i' = j + 1 (R-branch) and the lower
expression to j' = j = 1 (P-branch). By substitutine j = m - 1 into the
upper expression and j = - m into the lower one two identical expressions
are derived:

w=wln) + 2n Be - ae[ m{m + 1) + 2m(n + i)] (5.3)
This sinele expression describes both the R- and P- branches by

means of the appropriate substitution for m, Eauation (5.3) is then solved
as a quadratic equation in m leadinpg to two solutiouns

Be - ae(n + 1) - /(Be - Ge(n + 1))2 - Ge(m - wln))

m1=
4
e
B —aln4l) +7/ @ -oa+1)?-a(w-um
e e 2] e e
and m, =
2
s 1
e

which Malkmus and Thomson agsociated with the P- and R~branches respectively.

The expression for the integrated line intensity of a single line
in each branch of the band can be found absolutely as a function of the
vibrational and rotational quantum numbers of the initial state (n, j) and
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spectroscopic constants (31). By substitutine j = j(m) we can find the
inteerated line intensitv for the band as a function of m. Further by
substituting m, = m, (w) and m, = m, (w) above we can find the integrated

line intensity as a function of (n, w). This operation involves a smoothing
out of quantum numbers, but since there are manv lines this does not

cause any trouble if onlv low resolution spectroscopy is required.
Application of the Statistical Medel of a band enables us to complete

the low resolution spectral emissivitv of the band,

Thus from S = § (n+n', i+j') we can find
§ = S{n*{n+l), w)

and hence the spectral emissivity. Tor exauple in the weal. line
approximation, we find, from Equ (4.23), that

p S{w)

Ew =1-exp(—m-)—- )

where now we have

Sw . T4 S Sy )
R L & e MU oy a2 (5.4)

liere dn(u) is the mean line separation in the band and is given by

d_(w) = 2 /(Be - a_(n+1) ] 2 _ o (wmu (@) . (5.5)

For computation of €, by this method physical conditions of

pressure, temperature, and optical path lensth are chosen, and
for a piven wavenumber (S(w)/d(w)) can be calculated using the summation.

Malkmus and Thomson (21, 13) associated the two solutions of the
quadratic equation (5,3}, rhat is m, and m,, with the P- ard R-branches of
the spectral band., In fact the solition m describes both the P- and R=branches
up to the band head in the R-branch. The Solution m, describes only that part
of the band beyond the band head. In this region thé rotation-vibration
interaction energy in the first-order approximation is larger than the
rotational energy, and higher order interaction terms should be considered,
Fie., 33, which shows a plot of equation (5.3), should help to clarify this point,
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It happens that the intensitv of the spectral lines approaches zero rapidly
beyond the band head, so that the contribution to the emissivitv of the
spectral lines described by m, is very small, The error in the emissivitv,
caused by neplecting the solution m,, is very much less than the main errors
of the calculation. These stem from the use of the harmonic oscillator
approximation in predictine the spectral line intensities and the use of

an approximate spectral band model,

Thus, to within the accuracv of the models used in the calculation
we can neplect the term
+
gt 1 ()
( n

dniwi )m2
in equation (5.4).

We can now proceed with a summarv of the work done bv Malkmus (13)
on the 4,3 micron band of carbon dioxide,

The similarity of the 4.3 micron band of carbon dioxide to that of
a diatomic molecule has been noted in section 2(b). The 4.3 micron band
consists of two tvpes of superposed bands.

(i) Those for which 2=0, when alternate lines (of odd j) are
absent, but the remaining lines have twice the intensity expected from
diatomic theory

(ii) Those for which £>0, when the average line intensity is the
same as for diatomic molecules, but there are twice as many linecs in the
band, (see Fig. 1). A weak central branch is also formed, becoming
stronger as £ increases, but since the lines near the band centre become
weaker as £ increases, both effects are ignored. Even at 3000°K the
average value of £ is only about three.

The spectral emissivity is calculated for both the ¥.L.A. and
S.L.A, and also for Lorentz and Ddppler lineshapes.

In the weak line approximation we saw that 1',, = SX; leadingp

5%

to ?SQ = EX, and now with the argpuments laid out as ahove S can be
repgarded as a function of wavenumber. Thus

S{w)pl
€, = Aw =1-~-e dzmg (5.6)

Using the methods of Section 3(b) we can eliminate the guantum numbers £, n. and n,
and replace them by a combined quantum number n and a degeneracy factor.

The corrected equation (5.4) becomes

S(w) S . {(w)
TS = T I nn3
dw n=0  1ny=0 ( dnnBEms ) G.7)
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Ol.n“ Be }‘CU-' hCUJ hcm
= —---3-—-————-—-— = - 3 -1
where Snnn(m) (1 -~ e kT )(1 - e —05 )
3 » kT
nny kT
L - L? - K
X
%3

Ot
¥ exp % —-EEE? [ °L(L2 -/12 - Y- ()L« Ef)' K ] } (5.8)

il
2
t—l
)
}
=

and d 2 , (5.9)

nn3 (u)

1

- 1y - -
where L Be ul(n1 + 1) az(n? + 1) a3(n3 + 1), (5.10)

and K = o (0 - wnna)- (5.11)

w and a are defined in Ecus. (3.5) and (3.16).
nn4 nn,

The constants By 0py 05y a, are siven in earlier papers
S

{for examnle see Ref. 22). Since ) = -2&2 << Be' Malkmrus nerlected

contributions due to ay and a,. liere we have considered only one root

of the cuadratic equation (5.2) when the approximation to the vibration
rotation interaction is most valid,

In the S.L.A. for Lorentz-tyvpe lines we saw

- i o 5
an = ?aL(an) = Z(aLSA) .

and it is necessary that (a) lines prouped topether are not considered
exactly superposed, (b) the £ = O bands have a spacing and intensity
different from the other bands. Since a = aL(p,T) op, we put o =o P,

p being the pressure in atmospheres,

Thus, WSE = 2 05 pi S% (pl)é

= 2q oi Si (pzl)i.

<!
4 Eﬁ%ﬁ%} (5.12)

Therefore ¢ =1 =~ exp{—Zao% (pzl)
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1
=4 w w (s () )*
S-
where “H%:% = L T (!F‘n)E !
w n=0 n.=0 d (w)
3 an3

where r" is ~iven by (3.14). For a mixture of cases with a total pressure
rp and CO2 partial pressure of pp, in the weak line anproxiration (pl)

] 1
becomes (ppl), and in the stronn line aprproximation (r?l)2 becomes (prpl)E.
For Dorpler line shape we had
w (~1)" an

V., = 8X T ,
5! m=0(r#1) ! (me1)? (5.14)

Jon?
where % = EE— ) 4 EE .
D Il aD

Assunine the statistical mocdel we find

xSt
on L] nna
= 1 = exp [ - T pX d ] (5.15)
n=0 n.=0 M3
3
m
%* ® ~1y™ St (w)
where 1) St S X . I -1) [ ALk / In2 (5.16)
nnj nng m=0 4y n
*
dnn3
St _(w) = Z . 8§ (W)
nn3 n nnjy ?
.
2
* = = ] ; :
and dnn3 n dnn3(w)’ which were given previously.

Mallmus calculated the emissivitjes in both ¥,L.A. and $.L.A.
for T = 300°K, 600°K, 1200°%, 1800°K, 2400°L, 3000°K. For purpose of
calculating aoo(T) he assumed- that the total band strensth (23) at 300°L
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was 2700 crn.—2 atm.-l. That 1is

3 L oo (300°) = 2700 em.”2 atn.”
= = niiy
n=0 n,=0
3
%an (T)
Since ——d—0 is knowm, o (T ), and o {T) can be found.
@ (To) oy o nny

The value of ao(24) was assumed to be (.064 cm_l at 300°k

and to vary as T-%. The accuracy of this value is questionable as it

is based on measurements of the nitrogen~broademed 15y band. The

values of nn, considered were limited by takine into account only those
states for waich the fractional population N™M3(T) was greater than 10~

of the maximum value of WPP3(T). Since the intensitv of each "averape
spectral line" was calculated it would have been just as easv to leave

out all those lines weaker than a given strength, rather than leaving

out all states with less than a given fractional nopulation, esnecially

as line strenpgth is a function of dipole mgment as well as level population.
Also the presence of 1,1 per cent of cl3pl o was ignored. The error here

would be more noticeable at lower temperatures.

Use of the above formulae enables us to corpufe the exponents
involved in the expressions for the emissivity.

Fies. 11 to 16 show the variation of S/d and 2a0%§£/d

with wavenumber for the temperature already specified and also the variations
with temperature of S/d for wavenumbers « in the range

1900 € w s 2390 cm. k

Fins. 17 to 20 show the emissivity curves for weak line approximation
and Doppler line shape for the temperatures 300; 600; 1200; 1500°K., It is
seen that the pure Doppler line shape provides a lower limit to €y for any

given conditions. The apreement between W.L.A. and pure Doppler emissivities
is seen to improve with increasing temperature and decreasing optical path
length,

Fipes, 21 and 22 compare the W.L.A. with that derived by Plass (27)
for T = 1200°K and 2400°K. The discrepancies are alarming, particularly
at the higher temperature, when the two curves are separated by a factor
of about 15 for any siven wavenumber, but the seneral shape is seen to
agree fairly well, However Plass's results have been shown to be
inconsistent with the harmonic approximation in completing the integrated
band intensities, (28), The same tendencies are found by comparine the S.L.A.
in both Plass's and Malkmus's work (13).

Figs. 23 to 25 compare the emissivity with Ferriso's experimental
(supersonic burner) results (28). The W.L.A. is seen to improve with
terperature. This we expect since the number of lines increases rapidly
with temperature, Fig. 23 shows also the S.L.A. computation of €9 which is
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seen also to nredict a value larcer than the observed one, In fact in
the absence of Doppler broadening each of these approxirations separatelv
nrovide an upper limit to €,. Vhen the spectrum is one of a few stronp
lines sunmerposed on a bacleround of many weak lines, neither V.L.A. or
S.L.A. is a sood aprroximation. 1In this case the value of the surmand

in the two cases is computed separately for each superimposed band, and
the lower of the two values is taken. 1.e. we take the sraller of the
two terms’ .

nlsnnS(w)
nn3(w) , and
i
S {w) *
1 2404 n,} nn3
7 DD A

Since the error in both terms is known to be such that both terms are too
larpe we shall cet a better result by alwavs takine the smaller one. Tle
procedure is not purely empirical, but assioens the most valid arnroximation
to each band and of course rives a more accurate result than either "W.L.A,
or S.L.A, alone, as can be seen 1n Fies. 23, 26, 27 and 28, where the shane
of the curve is reasonahly well predicted, The asymetrie peak in the
experimental curve of Ferriso at 2400°K may be due to over-correction for
atmospheric absorption.

Fies, 26 and 27 compare the results with theose of Tourin's ras-cell
observations (14) at Y200%°K. The two fimures are different onlv in that
the carbon dioxide is pressurized in Fig. 27 by 0,855 atm. of nitroeen.

The U.L.A. vields the same curve for €, whereas the other approximaticns
are better in the case of pure CO5. Thus the nitropen does not broaden

the individual lines of the band as much as our models. As the value of
ot at 300°K is questionable this is one of the possible sources of error.

Fir. 28 shows similar comparisons at a different ontical path
lennth t¢ 3urch's results (29) at 1200°K, and Fies., 29 and 30 compare
these results in the strong and weak line anproxirations to those of
Oppenheim and Ben-Aryah (25), who use the statistical model to calculate
transmittance (Section 6).

It is worth noting that in the strong line approximation, where

- 2 et .
¢ =l-e 20 255 (p'D)/d

the emissivity is not a function of X = pl, so that the elementary law
of absorption (Lambert-licer's Law) is not obeyved, The Lambert-Beer's
Law expresses £, = €,(pl) in the form

€y =1 = e pwpl
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where k is the spectral absorption coefficient.

Thus a consequence of the S.L.A. is loss of linearity in optical
path leneth.

It is evident that the mixed weak-strone line annroximation 1is
more accurate than either W.L.A, or S.L.A. alone, thouch the estimate of
emissivitv is still too larse. However pure Doppler line shape alwavs
under-estimates €, So that we can at least calculate the two limits

between which the true emissivity curve lies.

6. Direct Application of the Statistical Model at 1200°K) in order

to Verify its Validity, and to Derive an Expression for the

Spectral Absorption (25)

Consideration of quantur jumps and individual spectral lines is
laid aside and the statistical model, as described in Section 4, is used
to attempt to find from some sirple absorption experiments the empirical
laws poverning the band radiation. The study is confined to Lorentz lines
only, for which the full Ladenburs-Reiche function is used to replace
its asymptotic limits of the Weak and Strone Line Approximations for the
equivalent width.

The situation considered is a cell of gas of length 'R' at a constant
temperature of 1200°K, The experimental variables are the nressure p and
¢, Only pressures creater than 0,071 atms. were used in the exneriments,
since below this, at 1200°K, Donpler broadeninec has a sienificant effect.

The statistical meodel was given in Section 4, where we had the
result that the fractional absorption A could be represented by the expression (19}

To\?Sl
A=1-exp - - (6.1)

TThere

-]

ey (S, o, n, L) = f Ve, (S, o, Py ) P(S, <€) ¢s,
[

P(S, S) beinp the intensity probability function and § some mean intensity.
Since the dependence of A on the actual form of P(S, S) is small (17), we
shall use throughout the distribution

P(8,5) = &(s - 9),
where § is the Dirac é=function,

Also in (6.1), d is the mean line spacine in the band, Since there



- 57 =

are many lines in the band, across which we consider the Planchk radiation
function to be constant, we shall consider that A, ”59(0‘ Sy and o are

) and d .
W w

functions of wavenurmber denoted by A | U (o ,

W SR, w
Now, since we are studying npure Lorentz lines for vhich the half-width
is proportional to wnressure, that is

o
a = a'n,
w w

; .0 .
it follows that W where the superfix =~ denotes all cuantities

=u°
SL,w SE,uP’
at unit pressure, Also, bv definition

Assuming the Dirac intensitv probahility function, it follows that

1 9
Seyw
A =1-e_ Jw r
W (6.2)
5%, S ¢
For nure Lorentz lines WU e = 2nuof(x ), where x = —2—0 = 2
S, W' Mwd i 2nam 2na,,

for this special case of p = 1, and f(x,) is the Ladenburs~Reiche function,

shown in Fie. 7, and given by

f(xw) = xwe-xw [Io(xm) + Il(xw) ] .

o

Therefore, for purposes of calculating WSR w ?
¥

X, is independent of

pressure,

Denotine the spectral transmission by Tw it follows fror (6.7)

that
-tn T, == tn (1= A
wS°
= .——ui?-._
d w »
since
o 0
W
Yse,w T 52,0’

and a plot of - lnTw versus p results in a straight line throuch the origin,
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lowever this does not constitute a proof of the statistical model
since the simple Lambert-Deer's Law also states that

~n T =opkt,

leading to a linear plot,

Comparison of the above two absorption laws shows that we
should also consider % as a variable, since it is implied that
o]

S, ., . .
——2_ is a function of ¢ if the laws are to apree over some range

dy

of (p,%). 1In fact this dependence on £ is ouite pronounced and is
represented in the Ladenburc—-Reiche curve.

Thus since

2ﬁa$
Tw = exp {- ( 3 yp f (xw) } (6.3)
w
anT
a plot of - versus 1 for a fixed frequency should follow the
p

Ladenburp-Reiche curve. Once this plot is shown to agree with the theoretical
curve we have proved the validitv of the statistical model.

The function wq? © is mathematically determined by the pararmeters
S,

o . X . . .
SZ and @ s inteprated intensity and hgsf—w1dth at unit pressure. Thus

s

Am is fully determined by Gag) and GEE-) which may be read off from the
W w

Ladenburg-Reiche curve, once constructed.

The following procedure is useful

(i) A recording of the absorption spectrum of the band, measured
from a cell of fixed % and arbitrary pressure, for the pure gas is made.
W9
(ii) Equation (6.2) allows a calculation of @_%&;B) for many values of w.
w

(iii) (i) and (ii) are repeated for a number of cell lenpgths, and for

each wavenumber the values of W © are plotted against £ on a log=log
S%,uw

d
[

scale, that is a graph of

2ﬂa: Znng
3 f(xw) VS, L(= 50~ x,) for fixed w.

W W
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(1v) Fittine these curves to that of

f{x) wvs, x ,
ud

0 a® 50

X 5
Gl (1] ud w
values of GF—), (EE)’ QE—) and GE—) can be found.
L W] w
(v) These cuantities, experimentally established, pive us a value

of Am for any value of nressure or reometric nath lencoth since

a® So
A =1-exp {- 2“6——) T f(7ﬂ(a0) )} (6.4)

L)

X, ad
[ .
The valucs of GE—) and GE-) can be used to nredict the effects of
1)
cas mixtures, provided that aa is corrected to include foreien-cras broadenire

effects, For examnle, if we assume thbat the half-widths cue to self and
foreign-ras broadenine sre eaual we find

where .. 15 the total pressure, and if in a series of experiments ?

YT
is constant and p/n is comstant, it follows that wci wiS unchanred, since
'T vy Y
SQ w)
, = l-e Pr (6.2a)
W

The gas-cell experiments were perforred by Oppenheim and Ben-Aryah for

five different cell=-lengths (25). The results are plotted on the Ladenbure-
Reiche curve (18) in Fig. 31, showing rood arreement at w = 2273 em~l,

Thus the statistical model is a pood armproximation to the 4.3 ricron band

at 1700°K and the dependence on (p, ) is also predicted. This elevated
temperature was of course used to increase the nurber of lines in the band,
makine the statistical model a more feasible approximation.

In the experiment it was necessarv to record a smoothed absorrption
curve, since it is the overall band shape that is important, and not local
peaks due to a larpe spectral line. Thus the slitwidth of the spectrometer
wAs increased until a reasonablv smooth curve was observed. This slitwidth
was 2 to 3 cm! and the handwidth investipated was 2200 to 2400 el In
this sensc Tw is an averape over a bandwidth of 2 to 3 em 1,
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The full results are shown in the form of eraphs in the oripinal
paper. The curves shown in Fim. 32 are the results of the computations
outlined above where the curves have been replotted for more suitable
path leneths, These curves may be used to predict the absorption in
experiments usiny ras mixtures in the following way:

(1) For a civen path lenpth %' select a firure for which £ g ',
where £ is the path leneth in the figure.

(i1) Select an experimentally convenient pressure p from the fipure,

(iii) For a gas mixture for which the total nressure p, = n and the
partial pressure is p', such that p' =p (2 ) the transmittence is
i
R

piven by the curve selected in (i), (ii).
This nrocedure nerlects foreipn-pas broadenine effects.

Most workers, prior to Oprenheim and Ben-Arvah, (25) who measured
carbon dioxide absorntion for the 4.3 micron band assumed the validity
of the Lambert-Beers Law, which predicts a linear dependence of -PnTw

on pressure. This dependence was indeed found, but the eradients of the
lines predicted very different values of the absorption coefficient, for
various values of nressure and cell-lensth and also various methods of -1
heating. Thus Tourin (14) (quartz gas—cell) found a value of kw = 1,09 cn.

altrr'.-1 at 4.4 micron, while Steinberg and Davies (30)(Shoct Tube) found

k =2,9 cm."1 atm, 1 at the gsame wavenumber and conditions,

Assuming the statistical ‘model it is possible to reconcile all
these published results, using (6.2) or (6.2a) as the correct absorption
Law. These results are correlated on the Ladenburg-Reiche plot (18) (Fig.31)
showinp that all the points fall reasonably near to the theoretical curve.
This also confirms the method of accounting for the effects of foreipn
&nT

gases, which consists of plotting values of ~ , for a given &,

]
' and total pressure Pr with an abscissa of (£=2).

eaT Py
The ordinate of each point was taken equal to - 5 .
T .

partial pressure p

.

Thus,pgiven the values of two of the followine:

El

X, Sz ao Sg )
77 €5)» ) and (79, :
w w w
which have been defined in this section, we can calculate the absorption
N “Sz,w
A = 1-e d ’
w w

as a function of temperature and wavenumber,

0f course, knowing the fractional absorption allows us to find the
emigsivity using Kirchhoff's Law.
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e, Conclusion and 2 Drief Discussion of Spectral and Molecular Hodels

Ve have seen that there are two apparentlv ouite different
methods available for calculatine the snectral enissivitv or absorrtivity
of a vibration-rotation bhand,

The first and rost important method is the fundamental one of
considerine individual cuantum rechanical transitions, and nerforminge
surrations over various dercnerate states in each vibrational level.

The second method is that which is arplied direct to the spectrum,
imnorine all ouantum mechanical transitions, and considers a model spectrum -
that of the statistical model for an infinite number of lines,

Lach method of attack requires sorme fundarmental Lnowledee, which
can only be obtained exnerimentally.

In the fundarental wethod this knowledre is in the forr of
snectrosconic constants concernine:

(1) enerry level maenitudes and senaration (PZX
{(1i) anharmonic potential terms (6, 7, 8),

{(i11) the effects of multipolar transitions (4),
(iv) dipole and multinole matrix elements (4),

fven then the first arproximation is made in the perturbation theory
calculation of Section 1.

For the statistical model we require more information than this but
it is of a simpler nature and can be found from some simple fairly low
resolution spectroscopic experiments of the tvpe mentioned in Section 6.
These experiments would be required at different temperatures. Lach set
of results would be required to srtisfy the statistical model, which can
then be used to determine the parageters given on page 60 as a function
of temperature., The model then eives us an enpirical formula for the
absorption

A=A [p, L, w, -i—(w, T, %(m, T)] .

0f course this is for purc Lorentz lines. Fowever, for shock-tube
work of fairly short peometric path length, the pressure will need to
be large enough to eliminate Doprler broadeniny effects in order to pet
a reasonable amount of emission.

If one method is carried riesht throuph to predictine A say, as
above, then the other rethod can in princinle be fitted to the empirical
function A, and the recuired spectroscopic knowledpe can be obtained for
the fundamental method.

The spectral-model anproach is a very common one, those mentioned
in Section 4 (c) beinp a sample of the more sophisticated tvne.
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The full set of models are:-

(i) The Box Approximation or Box=-Model

This involves the definition of an effective bandwidth Awnn'

together with an average absorption coefficient A, The result is that

the absorption profile 1s considered to be of constant height, with vertical
sides, haviner the same area as the measured absorption. The integrated
band intensity (see Section 3(b).) leads directly to this model as soon

as the band is given a width, which is arbitrarily defined for this model.

(i1) The "Just=Overlapping” Model

)
Here the averare absorntion coefficient is approximated by GEE)
w
and is considered a function of w, where dy, 1is the local line spacinpg.
The range of validity is roughly the same as (i) but mav be somewhat
superior for moderate nressures and optical path leneth. The analysis

is more complicated but leads to an unambiguous value of effective
bandwidth,

(iii) Non-Overlanping Lines with Lorentz-Tvpe Lines

For this model the analvsis is as accurate as for a sinele line,
but is available only for low temperatures and hich resolution
applications and is not applicable to the highly populated infrared bands
of carbon dioxide.

(iv) Non-Overlapping Lines with Pure Doppler Broadening

As for (iii) but at hirh temperatures and low pressures.

(v) Mon—Overlapping Lines with Mixed Lorentz-Doppler Broadening

This leads to a full rance of temperature and pressure application =
but only for hish resolution.

(vi) The Elsasser liodel

Equally spaced and equally intense spectral lines with arbitrary
overlapping, and either of the two main line shapes.

(vii) The Statistical Model

Lines spoverned by random probability distributions for intensity
and position in the band.

(viii) Random:Elsasser Model

A combination of (vi) and (vii), such that a complete Flsasser
band becomes treated like one line in the pure statistical model.

(ix) Partiallv overlappine spectral lines with Doppler-broadening.

(x) A locally-applied statistical model for arbitrary over-lapping
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and with pressure broadenine. This amounts to consideriny equivalent
width as a function of wavenumber, as in Sections 5 and 6,

It should be pointed out that the fundamental method of attack
on the problem is alsn forced to become a model approach since we cannot
nredict the intra~molecular parameters precisely. 1In this case the expression
for the band is that of a molecular model, for example, the harmonic
oscillator model, rather than a less realistic spectral rodel which does
not consider why the lines are there at all,

Srectral models were introduced and investipated mainly as a
scane-poat at macrosconic level, because molecular models were too
simple to predict realistic spectra, or too complicated to handle at all,

However, the method of Malkmus & Thomson (21) utilizes both a
spectral and a molecular model and produces results which agree with
experimental data. This is no doubt the best method of solution of the
problem so far devised, but improvement on its accuracy while keening
the basic method the same would require aleebraic solutions of hipher
order equations.

This work is part of a thesis vnresented to the University of Manchester
in support of an application for the depree of M.Sc., in September 1965.
I am grateful to Dr. H. K. Zienkiewicz for his active interest and
encouragement in the preparation of this work, and to Mr, E, Ulild for his
helpful discussions on difficult theoretical points.

I am indebted to the Scientific Research Council for a maintenance
grant during the compilation of this work. -
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Positions of centres of vibration-rotation bands observed
at room terperature. The designations vs (very strong), s (strong),
etc. are those of Herzberg (10) and correspond to those of the first
column in Table 2. Also shown is the radiacy ratio (R°/8° ) for a

blackbody at 300°K (2 (a)), 600K (2(b)), and 1500°K (2 (c)).



. Infrared Bands of Carbon Dioxide,
i(-Band Upper state | Lower state i:f::ﬂff:ﬁr ::ﬁ:::w waye Langth
! Type em (c,n-\-‘) {microns)
'L v.s. | 02 O T 00" 0| 5% 667.3% 667.3| 14,98
\.L.m. 02°0] 2§ 01 0! T 618.1 618.51 16.17
Lom. 02*0| 4 01 0] 7l 668.1%| 668,53 | 14,97
Lom. %cg‘ 0 71:3 01 8 AT 720.8%| 720.5| 13.87
R e “ 0 Dy 596.5 596.8 | 16.76
b, 03 0| Ti. 02° 0 ¥y 646.1 647.6 | 15.44
| 4w, 11 0§ Ti. 02' 0 Ag TLLLT 740.8 | 13,50
‘Lvw. | 1L 0| Tl 02" 0 % 791.3 790.8 | 12.65
L. 04 0 Z% 01 O T 1880.1 | 1886 5.302
iLm 12°0| A, 01 O N 2094.9 | 2094 4,776
| m. 20° 0 £% 01 0 T 2131.5 | 2137 4,679
E;_:_-Lm. 03' 0] Ti. 00" 0 iy 1931.9%| 1932.5| 5.175
Siiar | ooal 25 | owo| m | TN Read| won
t ] 9 . -
Hves. | 00°1) 2 0C° 0 b3 2349 ,4%) 2649.3| 4.257
fiis. 02°1| L' 00° 0 b3 3615.2 | 3609 2.771
(s, 10° 1| I 00° 0 25 371.5.6 | 3716 2.691
¢y m. 04* 1} X% 0C° 0 AN 4852.5 | 4860.6| 2.057
<| 1 m. 12m 1) 25 00°0 1 | 2-:% 4981.4%| 4983.5| 2.007
{u . 20 1| L7 00" 0 &% 5104.3 | 5109 1.957
V. 06" 1) I 00° O ks 6074.,5 6077 1.646
|y w. 14 1| 2% 00° 0 £ 6231.4 | 6231 1.605
li Ve 22., 1 &y OOO 0 é*tJ 6354.4 | 6351 1,575
i Ve 30" 1 I 00° 0 PR 6518.9 | 6510 1.536
v 00 5| = 00° 0 % 6973.L | 6976 1.433
{ Il v.ow. | 02°3| L% 00" 0 R 8192.9 | 8193 1.221
ihov.v, ) 1005 1Y 00" 0 ) 8295.3 | 8293 1.206
Ik v.w, | 00" 5|1 00" 0 2y 11496.5%|11496,5 | 0,8698
Hvew, | 0275|154 0e° 0| - v 12672.4%]12672.4 | 0,7891
Il vow. | 10° 5|15 felege; £4 12774.7%12774.7T| 0.7828
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(00000000

* Used as standards to calculate other wavenumbers.

® Showvn in Fig.®, indicated by

|

b4

Bands bracketted together are in resonance.
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The intensity distribution of a spectral line with
a) pure Lorentz broadening,

{b pure Doppler broadening
for lines of unit integrated intensity, and identical

half-widths.

Fig.6.
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Fig., 33,
A plot of GE:ESEl) versus m (Equ. 5.3).
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Curve A1A2 represents the case for ue=0, curve Ble represents the
case for ue-0.01 Be (typ{cal) and n=1., The vertical line m=0 divides
the P-branch from the R~branch, but the vertical line m=99 divides the
two solutions obtained by Mal?mus and Thomson (21). It can be seen that
the soluti;n. for m>99 represents the region where the first order
interaction term has becoﬁe the dominating one. Also, we can see that
the‘solution for m<99 represents both the P- and R-branches. Since the

integrated line intensity of lines with m>99 is very small this solution

has a negligible effect on the final value of the emissivity.
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